Synchronized Send Operations for Efficient
Streaming Block I/O over Myrinet

Evangelos Koukis, Anastassios Nanos and Nectarios Koziris
National Technical University of Athens
School of Electrical and Computer Engineering
Computing Systems Laboratory
{vkoukis, ananos, nkoziris } @cslab.ece.ntua.gr

Abstract

Providing scalable clustered storage in a cost-effective
way depends on the availability of an efficient network block
device (nbd) layer. We study the performance of gmblock,
an nbd server over Myrinet utilizing a direct disk-to-NIC
data path which bypasses the CPU and main memory bus.
To overcome the architectural limitation of a low num-
ber of outstanding requests, we focus on overlapping read
and network 1/0O for a single request, in order to improve
throughput. To this end, we introduce the concept of syn-
chronized send operations and present an implementation
on Myrinet/GM, based on custom modifications to the NIC
firmware and associated userspace library. Compared to
a network block sharing system over standard GM and the
base version of gmblock, our enhanced implementation sup-
porting synchronized sends delivers 81% and 44% higher
throughput for streaming block I/O, respectively.

1 Introduction

Building parallel platforms out of commodity SMP
nodes interconnected over a high bandwidth, low latency
cluster interconnect, such as Myrinet [1], Quadrics or Infini-
band has become an attractive option for providing a high
performance computing infrastructure in a cost-efficient
manner.

Increased computational capacity poses greater demands
on the storage subsystem, which is commonly implemented
either via raw access to a shared disk pool (as does the
Oracle RAC cluster database, for example), or via a paral-
lel filesystem, such as IBM’s General Parallel File System
(GPFS, [10]) or Red Hat’s Global File System (GFS, [9]).
The cornerstone of their deployment is shared, equivalent

This research is supported by the PENED 2003 Project (EPAN), co-funded
by the European Social Fund (75%) and National Resources (25%).

access to disks using Direct-Attached Storage protocols, for
example SCSI. Traditionally, shared access to storage was
made possible using a Fibre-Channel based Storage Area
Network.

Recently, there is a significant trend towards networked
storage, mainly for reasons of cost-efficiency (no need to
maintain two distinct networks, one for storage, one for
message-passing), scalability and redundancy. Cluster stor-
age evolves to a configuration where a limited number of
nodes (storage nodes) have direct access to disks over an
SAN, but use a network block device sharing layer to export
them for use by the rest of the cluster. Eventually, they may
be eliminated altogether, with all of the cluster nodes con-
tributing inexpensive, locally-attached storage to form a vir-
tual shared disk pool.

Thus, the performance of the I/O subsystem depends on
the availability of an efficient network block device (“nbd”)
layer. Previous work [5] focused on implementing such
layer over Myrinet. Our approach, called gmblock, uti-
lizes an efficient data path on the server side, moving data
directly between the storage medium and the Myrinet NIC,
without requiring any involvement of the host CPU or inter-
mediate copies of data in RAM. Its operation is block device
driver agnostic, based on combining extensions to the VM
infrastucture and direct I/O subsystem of the Linux kernel
with custom modifications to Myrinet’s GM. An initial per-
formance evaluation of gmblock in [5] (“base implementa-
tion”) showed it outperformed prevalent TCP/IP-based nbd
systems and a GM-based implementation by a large margin.
Still, the attained performance was lower than that expected
based on disk and network throughput.

With this as a starting point, we perform a compre-
hensive evaluation of each component on the server side
of the nbd system individually, and find that performance
is mainly limited by latencies caused by various parts of
request processing combined with the low number of out-
standing requests possible, due to architectural limitations

nbd userspace server

Cw

CPU CPU j

[IMemory Controller]
/

PCI/PCI-X Bridge]

1/0 Controller]

(b) physical level

Figure 1. Data path implemented by gmblock’s server

tecccccccccccccnnn Hardware
: ®
{ NIC SRAM J @ Storage
A 1
@ +©
(a) logical level
of the Myrinet NIC and GM.

To mitigate the effect of latency for reads, we overlap
disk I/0 with network I/O for a single request. To achieve
this, we propose the concept of synchronized network send
operations. Their semantics enable the storage subsystem
and the NIC to coordinate a peer-to-peer data transfer over
the peripheral bus, without any involvement of the host CPU
at all; the CPU onboard the NIC is responsible for retriev-
ing packet data and injecting them into the network in a con-
trolled manner, as the transfer progresses. We propose hard-
ware changes to the Myrinet NIC in order to facilitate their
implementation, and present a working prototype based
on custom modifications to the GM library and firmware
executing on the Lanai processor. A performance evalu-
ation of our nbd system supporting synchronized network
operations shows significant improvement compared to a
Myrinet/GM-based system and the base implementation of
gmblock, in terms of sustained throughput for streaming
1/0.

This paper is organized as follows: we first provide
a short introduction to Myrinet and gmblock (Section 2),
then demonstrate the performance constraints we are target-
ing (Section 3) and introduce synchronized send operations
(Section 4) as a solution. Section 5 describes an experimen-
tal evaluation of our approach. Finally, Section 6 presents
research related to this work, while Section 7 summarizes
our conclusions and explores possible future directions.

2 Myrinet/GM and the gmblock server

This section contains a short introduction to Myrinet/GM
and how it is extended to support gmblock’s data path.
Myrinet NICs feature a RISC microprocessor, called the
Lanai, which undertakes almost all network protocol pro-
cessing, 2-4MB of SRAM for use by the Lanai and a

number of DMA engines for access to PCI-X and the
packet interfaces. Myricom’s GM system provides user
level networking facilities to applications. It comprises
firmware executing on the Lanai, an OS kernel module and
a userspace library.

A userspace application can map parts of Lanai SRAM
in order to communicate with the firmware directly and
issue message-passing requests. Sending a message using
GM is a two-phase process:

e Host-to-Lanai DMA:
Virtual-to-physical translation takes place, the
PCIDMA engine starts, message data are copied from
host RAM to Lanai SRAM.

e Lanai-to-wire DMA:
Message data are retrieved from SRAM and sent to the
remote NIC by the Send DMA engine.

Gmblock differs from TCP/IP and GM-based
approaches, which stage data in host RAM, in that it
builds a direct disk-to-NIC data path without any storage
device driver-specific modifications, as follows (fig. 1): (1)
Part of Lanai SRAM is reserved for use as GM message
buffers and is mapped to the user’s VM space by the
GM kernel module (2) GM is extended to support sends
directly from Lanai SRAM, bypassing the Host-to-Lanai
DMA stage mentioned above (3) The Linux kernel VM
mechanism is extended to support direct I/O from and to
PCI physical addresses (4) The gmblock server component
issues a direct I/O read() request, causing the storage
medium to DMA block data directly to the NIC.

Thus, the steps needed to service a request when uti-
lizing a gmblock-based nbd server (denoted by letters in
fig. 1) are: (a) A request is received by the Myrinet NIC (b)
The nbd server process services the request by arranging for

block data to be transferred directly from the storage device
to SRAM on the Myrinet NIC, part of which has already
been mapped in its VM space (c¢) The data are transmitted
to the node that initiated the operation. Performing direct
disk-to-NIC transfers minimizes the interference of block
transfers with computation (d) which is likely to be taking
place on other processors of an SMP node at the same time.

3 Motivation

In this section we perform a comprehensive performance
evaluation of the base implementation of gmblock. We
show that despite its use of an optimized data path, it deliv-
ers performance that lags that of the hardware units it com-
prises, i.e. the storage controller, the peripheral bus and the
Myrinet NIC, when a low number of outstanding requests
(an architectural limit imposed by limited memory on the
Myrinet NIC, as explained in section 3.3) is used. We first
examine each of its components in isolation, in order to
deduce the constraints it imposes on overall performance,
then analyze the sources of request processing latency on
the nbd server.

3.1 Experimental Platform

Our experimental platform consists of two SMP nodes.
One functions as the client, the other as the server. Each
node has two Pentium I11@1266MHz processors (16KB L1
I cache, 16KB L1 D cache and 512KB unified L2 cache,
with 32 bytes per line) on a Supermicro P3TDE6 mother-
board. Two PC133 SDRAM 512MB DIMMs are installed
for a total of 1GB RAM per node. The motherboard fea-
tures the Serverworks ServerSet III HC-SL chipset, with a
Broadcom CIOB20 PCI bridge to two PCI segments: one
64bit/66MHz/3.3V with two slots and one 64bit/33MHz/5V
with five slots.

The storage medium to be shared over Myrinet is pro-
vided by a 3Ware 9550SXU-16 SATA RAID controller
on a 64bit/133MHz PCI-X adapter. We built a hardware
RAIDO array out of 8 Western Digital WD2500JS 250GB
SATA 1I disks, exported as a single drive to the host OS.
The RAIDO chunk size defaulted to 64KB. The nodes are
connected back-to-back with two Myrinet M3F-PCIXE-2
NICs, each in a 64bit/66MHz PCI slot. The NICs use
the Lanai2XP@333MHz processor with 2MB of SRAM.
Linux kernel 2.6.16.5, GM-2.1.26 and 3Ware driver version
2.26.02.008 are used. In the following, IMB = 22" bytes.

3.2 Performance evaluation of the base
gmblock implementation

We include two Myrinet-based implementations in the
initial evaluation: one is gmblock running with standard

GM buffers in host RAM (gmblock-ram), the other is
gmblock running with buffers in Lanai SRAM, using the
optimized data path (gmblock-sram).

We start by measuring the read bandwidth delivered
by the RAID controller, locally. This is done perform-
ing back-to-back requests of fixed size, in o_bIRECT mode,
with request size in the range of 1,2,...,1024K B. Two
different runs are done, one with destination buffers in
RAM (1ocal-ram), the other with buffers on the NIC
(1ocal-sram), providing the two bandwidth vs. request size
curves of fig. 2. A number of interesting conclusions can be
drawn. First, for a given request size these curves provide
an upper bound for the performance of our system. We see
that throughput increases significantly for request sizes after
256KB-512KB (reaching 347MB/s for buffers in RAM,
388MBY/s for buffers in SRAM, with IMB request size),
while performance is suboptimal for lower sizes, since the
degree of parallelism achieved with RAIDO is lower and
execution is dominated by overheads in the kernel’s I/O sub-
system. Thus, optimizing our system for use with larger
request sizes is key to delivering good performance. Sec-
ond, we see that doing peer-to-peer bursts over the PCI bus
from storage to the NIC outperforms the storage-to-memory
path by a margin of 11.8%, since they happen at the full rate
of the bus without the intervention of the CIOB20 bridge.

The second component of our nbd system is the PCI bus
itself. The results of a firmware benchmark on the Lanai
show that its PCIDMA engine can do burst writes to RAM
at 378 MB/s and reads at 331MB/s.

Fig. 2 shows the throughput measured at the client side,
using a userspace client submitting back-to-back requests
of variable size. The gmblock-{ram, sram} configurations
achieve 168MB/s and 211MB/s for 1024KB-sized requests,
respectively, which is only 48% and 54% of the maximum
read bandwidth of the RAID subsystem. To verify that
the network delivers the expected bandwidth, we introduce
a configuration that omits the actual disk I/O operation,
returning garbage to the client: the gmblock-bogus-{ram,
sram} curves, corresponding to buffers in host RAM and
Lanai SRAM, respectively. The former exhibits maximum
throughput of 330MB/s, capped by the read PCI band-
width. The latter on the other hand, is only capped by the
total bandwidth of the two fiber links on the Myrinet NIC
(476.8MB/s theoretical) and reaches 462MB/s.

Since gmblock-ram has to cross the main memory bus,
its performance is based on the available PCI and network
bandwidth, capped at ﬁ = 169MB/s. Even with mul-
tiple outstanding reqlfe;ts,gatlhis configuration could never
exceed half the rate of the PCI bus, ~200MB/s. On the
other hand, gmblock-sram reaches 211MB/s, which agrees
with —L— MB/s.

388 462
To break the total request processing time into distinct

phases, the server monitors the state of each request as it

PCI 64bit/66MHz

local-sram - -
450 local-ram - Iy
gmblock-sram 8 o
400 gmblock-ram --a--
L gmblock-bogus-sram --o-- X
350 L. 9mblock-bogus-ram -~ i e
—_ ; T A
@ A
g 300 ; e
-) . T
S 250 g .
s : ¥
, Va)|
m o R
150 e ay :/ -m
(ol o g
100 L //. - * ;,H‘/
7 O " S
50 e
0 L L 1 1 1 ! |
16 32 64 128 256 512 1024

Request Size (KB)

Figure 2. Sustained throughput as a function of request size (base implementation)

makes progress, using counters based on the TSC register
of the Pentium. The results are presented in fig. 3. We have
identified five different states each request may be in:

e STATE_INIT: Request received, being unpacked

e sTATE READ: In disk I/O phase

e sTATE SEND_INIT: Posting send event to the Lanai

e staTE SEND: Disk I/O done, send operation in progress
e STATE FIN: Returning receive token to GM

The time spent on states other than STATE READ or
sTaTE SEND was found to be negligible. For smaller
requests, execution time is dominated by disk 1/O, since
our storage delivers far lower bandwidth in the range of 20-
30MB/s than for 512KB-1MB requests.

3.3 Discussion

The results presented in the previous section show that
sustaining high performance for streaming I/O in an nbd
system is challenging, even when utilizing an efficient, disk-
to-NIC direct I/O path. The chief reason for low efficiency
is idle periods and suboptimal utilization of resources. One
way to attack this problem is by having a large number of
requests on the fly, in various stages of processing. If the
request pipeline is deep enough, the components of the nbd
system are kept busy, working on distinct requests in paral-
lel.

However, the Myrinet NIC has limited amount of SRAM
(2MB to 4MB). Since gmblock moves data directly from
disk to NIC, the maximum number of outstanding requests
is limited by the amount of SRAM available for its use.
We disabled most of GM’s functionality apart from reli-
able send/receives (e.g. Ethernet emulation) and limited
the maximum network size supported, but still no more
than ~1MB was available for gmblock’s use. Thus, only
1 x 1M B request or 2 x 512K B or 4 x 256K B requests
may be in flight at any moment. Using a larger number of
smaller requests would improve pipelining but would move
us at a lower point on the request size vs. bandwidth curve
of fig. 2. So, to maintain sufficiently good performance by
the storage subsystem, we are limited to one or two out-
standing requests, in which case gmblock-sram fails to uti-
lize the full link bandwidth, as shown in [5].

Having a limited number of outstanding requests means
the attainable throughput depends on the imposed request
latency; in fact, if only one outstanding request is allowed,
the achieved transfer rate is 7,,c; = ﬁ, where t;o1q; 1S the
total amount of time required to service a block request and
l is its length. Thus, to improve the efficiency of our nbd
system, we need to reduce 4,14, Reducing total request
latency can also be beneficial when there are data depen-
dencies among them.

This work attempts to attack the problem of read request
latency directly by increasing the amount of overlapped pro-
cessing within each individual request itself. The results of
the experimental evaluation presented in fig. 3 show that a

6,000

5000 F O STATE_FINALIZE (return receive buffer)
’ [] STATE_SEND (non—overlapped send time)
[[] STATE_SEND_INIT (prepare buffer, post event)
4,000 - [STATE_READ (block read)
|:| STATE_INIT (wake, unpack)

Time (ms)

3,000

2,000

1,000

EEQQ EEQQO EEQQ EEQQO E
BELE BEGS OPGL EEGE B
nee nee wee nee
2> 22> > 2>
[[2)7) [2X7) [27)

1] 1] 1] 1]
=] =] =] =]
j=2 (=) [=2] [=2}

o o o o
a o a a

1 2 4 8

sram
synchro

bogussynchro

16

EEQQ EEQQ EEQQ EEQQ EEQQ EEQQ
SE55 S855 555 BN55 Soss 565
nee nee nee Oee nee nee
> 2> 2> > 2> 22>
[27) [27) [2Y7%) [27) 27 [2Y7)

1] 1] 1] 1] 1] 1]

=] =] > =] =] >

[=2] [=2 (=2 [=2] [=2 (=2

o o o o o o

a a o a a a

32 64 128 256 512 1,024

Figure 3. Latency breakdown per request size

significant fraction of the total request service time is spent
waiting for network 1/O (ts¢nq). Servicing a block read
request is a two-phase process (Storage-to-SRAM, then
SRAM-to-wire); during the former phase the network inter-
face is idle, while during the latter phase the storage subsys-
tem is idle. Request service time would be reduced signif-
icantly if these two phases could overlap, i.e. by streaming
data from disk, through Lanai SRAM, to the wire (fig. 4).

For this to be possible, the send from SRAM operation
needs to be synchronized with the block read operation, in
order to ensure that only valid data are sent over the net-
work. Ideally, this should be done with minimum overhead,
in a portable, block device driver-independent way and with
minimal changes to the semantics of the calls used by the
nbd server for local and network I/O.

Implementing this mechanism in software implies split-
ting up each request of [bytes (e.g. IMB) in much
smaller chunks of c¢ bytes (e.g. 4KB) which would
be then submitted simultaneously (via a facility such as
POSIX (Asynchronous I/0O) to the local I/O scheduler. The
server would receive individual completion notifications
and would invoke individual GM send calls. This approach
has a number of significant drawbacks; first, it incurs the
overhead of waking up the server and enqueueing GM send
events very frequently; second, it discards the information
that all chunks are contiguous, relying on the server-side I/O
scheduler to reassemble them into to a larger I/O request to
the storage medium, for efficiency.

4 Synchronized send operations
4.1 Design

What is needed is a synchronization mechanism work-
ing directly between the storage medium and the Myrinet
NIC, in a way that does not involve the host CPU and OS
running on top of it at all, while at the same time remain-
ing independent of the specific type of block storage device
used.

Let us consider the scenario when the server starts a user
level send operation before the actual read () system call to
the Linux I/O layer. This way, sending data over the wire is
bound to overlap with fetching data from block storage into
the Lanai SRAM. However, this approach is likely to fail,
since the correctness of the data being transmitted essen-
tially depends on the storage medium being able to deliver
data faster than the Send DMA engine on the NIC consumes
them. Of course, the storage medium may fail to keep up
for a variety of reasons, such as transient disk errors, being
used by applications other than the nbd server at the same
time, or simply because it cannot deliver enough bandwidth
to saturate the network link(s).

To solve this problem we introduce the concept of a syn-
chronized property for user level send operations. A syn-
chronized GM operation ensures that the data to be sent
from a message buffer are valid, before being put on the
wire. If at some point in time no valid data are available for
a synchronized send token, the firmware ignores it when
searching for a suitable token from which to enqueue a
packet to the network. Essentially, what happens is that the
NIC works in lockstep with an external agent (the block

device), throttling its send rate in order to match that of the
incoming data (in our case, 7g;sk)-

The NIC notices data transfer completions in chunks of ¢
bytes. The value of ¢ determines the synchronization grain
and the degree of overlapping achieved (see fig. 4); The NIC
only starts sending after t; = szc’sk time units, then both the
storage device are the NIC are busy for {2 = Tld::k, then
the pipeline is emptied in t3 = n‘;t time units. There is a
trade-off involved, since smaller values mean finer-grained
synchronization and better overlapping, but could impose
significant CPU overhead on the Lanai, while bigger val-
ues lead to lower synchronization overhead but reduce the

overlapping between the two phases.

chunk
|

=i

Storage Reac? req. 0 Non-overlapped network

NIC Send req. 0

Send req. 1

t

Storage —»tlﬁf ‘ ‘HB\H‘ _
Read req. | Read req. 1

Synchronized sends for

NIC overlapped network I/O

Send req. Q | Senxi! req.

]

Figure 4. Intra-request phase overlap

Although our implementation of synchronized opera-
tions is Myrinet/GM based, it is portable to any pro-
grammable NIC which exposes part of its memory onto the
PCI address space and features an onboard CPU. Synchro-
nization happens in a completely peer-to-peer way, over the
PCI bus, without any CPU involvement.

4.2 Implementation issues on
Myrinet/GM

There is one major implementation-specific point which
has not yet been addressed. We need a way for the Lanai to
be notified as an external agent places data into its SRAM.
However, the Myrinet NIC does not provide such func-
tionality in hardware. It could be implemented with a
“dirty memory” bitmap describing the state of the Lanai
SRAM (2MBs) divided into chunks of size ¢ bytes. The
bit corresponding to an SRAM chunk is set by the hard-
ware whenever a value is written anywhere into it. For
a value of ¢ = 4096 bytes, at most 64 bytes are needed.
The firmware initializes all bits corresponding to an SRAM
buffer involved in a synchronized operation to zero. Then,
it can verify chunk n contains valid packet data by checking
if the bit for chunk n + 1 is set, assuming that the external
agent performs DMA into the SRAM serially, in ascending
order of addresses.

Since such functionality was not available on our NICs,
we emulated it in software, with 32-bit markers in the
SRAM itself. The Lanai polls the markers, which get over-

written as the data are DMAed in. The probability of at
least one overwritten marker going undetected because the
value being sent coincides with the magic value being used
is very low. For instance, if | = 1M B and ¢ = 4K B, it
holds: P =1 — (1-2-3) ¢ — P =596 x 10-*.

Still, to ensure that the system never fails and the Lanai
does not loop infinitely around a marker, an extra one is
used right after the end of the block, which is set by the
nbd server application when the data transfer into SRAM is
complete and all of the data is valid. The worst-case sce-
nario is that with probability P, no overlapping takes place
and the network transfer starts after the block read operation
is complete.

The implementation of synchronized operations on
Myrinet/GM comprises three phases:

e [nitialization phase:

Function gm synchro_prepare buffer () writes a 32-
bit value, eM_syNcHRoMaGIC, aligned with the end
of each chunk, once every GM_syYNcHRO MTU bytes in
the SRAM buffer. Initialization is done with PIO
inside the GM library, since the host CPU is an order
of magnitude faster than the Lanai. Send events
passed to the firmware are flagged as synchronized by
gm_synchro_send_with_callback().

o Transmission phase:
This step lies in the critical path of transmission and
is executed whenever a new packet of at most eM_MTU
= 4096 bytes is about to be injected into the net-
work. To minimize the overhead of synchroniza-
tion, each synchronized send token features a counter
which holds the number of bytes known to be valid,
initialized to zero. Whenever it is zero, the Lanai
checks how many of the markers immediately after
the send pointer have been overwritten and updates
the counter appropriately. If it is nonzero then data
may be consumed, and its value decreased otherwise
the token is bypassed. The firmware never blocks on
a synchronized operation, ensuring fairness between
tokens. By setting @M syNcHROMTU to a multiple of
em MTU, the normal send path is taken most of the

time and the firmware has to stall only once every
GM_SYNCHRO_MTU
GM _MTU packets.

e Finalization phase:
The nbd server notifies the GM firmware
that all of the data are valid by calling
gm_synchro_finalize buffer(), Wwhich sets the
marker right after the end of the block buffer to a
magic value.

The Lanai cannot address host memory directly but only
through DMA. The cost of programming the PCIDMA

PCI 64bit/66MHz

local-sram ----%--
450 local-ram
gmblock-sram
400 gmblock-ram --a--
gmblock-synchro —-&-- BN
350 |- gmblock-bogus-synchro -4 R
’\tn\ . x : ~
g 300 e ;
£ 250 B
T 200 « T =
S iz -
o s S
150)% e o
100 : R
T //*, :{, H"/
50 A g ,/ﬁ -
o = s .
0 Iﬁ—“;’:*:: ''''' 1 ! ! ! ! ! ! !
1 2 4 8 16 32 64 128 256 512 1024

Request Size (KB)

Figure 5. Sustained throughput as a function of request size (synchronized sends)

engine in order to monitor the progress of a block trans-
fer to in-RAM buffers is prohibitive, so synchronized GM
operations are only available when sending from buffers in
Lanai SRAM. This suffices for implementing an optimized
version of gmblock’s data path, however.

5 Experimental evaluation

We repeated the experiments of section 3.2 for a
gmblock server incorporating synchronized sends and the
results are displayed in fig. 5, for a chunk size of ¢ =
16 K B. There is significant improvement (305MB/s, 44%
better than gmblock-sram, 81% better than gmblock-ram),
with performance reaching 79% of the maximum RAID
read bandwidth. However, there is still network I/O time
that is not overlapped with disk I/O, as shown in fig. 3. This
time is much larger than the expected non-overlappable
duration (¢1 4 ¢3 from fig. 4); we attribute this to the initial
RAID chunk-sized block being DM Aed by just one disk.

To verify this hypothesis, we use a relaxed configura-
tion, gmblock-bogussynchro, which omits the actual disk
read. Instead, it simulates a storage device DMAing data at
a constant rate (same as that expected from the RAID con-
troller), by writing into the Lanai SRAM buffer. Now that
the buffer is being filled at a constant rate from the begin-
ning, gmblock achieves 375MB/s, with almost all of disk
I/O overlapping with network 1/O.

6 Related work

This work builds on gmblock, presented in [5]. TCP/IP-
based approaches to building nbd systems, such as Red
Hat’s GNBD and the Network Shared Disk component of
IBM’s GPFS [10] are well-tested and highly portable but
exhibit poor performance, perform multiple data copies per
block transferred and have high CPU utilization. On the
other hand, RDMA-based implementations [7, 4, 6] relieve
the CPU from network protocol processing but still fea-
ture an unoptimized data path by staging data in main
memory and crossing the peripheral bus twice per request.
Thus, their performance would be comparable to that of
gmblock-ram, since using 1-sided RDMA operations would
not have any impact on the main performance-limiting fac-
tor, which is the path followed by data itself. Crossing main
memory also leads to I/O interfering with the execution of
memory-intensive applications on the host CPUs.

The work in [8] addresses the end-to-end performance of
a kernel-based nbd system, over a custom 10Gbps RDMA-
capable interconnect. It focuses on I/O protocol modifi-
cations for improving performance for a large number of
small outstanding requests. This work focuses on mitigat-
ing the effect of server-side architectural bottlenecks for
larger, streaming 1/O requests. It aims to provide support
for synchronized sends with as few changes as possible
to the semantics of existing userlevel networking protocols
(specifically Myrinet/GM). That is why gmblock has been
implemented in userspace, based on userlevel mappings and

standard POSIX system calls.

The work on Off-Processor I/O with Myrinet (OPIOM)
[3]is very similar in spirit to gmblock and has similar goals,
performing direct disk-to-Myrinet block transfers on the
server side. However, it is SCSI-specific, relies on mod-
ifications to the SCSI stack of the Linux kernel and does
not address the problem of coherence with the Linux page
cache, which gmblock solves by exploiting the kernel’s
direct I/O mechanism.

READ? [2] brings storage closer to the network by hav-
ing the storage controller driver residing on the Lanai pro-
cessor itself. This however has limited real-world applica-
bility, because it requires porting each individual driver to
the limited environment of the Lanai and makes the storage
device unavailable to the host.

7 Conclusions - Future work

Motivated by the discrepancy between the locally avail-
able storage bandwidth and the throughput attained by our
prototype nbd server implementation, we enhanced user
level send operations as provided by Myrinet/GM in order
to support synchronization semantics. Our implementation
enables the Myrinet NIC to coordinate in a peer-to-peer
manner with an external agent, in our case a RAID stor-
age controller without any device driver changes, bypassing
the host CPU and OS running on top of it. This reduces the
latency of individual requests by allowing the block read
phase to overlap with the network 1/O phase, leading to an
81% improvement in streaming block I/O throughput com-
pared to a standard GM-based nbd implementation and a
44% improvement compared to our base implementation.

We believe the system would behave similarly on high-
end hardware, such as PCI-X/PCI Express-based systems
with DDR2 memory. We expect our conclusions would still
hold, since performance when using an unoptimized data
path would be limited by the available bandwidth to main
memory; its effects would be even more pronounced given
the emergence of modern 10Gbps cluster interconnects.

In the future, we plan to experiment with combining
synchronized operations and multiple outstanding requests,
using NICs equipped with 4MBs of RAM. Also, we plan
to use a second Myrinet adapter with custom versions of
the GM firmware and the GM module in order to emulate
a high performance solid state storage device on a higher
clocked PCI-X interface. Finally, we intend to study the
behaviour of our nbd system with real application I/O pat-
terns, by deploying GPFS on top of gmblock.

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. Su. Myrinet: A Gigabit-

(6]

(7]

(8]

per-Second Local Area Network. /IEEE Micro, 15(1):29-36,
Feb 1995.

0. Cozette, C. Randriamaro, and G. Utard. READ?: Put
Disks at Network Level. In CCGRID 03, Workshop on Par-
allel 1/0, Tokyo (Japan), May 2003.

P. Geoffray. OPIOM: Off-Processor 1/O with Myrinet.
Future Gener. Comput. Syst., 18(4):491-499, 2002.

K. Kim, J.-S. Kim, and S.-1. Jung. GNBD/VIA: A Network
Block Device over Virtual Interface Architecture on Linux.
In Proc. of the 14th International Parallel and Distributed
Processing Symposium (IPDPS), 2002.

E. Koukis and N. Koziris. Efficient Block Device Sharing
over Myrinet with Memory Bypass. In Proceedings of the
21st International Parallel and Distributed Processing Sym-
posium (IPDPS 2007), page 29, 2007.

J. Liu, D. K. Panda, and M. Banikazemi. Evaluating the
Impact of RDMA on Storage I/O over Infiniband. In SAN-
03 Workshop (in conjunction with HPCA).

K. Magoutis, S. Addetia, A. Fedorova, and M. I. Seltzer.
Making the Most Out of Direct-Access Network Attached
Storage. In FAST '03: Proceedings of the 2nd USENILX Con-
ference on File and Storage Technologies, pages 189202,
Berkeley, CA, USA, 2003. USENIX Association.

M. Marazakis, V. Papaefstathiou, and A. Bilas. Optimization
and Bottleneck Analysis of Network Block I/O in Commod-
ity Storage Systems. In ICS '07: Proceedings of the 21st
Annual International Conference on Supercomputing, pages
3342, New York, NY, USA, 2007. ACM.

K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erickson,
E. Nygaard, C. J. Sabol, S. R. Soltis, D. C. Teigland, and
M. T. O’Keefe. A 64-bit, Shared Disk File System for Linux.
In Proceedings of the Seventh NASA Goddard Conference on
Mass Storage Systems, pages 22—41, San Diego, CA, 1999.

F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proc. of the First
Conference on File and Storage Technologies (FAST), pages
231-244, Jan. 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

