
Redundant Memory Mappings for Fast Access to Large Memories

Vasileios Karakostas*1,2 Jayneel Gandhi*6 Furkan Ayar3 Adrián Cristal1,2,7 Mark D. Hill6

Kathryn S. McKinley4 Mario Nemirovsky5 Michael M. Swift6 Osman Ünsal1

1Barcelona Supercomputing Center 2Universitat Politecnica de Catalunya 3Dumlupinar University
4Microsoft Research 5ICREA Senior Research Professor at Barcelona Supercomputing Center

6University of Wisconsin - Madison 7Spanish National Research Council (IIIA-CSIC)
{vasilis.karakostas, adrian.cristal, mario.nemirovsky, osman.unsal}@bsc.es, frkn.ayar@gmail.com

{jayneel, markhill, swift}@cs.wisc.edu, mckinley@microsoft.com

Abstract
Page-based virtual memory improves programmer producti-
vity, security, and memory utilization, but incurs performance
overheads due to costly page table walks after TLB misses.
This overhead can reach 50% for modern workloads that
access increasingly vast memory with stagnating TLB sizes.

To reduce the overhead of virtual memory, this paper pro-
poses Redundant Memory Mappings (RMM), which leverage
ranges of pages and provides an efficient, alternative repre-
sentation of many virtual-to-physical mappings. We define
a range be a subset of process’s pages that are virtually and
physically contiguous. RMM translates each range with a sin-
gle range table entry, enabling a modest number of entries to
translate most of the process’s address space. RMM operates
in parallel with standard paging and uses a software range
table and hardware range TLB with arbitrarily large reach.
We modify the operating system to automatically detect ranges
and to increase their likelihood with eager page allocation.
RMM is thus transparent to applications.

We prototype RMM software in Linux and emulate the hard-
ware. RMM performs substantially better than paging alone
and huge pages, and improves a wider variety of workloads
than direct segments (one range per program), reducing the
overhead of virtual memory to less than 1% on average.

1. Introduction
Virtual memory provides the illusion of a private and very large
address space to each process. Its benefits include improved
security due to process isolation and improved programmer
productivity, since the operating system and hardware manage
the mapping from per-process virtual addresses to physical
addresses. Page-based implementations of virtual memory
are ubiquitous in modern hardware. They divide physical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ISCA’15, June 13-17, 2015, Portland, OR, USA
Copyright 2015 ACM. ISBN 978-1-4503-3402-0/15/06...$15.00
DOI: http://dx.doi.org/10.1145/2749469.2749471

memory into fixed-size pages, use a page table to map virtual
pages to physical pages, and accelerate address lookups using
Translation Lookaside Buffers (TLBs). When paging was
introduced, it also delivered high performance, since TLBs
serviced the vast majority of address translations.

Unfortunately, the performance of paging is suffering due
to stagnant TLB sizes, whereas modern memory capacities
continue to grow. Because TLB address translation is on the
processors’ critical path, it requires low access times which
constrain TLB size and thus the number of pages that experi-
ence this access time. On a TLB miss, the system must walk
the page table, which may incur additional cache misses. This
problem is called limited TLB reach. Recent studies show that
modern workloads can experience execution-time overheads
of up to 50% due to page table walks [10, 12, 31]. This over-
head is likely to grow, because physical memory sizes are still
growing. Furthermore, many modern applications have an in-
satiable desire for memory—they increase their data set sizes
to consume all available memory for each new generation of
hardware [10, 21].

Previous research has focused on solving this problem by
improving the efficiency of paging in the following three ways.
1. Multipage mappings use one TLB entry to map multiple

pages (e.g., 8-16 pages per entry) [38, 39, 47]. Mapping
multiple pages per entry increases TLB reach by a small
fixed amount, but has alignment restrictions, and still leaves
TLB reach far below modern gigabyte-to-terabyte physical
memory sizes.

2. Huge pages map much larger fixed size regions of memory,
on the orders of 2 MB to 1 GB on x86-64 architectures. Use
of huge pages (THP [6] and libhugetlbfs [1]) increase TLB
reach substantially, but also suffer from size and alignment
restrictions and still have limited reach.

3. Direct segments provide a single arbitrarily large segment
and standard paging for the remaining virtual address
space [10, 23]. For applications that can allocate and
use a single segment for the majority of their memory
accesses, direct segments eliminate most of the paging cost.
However, direct segments only support a single segment
and require that application writers explicitly allocate a
segment during startup.

* Both authors contributed equally to this work.

Transparent to Kernel Hardware # of Maximum reach Application No size-alignment
application support support entries per entry domain restrictions

Multipage Mappings [47, 39, 38] 3 7 3 512 32 KB to 16 MB any 7

Transparent Huge Pages [6, 36] 3 3 3 32 2 MB any 7

libhugetlbfs [1] 7 3 3 4 1 GB big memory 7

Direct segments [10] 7 3 3 1 unlimited big memory 3

Redundant Memory Mappings 3 3 3 N unlimited any 3

Table 1: Comparison of Redundant Memory Mappings with previous approaches for reducing virtual memory overhead.

V
ir

tu
al

A

dd
re

ss

Sp
ac

e

Ph
ys

ic
al

A

d
d

re
ss

Sp

ac
e

BASE 1 LIMIT 1

OFFSET 1

BASE 2 LIMIT 2

OFFSET 2

Range
Translation 1

Range
Translation 2

Figure 1: Range translation: an efficient representation of con-
tiguous virtual pages mapped to contiguous physical pages.

The goal of our work is to provide a robust virtual memory
mechanism that is transparent to applications and improves
translation performance across a variety of workloads.

We introduce Redundant Memory Mappings (RMM) a
novel hardware/software co-designed implementation of vir-
tual memory. RMM adds a redundant mapping, in addition
to page tables, that provides a more efficient representation
of translation information for ranges of pages that are both
physically and virtually contiguous. RMM exploits the natural
contiguity in address space and keeps the complete page table
as a fall-back mechanism.

RMM relies on the concept of range translation. Each
range translation maps a contiguous virtual address range to
contiguous physical pages, and uses BASE, LIMIT, and OFF-
SET values to perform translation of an arbitrary sized range.
Range translations are only base-page-aligned and redundant
to paging; the page table still maps the entire virtual address
space. Figure 1 illustrates an application with two ranges
mapped redundantly with paging as well as range translations.

Analogous to paging, we add a software managed range
table to map virtual ranges to physical ranges and a hard-
ware range TLB in parallel with the last-level page TLB to
accelerate their address translation. Because range tables are
redundant to page tables, RMM offers all the flexibility of
paging and the operating system may use or revert solely to
paging when necessary.

To increase contiguity in range translations, we extend the
OS’s default lazy demand page allocation strategy to perform
eager paging. Eager paging instantiates pages in physical
memory at allocation request time, rather than at first-access
time as with demand paging. The resulting OS automatically
maps most of process’s virtual address space with orders of
magnitude fewer ranges than paging with Transparent Huge
Pages [6]. On a wide variety of workloads consuming between

350 MB – 75 GB of memory, we find that RMM has the
potential to map more than 99% of memory for all workloads
with 50 or fewer range translations (see Section 3’s Table 2).

To evaluate this design, we implement RMM software sup-
port in Linux kernel v3.15.5. We emulate the hardware using
a combination of hardware performance counters from an x86
execution and functional TLB simulation in BadgerTrap [22]—
the same methodology as in prior TLB studies [10, 12, 23].
We compare RMM to standard paging, Clustered TLBs, huge
(2 MB and 1 GB) pages, and direct segments (one range per
program). RMM robustly performs substantially better than
the former three alternatives on various workloads, and al-
most as fast as Direct segments when one range is applicable.
However with RMM, more applications enjoy reductions in
translation overhead without programmer intervention. Over-
all, RMM reduces the overhead of virtual memory to less than
1% on average.

In summary, the main contributions of this paper are:
• We show that diverse workloads exhibit an abundance of

contiguity in their virtual address space.
• We propose Redundant Memory Mappings, a hardware/

software co-design, which includes a fast and redundant
translation mechanism for ranges of contiguous virtual
pages mapped to contiguous physical pages, and operat-
ing system modifications that detect and manage ranges.

• We prototype RMM in Linux and evaluate it on a broad
range of workloads. Our results show that a modest number
of ranges map most of memory. Consequently, the range
TLB achieves extremely high hit rates, eliminating the vast
majority of costly page-walks compared to virtual memory
systems that use paging alone.

2. Background

This section and Table 1 overview the closely related ap-
proaches to reducing paging overheads and compare them
to RMM. Section 9 discusses related work more generally.
Multipage Mapping approaches, such as sub-blocked
TLBs [47], CoLT [39] and Clustered TLBs [38], pack multi-
ple Page Table Entries (PTEs) into a single TLB entry. These
designs leverage default OS memory allocators that either (i)
assign small blocks of contiguous physical pages to contigu-
ous virtual pages (Sub-blocked TLBs and CoLT), or (ii) map
small set of contiguous virtual pages to clustered sets of physi-
cal pages (Clustered TLB). However, they pack only a small

Huge pages Ideal RMM ranges
Benchmark 4 KB + 2 MB total 99% coverage largest

astar 5129 + 158 55 7 76.2%
mcf 1737 + 839 55 1 99.0%
omnetpp 2041 + 77 54 12 60.2%
cactusADM 1365 + 333 112 49 2.4%
GemsFDTD 3117 + 414 73 6 71.7%
soplex 4221 + 411 61 5 41.9%
canneal 10016 + 359 77 4 90.9%
streamcluster 1679 + 55 78 14 83.8%
mummer 29571 + 172 17 4 57.5%
tigr 28299 + 235 16 3 97.9%
Graph500 8983 + 35725 86 3 50.4%
Memcached 4243 + 36356 82 2 98.6%
NPB:CG 2540 + 26058 84 5 28.8%
GUPS 2210 + 32803 92 1 99.7%

Table 2: Total translation entries mapping the application’s
memory with: (i) Transparent Huge Pages of 4 KB and 2 MB
pages [6] and (ii) ideal RMM ranges of contiguous virtual
pages to contiguous physical pages. (iii) Number of ranges
that map 99% of the application’s memory, and (iv) percentage
of application memory mapped by the single largest range.

multiple of translations (e.g., 8-16) per entry, which limits
their potential to reduce page-walks for large working sets.

Huge Pages using Transparent Huge Pages (THP) [6] and
libhugetlbfs [1] increase the TLB reach by mapping very large
regions with a single entry. The x86-64 architecture supports
mixing 4 KB with 2 MB and 1 GB pages, while other archi-
tectures support more sizes [35, 41, 44]. The effectiveness
of huge pages is limited by the size-alignment requirement:
huge pages must have size-aligned physical addresses, and
thus the OS can only allocate them when the available mem-
ory is size-aligned and contiguous [38, 39]. In addition, many
commodity processors provide limited numbers of large page
TLB entries, which further limits their benefit [10, 23, 31].

Direct segments [10] are a hardware/software approach that
map a single unlimited range of contiguous virtual memory to
contiguous physical memory using a single hardware segment,
while the rest of the virtual address space uses standard paging.
A virtual address is mapped by a direct segment or paging,
but never both. Direct segments introduce BASE, LIMIT, and
OFFSET registers to eliminate the page-walks within the seg-
ment. However, the mechanism requires that (i) applications
explicitly allocate a direct segment during startup, and (ii) the
OS can reserve a single large contiguous range of physical
memory for a segment. Thus, direct segments are only suitable
for big-memory workloads and require application changes.

Table 1 summarizes the characteristics of these approaches and
compares them to RMM. RMM is completely transparent to
applications and maps multiple ranges with no size-alignment
restrictions, where each range contains an unrestricted amount
of memory.

Page Table
(L1)

Page
Directory (L2)

Page Directory
Pointer (L3)

Page Map
Level 4 (L4)

(BASE2, LIMIT2)
(OFFSET2 + Protection)

Page Table

Physical
Address

Space

Range Translation 2

(BASE1, LIMIT1)
(OFFSET1 + Protection)

Range Tanslation 1

Virtual
Address

Space

BASE 1 LIMIT 1 BASE 2 LIMIT 2

Range Table

OFFSET 1
OFFSET 2

Figure 2: Redundant Memory Mappings design. The appli-
cation’s memory space is represented redundantly by both
pages and range translations.

3. Redundant Memory Mappings
We observe that many applications naturally exhibit an abun-
dance of contiguity in their virtual address space and the num-
ber of ranges needed to represent this contiguity is low.
Abundance of address contiguity. We quantify address con-
tiguity by executing applications on x86-64 hardware (see
Section 7 for workload and methodology details), and periodi-
cally scan the page table, measuring the size of virtual address
ranges where all pages are mapped with the same permissions.
Table 2 shows the minimum number of ranges of contiguous
virtual pages that the OS could map to contiguous physical
pages. The workloads require between 16 to 112 ranges to
map their entire virtual address space. However, the number
of ranges to cover 99% of the application’s memory space
falls to fewer than 50. Although a single range maps 90% or
more of the virtual memory for 5 of the 14 workloads, the
rest require multiple ranges. These results suggest that a small
number of range translations have the potential to efficiently
perform address translation for the majority of virtual memory
addresses.

3.1. Overview

The above measurements motivate the RMM approach. (i)
The OS uses best-effort allocation to detect and map contigu-
ous virtual pages to contiguous physical pages in a range table
in addition to mapping with the page table. (ii) The hard-
ware range TLB caches multiple range translations providing
an alternate translation mechanism, parallel to paging. (iii)

Page Translation (x86-64) + Range Translation

Architecture

TLB range TLB
page table range table
CR3 register CR-RT register
page table walker range table walker

OS
page table management range table management
demand paging eager paging

Table 3: Overview of Redundant Memory Mapping

Most addresses fall in ranges and hit in the range TLB, but
if needed, the system can revert to the flexibility and reduced
fragmentation benefits of paging.
Definition: A range translation is a mapping between contigu-
ous virtual pages mapped to contiguous physical pages with
uniform protection bits (e.g., read/write). A range translation
is of unlimited size and base-page-aligned. A range translation
is identified by BASE and LIMIT addresses. To translate a
virtual range address to physical address, the hardware adds
virtual address to the OFFSET of the corresponding range.
Figure 2 shows how RMM maps parts of the process’s address
space with both range translations and pages.

Redundant Memory Mappings (RMM) use range transla-
tions to perform address translation much more efficiently than
paging for large regions of contiguous physical addresses. We
introduce three novel components to manage ranges: (i) range
TLBs, (ii) range tables, and (iii) eager paging allocation. Ta-
ble 3 summarizes these new components and their relationship
to paging. The range TLB hardware stores range translations
and is accessed in parallel to the last-level page TLB (e.g., L2
TLB). The address translation hardware accesses the range
and page TLBs in parallel after a miss at the previous-level
TLB (e.g., L1 TLB). If the request hits in the range TLB or
in the page TLB, the hardware installs a 4 KB TLB entry
in the previous-level TLB, and execution continues. In the
uncommon case that a request misses in both range TLB and
page TLB, and the address maps to a range translation, the
hardware fetches the page table entry to resume execution and
optionally fetches a range table entry in the background.

RMM performance depends on the range TLB achieving
a high hit ratio with few entries. To maximize the size of
each range, RMM extends the OS page allocator to improve
contiguity with an eager paging mechanism that instantiates a
contiguous range of physical pages at allocation time, rather
than the on-demand default, which instantiates pages in phys-
ical memory upon first access. The OS always updates both
the page table and the range table to consistently manage the
entire memory at both the page and range granularity.

4. Architectural Support
The RMM hardware primarily consists of the range TLB,
which holds multiple range translations, each of which trans-
lates for an unlimited-size range. Below, we describe RMM as
an extension to the x86-64 architecture, but the design applies
to other architectures as well.

4.1. Range TLB

The range TLB is a hardware cache that holds multiple range
translations. Each entry maps an unlimited range of contigu-
ous virtual pages to contiguous physical pages. The range
TLB is accessed in parallel with the last-level page TLB (e.g.,
the L2 TLB) and in case of hit, it generates the corresponding
4 KB entry in the previous-level page TLB (e.g., the L1 TLB).

We design the range TLB as a fully associative structure,
because each range can be any size making standard indexing
for set-associative structure hard. The right side of Figure 3
illustrates the range TLB and its logic with N (e.g., 32) entries.
Each range TLB entry consists of a virtual range and trans-
lation. The virtual range stores the BASEi and LIMITi of the
virtual address range map. The translation stores the OFFSETi
that holds the start of the range in physical memory minus
BASEi, and the protection bits (PB). Additionally, each range
TLB entry includes two comparators for lookup operations.

Figure 3 illustrates accessing the range TLB in parallel
with the L2 TLB, after a miss at the L1 TLB. The hardware
compares the virtual page number that misses in the L1 TLB,
testing BASEi ≤ virtual page number < LIMITi for all ranges
in parallel in the range TLB. On a hit, the range TLB re-
turns the OFFSETi and protection bits for the corresponding
range translation and calculates the corresponding page table
entry for the L1 TLB. It adds the requested virtual page num-
ber to the hit OFFSETi value to produce the physical page
number and copies the protection bits from the range transla-
tion. On a miss, the hardware fetches the corresponding range
translation—if it exists—from the range table. We explain
this operation in Section 4.3 after discussing the range table in
more detail.

The range TLB is accessed in parallel with the last-level
page TLB and must return the lookup result (hit/miss) within
the TLB access latency, which for the L2 TLB on recent Intel
processors is ~7 cycles [28]. Unlike a page TLB, the range
TLB is similar to N fully-associative copies of direct segment’s
base/limit/offset logic [10] or a simplified version of the range
cache [48]: it performs two comparisons per entry instead of a
single equality test. Our design can achieve this performance
because the range TLB contains only a few entries and it can
use fast comparison circuits [32]. Our results in Section 8
show that a 32-entry fully-associative range TLB eliminates
more than 99% of the page-walks for most of our applications,
at lower power and area cost than simply increasing the size of
the corresponding L2 TLB. Note that our approach of access-
ing the range TLB in parallel to the last-level page TLB can be
extended to the other translation levels closer to the processor
(e.g., in parallel to the L1 TLB); we leave such analysis for
future work.
Optimization. To reduce the dynamic energy cost of the fully
associative lookups, we introduce an optional MRU Pointer
that stores the most-recently-used range translation and thus
reduces associative searches of the range TLB. The range TLB

[V47 V46 ……… V12] [V11 …… .. V0]

L1 D-TLB
Lookup

Hit ?
Y

[P47 P46 ……… P12] [P11 …… .. P0]

N

L2 D-TLB
Lookup

Y
Hit ?

Range TLB

Hit ?
Y

NN

Page+Range
Table Walk

BASE 0 LIMIT 0
≤ >

BASE 1 LIMIT 1
≤ >

Entry 0

Entry 1

BASE N-1 LIMIT N-1
≤ >

Entry N-1

EncoderRange TLB miss

OFFSET 0 PB

OFFSET 1 PB

OFFSET N-1 PB

TLB Entry
Generation

(address+OFFSET), PB

Range TLB hit

Optional MRU Pointer

Figure 3: RMM hardware support consists primarily of a range TLB that is accessed in parallel with the last-level page TLB.

first checks the MRU Pointer and in case of a hit, skips the
other entries. Otherwise, the range TLB checks all valid entries
in parallel. Note that the MRU Pointer can serve translation
requests faster than the corresponding page TLB and may
further boost performance.

4.2. Range table

The range table is an architecturally visible per-process data
structure that stores the process’s range translations in memory.
The role of the range table is similar to that of the page table. A
hardware walker loads range translations from the range table
on a range TLB miss, and the OS manages range table entries
based on the application’s memory management operations.

We propose using a B-Tree data structure with (BASEi,
LIMITi) as keys and OFFSETi and protection bits as values to
store the range table. B-trees are cache friendly and keep the
data sorted to perform search and update operations in loga-
rithmic time. Since a single B-Tree node may have multiple
ranges and children, it is a dense representation of ranges.

The number of ranges per range table node defines the depth
of the tree and the average number of node lookups to perform
a search/update operation. Figure 4 shows how the range trans-
lations are stored in the range table and the design of each node.
Each node accommodates four range translations and points to
five children, e.g., up to 124 range translations in three levels.
Since each range translation is represented at page-granularity
with the BASE (48 architectural bits −12 bits per page=36
bits), the LIMIT (36 bits), and the OFFSET and protection bits
together (64-bits conventional PTE size), thus each range table
node fits in two cache-lines. This design ensures the traversal
of the range table is cache-friendly, accesses only a few cache
lines per operation, and maintains the dense representation.
Note that the range table is much smaller than a page table: a
single 4 KB page stores 128 range translations, which is more
than enough for almost all our workloads (Table 7). All the
pointers to the children are physical addresses, which facilitate
walking the range table in hardware.

Analogous to the page table pointer register (CR3 in x86-
64), RMM requires a CR-RT register to point to the physical
address of the range table root to perform address translation,
as we will explain next.

4.3. Handling misses in the range TLB

On a miss to the range TLB and corresponding page TLB,
the hardware must fetch a translation from the memory. Two
design issues arise with RMM at this point. First, should ad-
dress translation hardware use the page table to fetch only
the missing PTE or the range table to fetch the range transla-
tion? Second, how does the hardware determine if the missing
translation is part of a range translation and avoid unnecessary
lookups in the range table? Because ranges are redundant,
there are several options.
Miss-handling order. RMM first fetches the missing trans-
lation from the page table, as all valid pages are guaranteed
to be present, and installs it in the previous-level TLB so that
the processor can continue executing the pending operation.
This choice avoids additional latency from accessing the range
table for pages that are not redundantly mapped. In the back-
ground, the range table walker hardware resolves whether the
address falls in a range and if it does, updates the range table
with the range table entry. Thus when both the range table and
page TLB miss, the miss incurs the cost of a page-walk. Any
updates to the range TLB occur off the critical path.
Identifying valid range translations. To identify whether a
miss in the range TLB can be resolved to a range or not, RMM
adds a range bit to the PTE, which indicates whether a page
is part of a range table entry. The page table walker fetches
the PTE, and if the range bit is set, accesses the range table in
the background. Without this hint, available from redundancy,
the range table walker would have to check the range table on
every TLB miss. Alternatively, hardware could use prediction
to decide whether to access the range table, which requires
no changes to page table entries, but we did not evaluate this
option.

RTEC RTED RTEF RTEG

RTEA RTEB RTEE RTEH RTEI

CR-RT

Range Translation or
Range Table Entry

BASE LIMIT

1247 1247

OFFSET + Protection

064

Figure 4: The range table stores the range translations for a
process in memory. The OS manages the range table entries
based on the applications memory management operations.

Walking the range table. Similar to the page table walker,
RMM introduces the range table walker that consists of two
comparators and a hardware state machine. The range table
walker walks the range table in the background starting from
the CR-RT register. The walker compares the missing address
with the range translations in each range table node and fol-
lows the child pointers until it finds the corresponding range
translation and installs it in the range TLB. To simplify the
hardware, an OS handler could perform the range table lookup.
Shootdown. The OS uses the INVLPG instruction to invalidate
stale virtual to physical translations (including changes in the
protection bits) during the TLB shootdown process [16]. To
ensure correct functionality, RMM modifies the INVLPG in-
struction to invalidate all TLB entries and any range TLB entry
that contains the corresponding virtual page. The modified
OS may thus use this instruction to keep all TLBs and the
range TLB coherent through the TLB shootdown process. The
OS may also associate each range TLB entry with an address
space identifier, similar to TLB entries, to perform context
switches without flushing the range TLB.

5. Operating System Support
RMM requires modest operating system (OS) modifications.
The OS must create and manage range table entries in software
and coordinate them with the page table. We modify the OS
to increase the size of ranges with an eager paging allocation
mechanism. We prototype these changes in Linux, but the
design is applicable to other OSes.

5.1. Managing range translations

Similar to paging, the process control block in RMM stores
a range table pointer (RT pointer) with the physical address
of the root node of the range table. When the OS creates a
process, it allocates space for the range table and sets the RT
pointer. On every context switch, the OS copies the RT pointer
to the CR-RT register and then the range table walker uses it
to walk the range table.

The OS updates the range table when the application allo-
cates or frees memory or the OS reclaims a page. The OS
analyzes the contiguity of the affected page(s). Based on a
contiguity threshold (e.g., 8 pages), the OS adds, updates,

or removes a range translation from the range table. The
OS avoids creating small range translations that could cause
thrashing in the range TLB. The OS can modify the contiguity
threshold dynamically, based on the current number and size
of range translations, and the performance of the range TLB
(option not explored). The OS updates the range bit in all the
corresponding PTEs for the range to keep them consistent.

5.2. Contiguous memory allocation

Achieving a high hit ratio in the range TLB and thus low
virtual memory overheads requires a small number of very
large range translations that satisfy most virtual address trans-
lation requests. To this end, RMM modifies the OS memory
allocation mechanism to use eager paging, which strives to
allocate the largest possible range of contiguous virtual pages
to contiguous physical pages. Eager paging requires modest
changes to Linux’s default buddy page allocator.
Default buddy allocator. The buddy allocator splits phys-
ical memory in blocks of 2order pages, and manages the
blocks using separate free-lists per block size. A kernel
compile-time parameter defines the maximum size of memory
blocks (2max_order) and hence the total number of the free-lists.
The buddy allocator organizes each free-list in power-of-two
blocks and satisfies requests from the free-list of the smallest
size. If a block of the desired 2i size is not available (i.e.,
free-list[i] is empty), the OS finds the next larger 2i+k size
free block, going from k = 1,2, ... until it finds the smallest
free block large enough to satisfy the request. The OS then
iteratively splits a block in two, until it creates a free block
of the desired 2i size. It then assigns one free block to the
allocation and adds any other free blocks it creates to the ap-
propriate free-lists. When the application later frees a 2i block,
the OS examines its corresponding buddy block (identified
by its address). If this block is free, the OS coalesces the
two blocks, resulting in a 2i+1 block. The buddy allocator
thus easily splits and merges blocks during allocations and
deallocations respectively.

Despite contiguous pages in the buddy heap, in practice
most allocations are of a single page because of demand pag-
ing. Operating systems use demand paging to reduce alloca-
tion latency by deferring page instantiation until the applica-
tion actually references the page. Therefore, the application’s
allocation does not trigger OS allocation, but rather when the
application first writes or reads a page, the OS allocates a
single page (from free-list[0]). Demand allocation at access-
time degrades contiguity, because (i) it allocates single pages
even when large regions of physical memory are available,
and because (ii) the OS may assign pages accessed out-of-
order to non-contiguous physical pages even though there are
contiguous free pages.
Eager paging. Eager paging improves the generation of large
range translations by allocating consecutive physical pages
to consecutive virtual pages eagerly at allocation, rather than
lazily on demand at access time. At allocation request time

compute the memory fragmentation;
if memory fragmentation ≤ threshold then

// use eager paging;
while number of pages > 0 do

for (i = MAX_ORDER-1; i ≥ 0; i–) do
if freelist[i]≥ 0 and 2i ≤ number of pages
then

allocate block of 2i pages;
for all 2i pages of the allocated block do

construct and set the PTE;
end
add the block to the range table;
number of pages – = 2i;
break;

end
end

end
else

// high memory fragmentation - use demand paging;
for (i = 0; i < number of pages; i++) do

allocate the PTE;
set the PTE as invalid so that the first access will
trigger a page fault and the page will get
allocated;

end
end

Figure 5: RMM memory allocator pseudocode for an alloca-
tion request of number of pages. When memory fragmentation
is low, RMM uses eager paging to allocate pages at request-
time, creating the largest possible range for the allocation re-
quest. Otherwise, RMM uses default demand paging to allo-
cates pages at access-time.

(e.g., when the application performs an mmap, mremap or brk
call), if the request is larger than the range threshold, the OS
establishes one or more range translations for the entire request
and updates the corresponding range and page table entries.
We note that demand paging replaced eager paging in early
systems. However, one motivation for demand paging was to
limit unnecessary swapping in multiprogrammed workloads,
which modern large memories make less common [10]. We
find that the high cost of TLB misses, makes eager paging a
better choice with RMM hardware in most cases.

Eager paging increases latency during allocation and may
induce fragmentation, because the OS must instantiate all
pages in memory, even those the application never uses. How-
ever unused memory is not permanently wasted. The OS
could monitor memory use in range translations and reclaim
ranges and pages with standard paging mechanisms, but we
leave this exploration for future work. Allocating memory at
request-time generates larger range translations compared to
the access-time policy of demand paging and improves the
effectiveness of RMM hardware.

Algorithm. Figure 5 shows simplified pseudocode for ea-
ger paging. If the application requests an allocation of size
N×pages, eager paging allocates the 2i block, as described
above. This simple algorithm only provides contiguity up to
the maximum managed block size. If the application requests
more memory than the maximum managed block, the OS will
allocate multiple maximum blocks. Two optimizations further
improve contiguity. First, eager paging could sort the blocks
in the free-lists, to coalesce multiple blocks and generate range
translations larger than the maximum block. Second, to gener-
ate large range translations from allocations that are smaller
than the maximum block, eager paging could request a block
from a larger size free-list, assign the necessary pages, and
return the remaining blocks to the corresponding smaller sized
free-lists. These enhancements introduce additional trade-offs
that warrant more investigation. Note that in our RMM proto-
type, we did not implement these two enhancements. Nonethe-
less, the simple eager paging algorithm generates large range
translations for a variety of block sizes and exploits the clus-
tering behavior of the buddy allocator [38, 39].

Finally, eager paging is only effective when memory frag-
mentation remains low and there is ample space to populate
ranges at request time. If memory fragmentation or pressure
increases, the OS may fall back to its default paging allocation.

6. Discussion
This section discusses some of the hardware and operating sys-
tems issues that a production implementation should consider,
but leaves the implications for automatic and explicit memory
management and for applications as future work.
TLB friendly workloads. If an application has small mem-
ory footprint and experiences a low page TLB miss rate, the
range TLB may provide little performance benefit while in-
creasing the dynamic energy due to range TLB accesses. The
OS can monitor the memory footprint and then dynamically
enable and disable the range TLB. The OS would still allocate
ranges and populate the range table, but then it could selec-
tively enable the range TLB based on performance-counter
measurements and workload memory allocation.
Accessed & Dirty bits. The TLB in x86 processors is re-
sponsible for setting the accessed bit in the corresponding
PTE in memory on the first access to a page and the dirty
bit on the first write. The range TLB does not store per-page
accessed/dirty bits for the individual pages that compose a
range translation. Thus, on a range TLB hit, the range TLB
cannot determine whether it should set the accessed or dirty
bit. The OS may address this issue by setting the accessed
and dirty bits for all the individual pages of a range translation
eagerly at allocation time, instead of at access or write time.
If the OS needs to reclaim or swap a page in an active range
because of memory pressure, it may. Because the OS manages
physical memory at the page-granularity—not at the range
granularity—it may reclaim and swap individual pages by dis-
solving a range completely and then evicting and swapping

Suite Description Input Memory

SPEC 2006

astar 350 MB
compute & memory cactusADM 690 MB
intensive single-threaded GemsFDTD 860 MB
workloads mcf 1.7 GB

omnetpp 165 MB
soplex 860 MB

PARSEC
RMS multi-threaded canneal 780 MB
workloads streamcluster 120 MB

BioBench
Bioinformatics single- mummer 470 MB
threaded workloads tigr 610 MB

Generation, compression
Graph500 73 GB

and search of graphs
In-memory key-value cache Memcached 75 GB

Big memory NASA’s high performance
NPB:CG 54 GB

parallel benchmark suite.
Random access benchmark GUPS 67 GB

Table 4: Workload description and memory footprint.

pages individually. Another option is for the OS to break a
range in to multiple smaller ranges and dissolve one of the
resulting ranges.
Copy-on-write. Copy-on-write is a virtual memory optimiza-
tion in which processes initially share pages and the OS only
creates separate individual pages when one of the processes
modifies the page. This mechanism ensures that these changes
are only visible to the owning process and to no other process.
To implement this functionality, copy-on-write uses per-page
protection bits that trigger a fault when the page is modified.
On a fault, the OS copies the page and updates the protection
bits in the page table. With RMM, the range translations hold
the protection bits at range granularity, not on individual pages.
One simple approach is to use range translations for read-only
shared ranges, but dissolve a range into pages when a process
writes to any of its pages. Alternatively, the OS could copy
the entire range translation on a fault.
Fragmentation. Long-running server and desktop systems
will execute multiple processes at once and a variety of work-
load mixes. Frequent memory management requests from
complex workloads may cause physical memory fragmenta-
tion and limit the performance of RMM. If the OS cannot find
a sufficiently large range of free pages in memory, it should
default to paging-only and disable the range TLB. However,
abundant memory capacity coupled with fragmentation is not
uncommon, since a few pages scattered throughout memory
can cause considerable fragmentation [18]. In this case, the OS
could perform full compaction [10, 39], or partial compaction
with techniques adapted from garbage collection [17, 18].

7. Methodology

To evaluate virtual memory system performance on large mem-
ory workloads, we implement our OS modifications in Linux,
define RMM hardware with respect to a recent Intel x86-64
Xeon core, and report overheads using a combination of hard-
ware performance counters from application executions and
functional TLB simulation.

Description

Processor
Dual-socket Intel Xeon E5-2430 (Sandy Bridge),
6 cores/socket, 2 threads/core, 2.2 GHz

Memory 96 GB DDR3 1066MHz

OS Linux kernel version 3.15.5

L1 DTLB
4 KB pages: 64-entry, 4-way associative
2 MB pages: 32-entry, 4-way associative
1 GB pages: 4-entry, fully associative

L1 ITLB
4 KB pages: 128-entry, 4-way associative
2 MB pages: 8-entry, fully associative

L2 TLB
4 KB pages: 512-entry, 4-way associative
2 MB pages:

range TLB unrestricted sizes: 32-entry, fully associative

Table 5: System configurations and per-core TLB hierarchy.

RMM operating system prototype. We prototype the RMM
operating system changes in Linux x86-64 with kernel v3.15.5.
We implement the management of the range tables by intercept-
ing all kernel memory-management operations. We implement
range creation and eager paging by modifying the mmap, brk
and mremap system calls. For our prototype range table, we
implement a simple linked list rather than a B-tree. Because
our applications spend only a tiny fraction of their time in the
OS and the range TLB refill is not on the processor’s critical
path, this simplification does not affect our results.

We use a contiguity threshold of 32 KB (8 pages) to define
the minimum size of a range translation. To increase the maxi-
mum size of a range, we increase the maximum allocation size
in the buddy allocator to 2 GB, up from 4 MB by modifying
the max_order parameter of the buddy allocator from 11 to
20. Because the default glibc memory management imple-
mentation does not coalesce allocations into fixed-size virtual
ranges, we instead use the TCMalloc library [5]. In addition,
we modify TCMalloc to increase the maximum allocation size
from 256 KB to 32 MB.
RMM hardware emulation. We evaluate the RMM hard-
ware described in Section 4 with Intel Sandy Bridge core
shown in Table 5. We choose a 32-entry fully associative
range TLB accessed in parallel with the L2 page TLB, since
we estimate that it can meet the L2’s timing constraints.

To measure the overheads of RMM, we combine perfor-
mance counter measurements from native executions with
TLB performance emulation using a modified version of Bad-
gerTrap [22]. Compared to cycle-accurate simulation on these
workloads, this approach reduces weeks of simulation time
by orders of magnitude. Previous virtual memory system
performance studies use this same approach [10, 12, 23].

BadgerTrap instruments x86-64 TLB misses. We add a
functional range TLB simulator in the kernel that BadgerTrap
invokes. On each page L2 TLB miss, BadgerTrap performs a
range TLB lookup. Note that the actual implementation would
perform the range TLB lookup in parallel, rather than after
the L2 TLB miss. This emulation may thus underestimate the
benefit of the range TLB, because the real hardware will install

Performance Model

Ideal execution time Tideal = T2M −C2M
Average page-walk cost AvgC4K/2M =C4K/2M/M4K/2M
Measured page-walk overhead Over4K/2M =C4K/2M/Tideal
Simulated page-walk overhead OverSIM = MSIM ∗AvgC4K/Tideal

T: Total execution cycles M4K/2M : page-walks with 4K/2M
C: Cycles spent in page-walks MSIM : Simulated page-walks

Table 6: Performance model based on hardware performance
counters and BadgerTrap.

a missing page table entry, even if the virtual address hits in
the range TLB. The actual RMM implementation reduces
traffic to the L2 page TLB on range TLB hits, freeing up page
TLB entries and potentially making it more effective. This
simulation methodology may itself perturb TLB behavior. To
minimize this problem, we allocate a 2 MB page in the kernel
for the simulator itself, which reduces the differences with an
unmodified kernel to less than 5%.
Performance model. We estimate the impact of RMM on
system performance with the following methodology. First,
we run the applications on the real system (Table 5) with
realistic input sets until completion and collect processor and
TLB statistics using hardware performance counters. We use
the Linux perf utility [4] to read the performance counters.
We collect total execution cycles, misses for L2 TLB, and
cycles spent in page-walks. Based on these measurements
we calculate (i) the ideal execution time (no virtual memory
overhead), (ii) the measured overhead spent in page-walks,
and (iii) the estimated overhead with the simulated hardware
mechanisms based on the fraction of reduced page-walks,
using a simple linear model [10, 23] given in Table 6.
Benchmarks. RMM is designed for a wide range of appli-
cations from desktop applications to big-memory workloads
executing on scale-out servers. To evaluate the effectiveness of
RMM, we select workloads with poor TLB performance from
SPEC 2006 [25], BioBench [7], Parsec [15] and big-memory
workloads [10] as summarized in Table 4. We execute each
application sequentially on a single test machine without re-
booting between experiments.

8. Results

This section evaluates the cost of address translation, the im-
pact of eager paging, and implications on energy of RMM, and
shows substantial improvements in performance over current
and proposed systems.

We compare RMM performance to the following systems.
(i) We measure the virtual memory overheads of a commodity
x86-64 processor (see Table 5) with 4 KB pages, 2 MB pages
with transparent huge pages, and 1 GB pages with libhugetlbfs
using hardware performance counters. (ii) We emulate multi-
page mappings in BadgerTrap. We implement the Clustered
TLB approach [38] of Pham et al., configured with 512 fully-
associative entries. Each entry indexes up to an 8-page cluster,
shown best by Clustered TLB [38]. We use eager paging to

increase the opportunities to form multipages, improving on
the original implementation. (iii) We emulate the performance
of ideal direct segments. We assume all fixed-size memory
regions that live for more than 80% of a program’s execution
time can be coalesced in a single contiguous range, which can
be used to estimate the reduction in TLB misses with direct
segment hardware [10].

8.1. Performance analysis

Figure 6 shows the overhead spent in page-walks for RMM
compared to other techniques. The 4 KB, 2 MB Transparent
Huge Pages (THP) [6] and 1 GB [1] configurations show the
measured overhead for the three different page sizes available
on x86-64 processors. All other configurations are emulated.
The CTLB bars show Clustered TLB [38] results. The DS bars
show direct segments [10] results and the RMM bars show the
32-entry range TLB results.

RMM performs well on all configurations for all workloads,
improving substantially over all the other approaches, except
direct segments. RMM eliminates the vast majority of page-
walks, significantly outperforms the Clustered TLB (CTLB),
huge pages (THP and 1GB) and achieves similar or better
performance to direct segments, but has none of its limitations.
On average, RMM reduces the overhead of virtual memory to
less than 1%.

For most workloads, the base page size (4 KB) incurs high
overheads. For example, mcf, cactusADM, and graph500
spend 42%, 39% and 29% of execution time in page-walks
due to TLB misses. Even the applications with smaller work-
ing sets, such as astar, omnetpp, and mummer, still suffer
substantial paging overheads using 4 KB pages.

Clustered TLB (CTLB) only offers limited reductions in
overhead and only for small-memory workloads. CTLB per-
forms better than 4 KB pages on small-memory workloads,
such as cactusADM, canneal, and omnetpp. However, CTLB
provides little benefit on big-memory workloads and performs
worse than THP overall.

Huge pages (THP and 1 GB) reduce virtual memory over-
heads for all workloads but still leave room for improvement.
The limited hardware support for huge pages (e.g., few TLB
entries), poor application memory locality, and the mismatch
of their sizes with the virtual memory contiguity all contribute
to the remaining overheads.

Direct segments achieve negligible overheads on big-
memory workloads and some small-memory workloads. But,
direct segments poorly serve workloads that require multiple
ranges, such as omnetpp, canneal, or those that use memory-
mapped files such as mummer. Compared to direct segments,
RMM is a better choice because it achieves similar or better
performance on all workloads.

Redundant Memory Mappings achieve negligible overhead—
essentially eliminating virtual memory overheads for many
workloads. Only one workload has greater than 2% overhead,
GUPS. As our sensitivity analysis in the next section shows,

4
2

%

3
9

%

0
.5

5
%

0
.6

6
%

0
.0

2
%

0
.0

3
%

4
0

%

0
.0

6
%

0
.2

6
%

0
.2

2
%

0
.0

0
%

0
.2

5
%

0
.0

2
%

0
.0

2
%

0
.2

6
%

0
.0

5
%

0
.4

0
%

0
.0

6
%

0%

5%

10%

15%

20%
4

K
B

C
TL

B
TH

P
D

S
R

M
M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

astar mcf omnetpp cactusADM GemsGDTD soplex canneal streamcluster

Ex
ec

u
ti

o
n

 T
im

e
O

ve
rh

ea
d

s
Native Modeled

0
.0

0
%

0
.1

4
%

0
.0

0
%

1
.7

3
%

0
.0

0
%

0
.0

1
%

0
.1

3
%

1
.0

6
%

0
.3

7
%

1
2

%

0%

100%

200%

300%

400%

500%

600%

700%

0%

10%

20%

30%

40%

4
K

B
C

TL
B

TH
P

1
G

B
D

S
R

M
M

4
K

B
C

TL
B

TH
P

1
G

B
D

S
R

M
M

4
K

B
C

TL
B

TH
P

1
G

B
D

S
R

M
M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

1
G

B
D

S
R

M
M

graph500 memcached NPB:CG mummer tigr GUPS

Ex
ec

u
ti

o
n

 T
im

e
O

V
er

h
ea

d
s

Ex
ec

u
ti

o
n

 T
im

e
O

vr
er

h
ea

d
s Native Modeled

Figure 6: Execution time overheads due to page-walks for SPEC 2006 and PARSEC (top) big-memory and BioBench (bottom)
workloads. GUPS uses the right y-axis and thus shaded separately. 1GB pages are only applicable to big-memory workloads.

GUPS requires at least a 64-entry range TLB to achieve less
than 1% overhead. Overall, RMM performs consistently better
than the alternatives and in many cases eliminates the perfor-
mance cost of address translation.
8.2. Range TLB sensitivity analysis
To achieve high performance, the range TLB must be large
enough to satisfy most L1 TLB misses. Figure 7 shows the
range TLB miss ratio as a function of the numbers of entries.
We observe that a handful of workloads, such as cactusADM,
memcached, tigr, and GUPS, suffer from high miss ratios with
a 16-entry range TLB. Overall, a 32-entry range TLB elimi-
nates more than 99% of misses for most workloads (97.9% on
average), delivering a good trade-off of performance for the
required area and power.

We also note that a single-entry range TLB is insufficient
to eliminate virtual memory overheads. Most applications re-
quire multiple range table entries, especially those with large
working sets, such as cactusADM, GemsFDTD and GUPS,
and those with large numbers of ranges, such as memcached,
mummer, and tigr. However, the single-entry results illustrate
that the optional MRU Pointer would be effective at saving dy-
namic energy and latency in many cases. It reduces accesses to
the range TLB by more than 50% for astar, omnetpp, canneal,
streamcluster, and graph500.
8.3. Impact of eager paging
Eager paging increases range size by instantiating physical
pages when the application allocates memory, rather than

when the application first writes or reads a page. Table 7 shows
the effect of eager paging on the number and size of range, and
on time and memory overheads, compared to default demand
paging. Default demand paging includes forming THPs, which
we translate to ranges.

The first two sections of Table 7 (demand paging and ea-
ger paging) compare the number of ranges, the percentage
of the memory footprint covered by ranges with a contiguity
threshold of 8 pages, and the range sizes (median, average,
maximum) in terms of pages, created by demand and eager
paging. Eager paging (i) lowers the median range size for
small-memory workloads because it allocates fewer medium-
sized ranges (the median for demand paging is usually 512,
i.e., 2 MB regions, due to THP), (ii) increases the median
range for big-memory workloads because it allocates fewer
small and medium-sized ranges, and (iii) increases the average

0%

20%

40%

60%

80%

100%

R
an

ge
 T

LB
 M

is
s

R
at

io

1 2 4 8 16 32 64

Figure 7: Range TLB miss ratio as a function of the number of
range TLB entries.

Demand Paging Eager Paging

Benchmark
ranges % memory

range size in 4 KB pages
ranges % memory

range size in 4 KB pages % time % memory
median average max median average max overhead overhead

astar 170 94.52 512 478 1024 33 99.69 32 2810 8192 -1.15 8.14
mcf 449 99.72 512 957 4608 28 99.94 24 15637 262143 -4.10 1.58
omnetpp 91 96.30 512 438 512 27 99.03 20 1617 8192 -0.50 6.34
cactusADM 311 99.50 512 549 1024 70 99.84 8192 5537 8192 0.85 125.90
GemsFDTD 326 98.76 512 651 2048 61 99.75 256 3613 16384 11.65 2.74
soplex 333 98.32 512 633 4096 54 99.85 128 4502 81919 -1.78 13.45

canneal 410 95.96 202 453 1024 46 99.82 189 4248 32767 1.15 0.99
streamcluster 65 95.73 512 439 512 32 99.18 21 1122 16383 -1.61 21.41

mummer 837 85.51 32 120 512 61 99.68 512 1940 32768 -1.55 0.87
tigr 1149 95.16 16 123 1536 167 99.51 32 889 16384 -1.97 0.01

Graph500 18574 99.97 512 984 524288 32 99.99 2048 187236 524288 2.56 0.27
Memcached 1540 99.97 1024 29629 524288 86 99.99 2048 216857 524288 -3.95 0.17
NPB:CG 22746 99.98 512 586 1536 95 99.99 4096 146861 524288 0.87 4.56
GUPS 705 99.99 512 23823 524288 62 99.99 524288 271039 524288 -0.61 0.05

Table 7: Impact of eager paging on ranges, time, and memory compared to demand paging (with Transparent Huge Pages).

and maximum range size for all workloads because it allocates
larger blocks from the buddy allocator. Overall eager pag-
ing generates orders of magnitude fewer ranges that cover a
larger percentage of memory for all applications compared to
demand paging. Thus eager paging assists in achieving high
range TLB hit ratio with few entries.

Eager paging alters execution by changing when and how
pages, even used pages, are allocated to physical memory. We
measure execution overhead due to eager paging by running
applications with the eager paging operating system support,
but without the hardware emulation. Table 7 shows that the
execution time for most applications is relatively unchanged.
A few get faster: mcf and memcached improve by 4.1% and
3.9%. However, GemsFDTD degrades by 11%. In this case,
the changes in physical page allocation affect cache indexing,
increasing cache conflicts. Various orthogonal mechanisms
address this problem [19, 43].

Eager paging anticipates that the application will use the
requested memory regions and may thus increase the memory
footprint. The last column of Table 7 reports the memory foot-
print increase with eager paging. Eager paging increases mem-
ory by a small amount for three of the big-memory workloads,
and by less than 10% for 7 of the remaining 10 workloads. Ea-
ger paging increases memory substantially on cactusADM and
NPB:CG (the percentage is low, but totals 2.3 GB), mainly
because of instantiating memory that these applications re-
quest but never use, and because of modifying TCMalloc to
increase contiguity. Thus RMM trades increased memory
for better performance, a common tradeoff when memory is
cheap and plentiful. Note that the OS can convert a range to
pages or abandon ranges altogether under memory pressure as
discussed in Section 6.

8.4. Energy

The primary RMM effect on energy is executing the applica-
tion faster, which improves static energy of system. According

to our performance model, RMM improves performance by
2-84% and thus saves a similar ratio of static energy.

Secondary effects include the static and dynamic energy
of the additional RMM hardware. The system accesses the
range TLB in parallel with the L2 TLB, consuming dynamic
energy on a L1 TLB miss. The dynamic energy of a 32-
entry range TLB is relatively small with respect to the entire
chip, and lower than of a fully-associative 128-entry L1 TLB
(e.g., SPARC M7 [40]). Furthermore, replacing misses in the
L2 TLB with hits in the range TLB saves dynamic energy
by avoiding a page-walk that performs up to four memory
operations. The OS can identify workloads for which the
range TLB provides little benefit and disable the range TLB
(see Section 6), eliminating its dynamic energy.

To further explore power and energy impact of the range
TLB on the address translation path, we implemented a 32-
entry range TLB and a 512-entry L2 page TLB with search
latency of six cycles in Bluespec. We then synthesized both
designs with the Cadence RTL Compiler using 45nm technol-
ogy (tsmc45gs standard cell library) at 3.49GHz under typical
conditions. We specified that timing should be prioritized
over area and power.* This analysis shows that the range TLB
adds power that is less than half (39.6%) of L2 TLB’s power.
Moreover, the range TLB area is only 13% of the L2 TLB
area. These results and the high range TLB hit ratio indicate
that simply increasing the number of entries in the L2 TLB,
which would also incur a cycle penalty on the critical path, at
the same power and area budget will not be as effective as the
RMM design.

9. Related Work
Virtual memory remains an active area of research. Previous
work shows that limited TLB reach results in costly page-
walks that degrade application performance, often substan-

*Due to license limitations, we synthesized memory cells of both struc-
tures with D flip-flops instead of SRAM cells.

tially [10, 13, 14, 23, 29, 31]. Section 2 described the qual-
itative differences between RMM and the most closely re-
lated work on multipage mappings (sub-blocked TLBs [47],
CoLT [39], Clustered TLBs [38]), huge pages [1, 6, 36], and
direct segments [10, 23], and Section 8 showed quantitatively
that RMM substantially improves over them. Below we dis-
cuss other mechanisms that help reduce the overhead of TLB
misses, and how they relate to RMM.

One common way to reduce the cost of a TLB miss is
through accelerating the page-walks. Commodity processors
cache Page Table Entries (PTEs) in data caches to accelerate
page-walks [28]. Software-defined TLB structures, such as
TSBs in SPARC [46] and software-managed sections of TLB
in Intel Itanium [3], pin entries in the TLB to improve perfor-
mance. MMU caches also reduce latency of page-walks by
caching intermediate levels of the page table, skipping one
or more memory references during the page-walk [8, 12, 27].
RMM is orthogonal to these approaches since it eliminates
some page-walks altogether. When page-walks are required
in RMM, these mechanisms can accelerate them.

Virtual memory overhead can also be reduced by low-
ering the number of TLB misses. For instance, the hard-
ware can prefetch PTEs in to the TLB in advance of their
use [14, 30, 42]. However, the effectiveness of prefetching is
limited by the predictability of the memory access patterns.
Alternatively, Barr et al. [9] proposed speculative translation
based on huge pages. Similar to prefetching, this mechanism
depends on the TLB behavior and favors sequential patterns.
Last-level shared TLBs [13, 34] and cooperative TLBs [45]
increase the TLB reach and reduce the number of page-walks.
Similarly, Papadopoulou et al. [37] proposed a prediction
mechanism that allows all page sizes to share a single set-
associative TLB. In addition, Du et al. [20] proposed mecha-
nisms to allow huge pages to be formed even in the presence
of retired physical pages. However, the total TLB reach is still
limited for memory intensive applications since each TLB en-
try maps a single page unless ranges are used [31]. In contrast
to these approaches, RMM generates and caches translations
for arbitrarily large ranges. Thus RMM is less susceptible to
irregularities in the application’s access patterns and improves
address translation for large memories.

Commercial processors have also used segmentation to im-
plement virtual memory. The Burroughs B5000 [33] was
an early user of pure segments. The 8086 [2] and iAPX
432 [26] processors also supported pure segmentation without
paging. Later IA-32 processors provided segments on top of
paging [29], but without any translation benefits for segments.
In contrast to previous segmentation approaches, RMM com-
bines the flexibility and robustness of paging while enjoying
the translation performance of segmentation.

Prior work also proposes virtual caches to reduce the perfor-
mance and energy overheads of the TLB by only translating
after a cache miss [11, 29, 50]. However for those work-
loads that suffer many TLB misses due to poor locality, virtual

caches just shift the translation to a lower level of the cache
hierarchy while increasing the complexity of the system.

Finally, our proposed architecture resembles prior works in
fine-grained memory protection [24, 48, 49], in the sense that
both exploit range behavior. However, instead of exploiting
only the contiguity of fine-grained protection rights across
memory regions, RMM enhances and exploits the contiguity
in memory allocation to accelerate address translation.

10. Summary
We propose Redundant Memory Mappings, a novel and ro-
bust translation mechanism, that improves performance by
reducing the cost of virtual memory across all our workloads.
RMM efficiently represents ranges of arbitrarily-many pages
that are virtually and physically contiguous and layers this
representation and its hardware redundantly to page tables and
paging hardware. RMM requires only modest changes to ex-
isting hardware and operating systems. The resulting system
delivers a virtual memory system that is high performance,
flexible, and completely transparent to applications.

Acknowledgements
We thank our anonymous reviewers and Dan Gibson for their
insightful comments and feedback on the paper. We thank
Wisconsin Computer Architecture Affiliates for their feedback
on an early version of the work. We thank Oriol Arcas and Ivan
Ratkovic for the Bluespec implementation and the synthesis
results of the range TLB.

This work is supported in part by the European Union
(FEDER funds) under contract TIN2012-34557, the European
Union’s Seventh Framework Programme (FP7/2007- 2013)
under the ParaDIME project (GA no. 318693), the National
Science Foundation (CCF-1218323, CNS-1302260 and CCF-
1438992), Google, and the University of Wisconsin (Kellett
award and Named professorship to Hill). Furkan Ayar’s contri-
bution to the paper occurred while on internship at Barcelona
Supercomputing Center. Vasilis Karakostas is also supported
by an FPU research grant from the Spanish MEC. Hill has a
significant financial interest in AMD.

References
[1] “Huge Pages Part 1 (Introduction),” http://lwn.net/Articles/374424/.
[2] “Intel 8086 - Wikipedia,” http://en.wikipedia.org/wiki/Intel_8086.
[3] “Intel R© itanium R© architecture developer’s manual, vol. 2,”

http://www.intel.com/content/www/us/en/processors/itanium/
itanium-architecture-s-oftware-developer-rev-2-3-vol-2-manual.
html.

[4] “perf: Linux profiling with performance counters ,” https://perf.wiki.
kernel.org/index.php/Main_Page.

[5] “TCMalloc,” http://goog-perftools.sourceforge.net/doc/tcmalloc.html.
[6] “Transparent Huge Pages in 2.6.38,” http://lwn.net/Articles/423584/.
[7] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob,

C.-W. Tseng, and D. Yeung, “BioBench: A Benchmark Suite
of Bioinformatics Applications,” in Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and
Software, 2005, pp. 2–9, 2005.

[8] T. W. Barr, A. L. Cox, and S. Rixner, “Translation Caching: Skip,
Don’T Walk (the Page Table),” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, pp. 48–59, 2010.

[9] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB: A Mechanism for
Speculative Address Translation,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture, pp. 307–318,
2011.

[10] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
Virtual Memory for Big Memory Servers,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, pp.
237–248, 2013.

[11] A. Basu, M. D. Hill, and M. M. Swift, “Reducing Memory Reference
Energy with Opportunistic Virtual Caching,” in Proceedings of the
39th Annual International Symposium on Computer Architecture, pp.
297–308, 2012.

[12] A. Bhattacharjee, “Large-reach Memory Management Unit Caches,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 383–394, 2013.

[13] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared Last-level
TLBs for Chip Multiprocessors,” in Proceedings of the 17th IEEE
International Symposium on High Performance Computer Architecture,
pp. 62–63, 2011.

[14] A. Bhattacharjee and M. Martonosi, “Characterizing the TLB
Behavior of Emerging Parallel Workloads on Chip Multiprocessors,”
in Proceedings of the 18th International Conference on Parallel
Architectures and Compilation Techniques, pp. 29–40, 2009.

[15] C. Bienia, “Benchmarking Modern Multiprocessors,” Ph.D. disserta-
tion, Princeton University, January 2011.

[16] D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill, “Translation
Lookaside Buffer Consistency: A Software Approach,” in Proceedings
of the Third International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 113–122, 1989.

[17] S. M. Blackburn and K. S. McKinley, “Immix: A Mark-region
Garbage Collector with Space Efficiency, Fast Collection, and Mutator
Performance,” in Proceedings of the 2008 ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 22–32,
2008.

[18] N. Cohen and E. Petrank, “Limitations of partial compaction: Towards
practical bounds,” SIGPLAN Not., vol. 48, no. 6, pp. 309–320, 2013.

[19] C. Ding and K. Kennedy, “Inter-array Data Regrouping,” in
Proceedings of the 12th International Workshop on Languages and
Compilers for Parallel Computing, pp. 149–163, 2000.

[20] Y. Du, M. Zhou, B. Childers, D. Mosse, and R. Melhem, “Supporting
superpages in non-contiguous physical memory,” in Proceedings of the
21st IEEE International Symposium on High Performance Computer
Architecture, pp. 223–234, Feb 2015.

[21] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the Clouds: A Study of Emerging Scale-out Workloads on
Modern Hardware,” in Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 37–48, 2012.

[22] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “BadgerTrap: A
Tool to Instrument x86-64 TLB Misses,” SIGARCH Comput. Archit.
News, vol. 42, no. 2, pp. 20–23, Sep. 2014.

[23] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient Memory
Virtualization: Reducing Dimensionality of Nested Page Walks,” in
MICRO-47: Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 178–189, 2014.

[24] J. L. Greathouse, H. Xin, Y. Luo, and T. Austin, “A Case for Unlimited
Watchpoints,” in Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 159–172, 2012.

[25] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[26] Intel Corporation, “Introduction to the iAPX 432 Architecture,” 1981,
no. 171821-001.

[27] Intel Corporation, “TLBs, Paging-Structure Caches and their Invalida-
tion,” 2008, no. 317080-003.

[28] Intel Corporation, “Intel R© 64 and IA-32 Architectures Optimization
Reference Manual,” April 2012, no. 248966-026.

[29] B. Jacob and T. Mudge, “Virtual Memory in Contemporary
Microprocessors,” IEEE Micro, vol. 18, no. 4, pp. 60–75, Jul. 1998.

[30] G. B. Kandiraju and A. Sivasubramaniam, “Going the Distance for
TLB Prefetching: An Application-driven Study,” in Proceedings of the
29th Annual International Symposium on Computer Architecture, pp.
195–206, 2002.

[31] V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, and M. Swift,
“Performance Analysis of the Memory Management Unit under
Scale-out Workloads,” in Proceedings of the 2014 IEEE International
Symposium on Workload Characterization, pp. 1–12, 2014.

[32] J.-Y. Kim and H.-J. Yoo, “Bitwise Competition Logic for Compact
Digital Comparator,” in Proceedings of the 2007 IEEE Asian Solid-
State Circuits Conference, 2007.

[33] W. Lonehgan and P. King, “Design of the b 5000 system,” Datamation,
vol. 7, no. 5, May 1961.

[34] D. Lustig, A. Bhattacharjee, and M. Martonosi, “TLB Improvements
for Chip Multiprocessors: Inter-Core Cooperative Prefetchers and
Shared Last-Level TLBs,” ACM Trans. Archit. Code Optim., vol. 10,
no. 1, pp. 2:1–2:38, Apr. 2013.

[35] MIPS Technologies, Incorporated, “MIPS32 Architecture for Program-
mers Volume iii: The MIPS Privileged Resource Architecture,” 2001,
no. MD00090, Revision 0.95.

[36] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, Transparent
Operating System Support for Superpages,” in Proceedings of the 5th
Symposium on Operating Systems Design and implementation, pp.
89–104, 2002.

[37] M.-M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos,
“Prediction-based superpage-friendly TLB designs,” in Proceedings
of the 21st IEEE International Symposium on High Performance
Computer Architecture, pp. 210–222, Feb 2015.

[38] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing
TLB reach by exploiting clustering in page translations,” in Proceed-
ings of the 20th IEEE International Symposium on High Performance
Computer Architecture, pp. 558–567, 2014.

[39] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT:
Coalesced Large-Reach TLBs,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, pp.
258–269, 2012.

[40] S. Phillips, “M7: Next Generation SPARC,” in Hot Chips: A Sympo-
sium on High Performance Chips, 2014.

[41] D. Quintero, S. Chabrolles, C. H. Chen, M. Dhandapani, T. Holloway,
C. Jadhav, S. K. Kim, S. Kurian, B. Raj, R. Resende, B. Roden,
N. Srinivasan, R. Wale, W. Zanatta, and Z. Zhang, “IBM Power
Systems Performance Guide Implementing and Optimizing,” 2013.

[42] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-based
TLB Preloading,” in Proceedings of the 27th Annual International
Symposium on Computer Architecture, pp. 117–127, 2000.

[43] A. Seznec, “A Case for Two-way Skewed-associative Caches,” in
Proceedings of the 20th Annual International Symposium on Computer
Architecture, pp. 169–178, 1993.

[44] M. Shah, R. Golla, G. Grohoski, P. Jordan, J. Barreh, J. Brooks,
M. Greenberg, G. Levinsky, M. Luttrell, C. Olson, Z. Samoail,
M. Smittle, and T. Ziaja, “Sparc T4: A Dynamically Threaded
Server-on-a-Chip,” IEEE Micro, vol. 32, no. 2, pp. 8–19, Mar. 2012.

[45] S. Srikantaiah and M. Kandemir, “Synergistic TLBs for High
Performance Address Translation in Chip Multiprocessors,” in
Proceedings of the 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 313–324, 2010.

[46] Sun Microsystems, “UltraSPARC T2 Supplement to the UltraSPARC
Architecture 2007.”

[47] M. Talluri and M. D. Hill, “Surpassing the TLB Performance of
Superpages with Less Operating System Support,” in Proceedings
of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 171–182, 1994.

[48] M. Tiwari, B. Agrawal, S. Mysore, J. Valamehr, and T. Sherwood,
“A Small Cache of Large Ranges: Hardware Methods for
Efficiently Searching, Storing, and Updating Big Dataflow Tags,” in
Proceedings of the 41st Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 94–105, 2008.

[49] E. Witchel, J. Cates, and K. Asanović, “Mondrian Memory Protection,”
in Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp.
304–316, 2002.

[50] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, and J. M. Pendleton,
“An In-cache Address Translation Mechanism,” in Proceedings of the
13th Annual International Symposium on Computer Architecture, pp.
358–365, 1986.

