
Performance Analysis of the Memory Management
Unit under Scale-out Workloads

Vasileios Karakostas∗†, Osman S. Unsal†, Mario Nemirovsky‡, Adrian Cristal∗†§, Michael Swift¶
∗ Barcelona Supercomputing Center
† Universitat Politecnica de Catalunya

‡ ICREA Senior Research Professor at Barcelona Supercomputing Center
§ Spanish National Research Council (IIIA-CSIC)

¶ University of Wisconsin-Madison
{vasilis.karakostas, osman.unsal, mario.nemirovsky, adrian.cristal}@bsc.es, swift@cs.wisc.edu

Abstract—Much attention has been given to the efficient
execution of the scale-out applications that dominate in datacenter
computing. However, the effects of the hardware support in the
Memory Management Unit (MMU) in combination with the
distinct characteristics of the scale-out applications have been
largely ignored until recently. In this paper, we comprehensively
quantify the MMU overhead on a real machine leveraging the
use of performance counters on a collection of emerging scale-out
applications. We show that the MMU overhead accounts for up
to 16% of the total execution time due to the high TLB miss rates
and the interference between page walks and application data in
the cache hierarchy. We find that decreasing the MMU overhead
- with large pages - may improve the application performance
by up to 13.9%. However, the limited MMU support for large
pages in combination with the workloads’ low memory locality
may even harm the performance when large pages are enabled.
By comparing the expected and measured application speedup,
we observe a performance gap of up to 3.8%, indicating that any
improvements in the MMU may result in more efficient utilization
of the available execution resources. Finally, we find that the
MMU overhead remains high for most scale-out applications
even in the presence of large pages, leaving ample space for
optimizations. In response, we present upper bounds for perfect
MMU optimizations that motivate rethinking its design in the
context of the scale-out applications.

I. INTRODUCTION

In recent years, companies like Amazon, Google and
Facebook have invested resources to build big datacenters
where their software infrastructure run on a large number of
inexpensive computers. The datacenters aim to provide the
most scalable and economical way to leverage the vast amount
of available processing power. Given the high cost of building
and maintaining datacenters, a single-digit performance im-
provement in the utilization of datacenters translates directly
to savings in money. To this end, datacenter infrastructures
have received attention during the last years in improving
the performance of all the involved components such as
processors, storage, and interconnection networks.

To stimulate the research in the topic of datacenters, the
CloudSuite benchmark suite was recently introduced [25].
CloudSuite is a collection of popular scale-out applications
that target various domains of datacenter computing including
data analytics (MapReduce), key-value caching (MemCached)
and storing (NoSQL), large-scale graph analytics (GraphLab),

and web-searching (Nutch) among others. The scale-out ap-
plications operate on large datasets with low memory local-
ity exhibiting inefficient execution in the traditional server
architectures [25]. In response, computer architects proposed
novel designs to increase the efficiency of microprocessors for
scale-out applications through improvements in the processor
pipeline [36], the memory hierarchy [29], and the on-chip
interconnection network [35].

However, the overhead of the Memory Management Unit
(MMU) in the context of the scale-out applications has been
largely ignored. There have been very few studies - all of them
recent - on the performance cost of the MMU that proposed
solutions to mitigate them through either reducing the number
of TLB misses [13] or the cost of page walks [15]. Still, these
studies used only a subset of scale-out applications and did not
provide an extensive characterization of the MMU behavior in
the context of datacenter computing.

Our goal in this paper is to understand how the MMU
(i) performs under the execution of the scale-out applications,
(ii) affects the application performance, (iii) interacts with
other components of the processor, and (iv) can be potentially
improved to boost the performance of datacenters. To this end
we analyze the performance of the Memory Management Unit
under the execution of various scale-out applications. We con-
duct our analysis leveraging the use of performance counters
on an x86 64 real system. To the best of our knowledge, we
are the first to undertake such an effort.

The main contributions of this paper are:

• We perform a comprehensive performance analysis of
the MMU for several scale-out applications showing
that the MMU overhead accounts up to 16% of the
total execution time.

• We find that by reducing the MMU overheads, the
performance improves by up to 13.9% enabling better
exploitation of the available execution resources.

• We observe that large pages are beneficial for most
applications without being an “always-win” option due
to limited hardware support.

• We quantify the interference between the application
data and the page-table structures in the cache hi-

erarchy, and show how page walks are affected by
hardware prefetchers.

• We present upper-bound analyses and discuss potential
future directions with the hope to help designing new
MMUs in light of the characteristics of these widely-
used modern scale-out applications.

In Section II we provide background information regarding
the MMU and the scale-out applications we use in our study,
while in Section III we discuss our methodology. We present
the performance analysis of the MMU under the execution
of the scale-out workloads in Section IV, and we discuss
potentials for improving the MMU performance in Section V.
Finally, in Section VI we discuss the related work and in
Section VII we conclude our study.

II. BACKGROUND

In this paper we focus on the performance of the Memory
Management Unit (MMU) under the execution of scale-out
applications. Here we briefly describe the scale-out applica-
tions from CloudSuite [1], [25] that we use in our study.
We also provide background information about the hardware
support of the MMU - the Translation Lookaside Buffer (TLB)
and the MMU cache - of the x86 64 architecture which
constitutes the dominant processor architecture deployed in
today’s datacenters [12].

A. Scale-out Applications

Data-analytics (MapReduce). This benchmark uses Ma-
hout, a scalable machine learning and data mining library de-
signed for the Hadoop MapReduce framework. The benchmark
performs the Bayesian classification algorithm for a large input
set of Wikipedia articles.

Data-caching (MemCached). MemCached is a distributed
memory caching system that speeds up dynamic database-
driven websites by caching data in main memory to reduce the
number of accesses in the database. The benchmark simulates
the behavior of a caching server for Twitter.

Data-serving (NoSQL). This benchmark targets the domain
of NoSQL databases which have gained growing industry use
in big data and real-time web applications. The benchmark
uses Cassandra, a column-oriented database server, and simu-
lates an update-heavy workload.

Graph-analytics (GraphLab). This benchmark relies on
GraphLab, an abstraction framework that expresses asyn-
chronous, dynamic, graph-parallel computation. The bench-
mark is a GraphLab-based implementation of tunkrank that
measures a person’s influence on Twitter.

Media-streaming (QuickTime). This benchmark targets the
domain of media-streaming services and uses the Darwin-
Streaming Server (open-source equivalent of Apple QuickTime
Server) that streams media to clients across the Internet.

Software-testing (Cloud9). This benchmark uses Cloud9,
an automated software-testing platform that parallelizes sym-
bolic execution.

Web-search (Nutch). This benchmark targets web search
engines that dominate among the internet services [30].

Per-core TLB Hierarchy

I-TLB 4K 128 entries, 4-way assoc.
2M 8 entries, fully assoc.

D-TLB 4K 64 entries, 4-way assoc.
2M 32 entries, 4-way assoc.

L2 TLB 4K 512-entries, 4-way assoc.
2M -

TABLE I: TLB hierarchy of the test machine.

The benchmark uses the distributed version of Nutch, an
open source web search engine, with content crawled from
http://en.wikipedia.org/.

B. Memory Management Unit (MMU)

Translation Lookaside Buffer (TLB). Virtual memory
effectively virtualizes the physical memory of a computing
system by dividing it into blocks and allocating them to differ-
ent processes [26]. In the x86 64 architecture, the translations
from virtual to physical addresses are kept in the Page Table
that is stored as a 4-level hierarchical radix tree [28]. To ac-
celerate virtual memory, most processors employ a Translation
Lookaside Buffer (TLB) that holds recently used page table
entries. The TLB is on the critical path of every memory
operation. This requirement has turned the TLB into a crucial
component for the performance of the processor [28]. In case
of a TLB miss, the MMU walks the page table through a
hardware state machine. Thus, a TLB miss, i.e. page walk,
requires up to four memory operations to resolve.

MMU cache. Due to the impact of the page walk latency
in the performance, commercial processors have employed
MMU caches [11], [15]. The MMU cache reduces the cost of
page walks by caching intermediate levels of the page table,
while the TLB only caches the leaves. A hit in the MMU
cache enables the processor to skip one or more levels of the
page table. Thus, a page walk requires between one and four
memory operations to perform an address translation based on
the contents of the MMU cache.

III. METHODOLOGY

Here we describe the experimental environment and the
methodology we followed to analyze the MMU performance.

A. System Setup

We conduct our study on a 4-core Intel Xeon E3-1230
(Sandy Bridge) running at 3.2GHz equipped with 16GB mem-
ory. Each core has a private TLB hierarchy (Table I): a first-
level Data-TLB, a first-level Instruction-TLB, and a second-
level TLB, i.e. shared between I-TLB and D-TLB. Note that
in this paper we focus on the impact of second-level TLB
misses and misses to 2M pages, both of which trigger page
walks.

The system runs OpenSuse 12.3 with the 3.7.10-1.4 Linux
kernel. We used seven out of the eight scale-out applications
from CloudSuite [1]; we faced tuning problems with web-
serving. For all the server-oriented applications, we set up
both clients and servers on the same machine pinning each
to unique cores through the taskset utility and we measured

Equations & hardware performance counters
(%) Cycles spent in page walks (data) =
(DTLB LOAD MISSES.WALK DURATION +
DTLB STORE MISSES.WALK DURATION) /
CPU CLK UNHALTED.THREAD P
Page walks per 1000 instr. (data) =
(DTLB LOAD MISSES.WALK COMPLETED +
DTLB STORE MISSES.WALK COMPLETED) /
(INST RETIRED.ANY P / 1000)
Average cycles per page walk (data) =
(DTLB LOAD MISSES.WALK DURATION +
DTLB STORE MISSES.WALK DURATION) /
(DTLB LOAD MISSES.WALK COMPLETED +
DTLB STORE MISSES.WALK COMPLETED)
(%) Cycles spent in page walks (instructions) =
ITLB MISSES.WALK DURATION /
CPU CLK UNHALTED.THREAD P
Page walks per 1000 instr. (instructions) =
ITLB MISSES.WALK COMPLETED * 1000 /
INST RETIRED.ANY P
Average cycles per page walk (instructions) =
ITLB MISSES.WALK DURATION /
ITLB MISSES.WALK COMPLETED
L1 misses = L1D.REPLACEMENT
L2 misses =
MEM LOAD UOPS RETIRED.LLC HIT +
MEM LOAD UOPS LLC HIT RETIRED.XSNP HIT +
MEM LOAD UOPS LLC HIT RETIRED.XSNP HITM +
MEM LOAD UOPS MISC RETIRED.LLC MISS
LLC misses =
MEM LOAD UOPS MISC RETIRED.LLC MISS

TABLE II: Equations and corresponding hardware perfor-
mance counters.

only the activity of the server programs. Finally, to access the
performance counters (Table II) we use the perf utility [4] and
we report the average results of three runs.

B. Large Pages

Linux provides two mechanisms for enabling large 2M
pages: (i) Transparent Huge Pages (THP) [7] and (ii) lib-
hugetlbfs [2]. THP attempts to allocate large pages to service
application’s memory requests that are naturally 2MB-aligned
in the anticipation of subsequent memory allocations. If no
large pages are available, the kernel falls back to 4K pages
transparently to the application, and periodically scans through
the memory to substitute several 4K pages with a large page.
On the other hand, with libhugetlbfs [2], large pages must
be set aside at boot time, they are not swappable and the
application must map them explicitly. The main difference
between the two mechanisms is that THP supports 2M pages
only for anonymous pages, while libhugetlbfs supports large
pages for memory-mapped files as well.

We use the following methodology to decide which mech-
anism we should enable in this study. We run the scale-out
applications only with THP enabled and we periodically collect
memory statistics from the proc filesystem [6] regarding (i) the
active working set, (ii) the percentage of the allocated pages
that are anonymous, and (iii) the percentage of the allocated
large pages over the total working set. Table III summarizes
the results.

We observe that most scale-out applications use anonymous
pages for more than 96% of their working set. The exception is

Benchmark Data Anonymous Anonymous
Set Total Pages % Large Pages %

Data-analytics 5 GB 99.84 72.53
Data-caching 8 GB 99.91 99.89
Data-serving 7 GB 46.42 37.61
Graph-analytics 12 GB 99.89 62.69
Media-streaming 700 MB 99.82 -
Software-testing 700 MB 97.11 25.67
Web-search 6 GB 99.37 75.07

TABLE III: Memory usage statistics. The first column shows
the size of the working set, the second column indicates the
percentage of allocated anonymous pages over the working
set, and the third column shows the percentage of anonymous
pages that were allocated as large pages with THP.

data-serving whose working set is mainly divided among the
java heap that uses anonymous pages (46%) and the NoSQL
database that is memory-mapped. Regarding the ability of
THP to successfully allocate large pages, we find that large
pages cover: (i) more than 70% for data-analytics (72%), data-
caching (99%) and web-search (75%), (ii) more than 62%
for graph-analytics, (iii) only the java heap (37%) for data-
serving, (iv) 25% for software-testing and surprisingly 0% for
media-streaming. These results indicate that THP are able to
provide large pages for most of the scale-out applications.
Finally, to get more confidence about our execution environ-
ment we run the applications with libhugetlbfs. We find that
the performance is similar among the two configurations for
all applications, including data-serving and media-streaming,
after spending significant effort in tuning libhugetlbfs for the
needs of each application. Thus, we decide to use large 2M
pages through Transparent Huge Pages.

Discussion. Our machine does not have TLB support for
1G pages. Consequently we limit our evaluation of varying the
page-size to 4K and 2M.

IV. MMU PERFORMANCE ANALYSIS

In this paper we analyze the performance of the Memory
Management Unit (MMU) under the execution of scale-out ap-
plications. We mainly focus on the data accesses that typically
stress the MMU more than the instruction accesses [17], [32].
We measure the overhead due to page walks and its impact on
the application’s performance, we quantify how often a page
walk occurs in terms of TLB misses per 1000 instructions
(MPKI), and we report the average cost of a page walk.
Moreover, we evaluate the interference between the application
data and the page walks in the cache hierarchy, we show how
the cache hardware prefetchers affect the MMU performance
and we discuss the performance of the MMU for instruction
accesses. Finally, we summarize the key findings and their
implications in the MMU performance.

A. How much time is spent in TLB misses?

The MMU overhead is dictated by the time spent in page
walks, i.e. TLB misses. Figure 1 shows the percentage of the
execution time spent in page walks due to data accesses with
4K pages (left bar). We make the following observations.

 0

 2

 4

 6

 8

 10

 12

 14

 16

4K 2M 4K 2M 4K 2M 4K 2M 4K 2M 4K 2M 4K 2M

P
er

ce
n
ta

g
e

o
f

R
u
n
ti

m
e

(%
)

data−analytics

data−caching

data−serving

graph−analytics

media−streaming

software−testing

web−search

Kernel Stores

Kernel Loads

Application Stores

Application Loads

Fig. 1: Percentage of execution time spent in page walks due
to data accesses with 4K and 2M pages. The MMU overhead
accounts up to 16% of the total execution time.

First, we find that all applications suffer from high MMU
overheads with 4K pages. More specifically, data-serving and
media-serving spend more than 10% of the execution time
in page walks, while data-analytics and graph-analytics reach
almost 14% and 16%, respectively. These applications operate
on big-data (Table III) with low locality [25] stressing the
performance of the MMU. To confirm this behavior, we also
calculate the number of cold TLB misses based on the working
set and the page-size. We find that the cold TLB misses
contribute less than 0.02% to the total TLB misses for all the
scale-out applications. These results indicate that the MMU
overhead is practically dictated by capacity and conflict TLB
misses due to the limited MMU resources and the low memory
locality of the workloads, rather than by cold TLB misses.

Second, we find that the page walks due to kernel code
contribute significantly to the total MMU overhead for data-
caching, data-serving, media-streaming and web-search. The
reason is that these applications stress the network and the
file-system stack [25], [34]. Indeed we find that data-caching,
data-serving, media-streaming and web-search spend 68.6%,
25.5%, 67.2% and 10.7% of the total execution time in kernel
code respectively.

We analyze the kernel page walks and categorize them
according to the execution path. More than 85% of the
kernel page walks take place in functions due to both
file-system and network activity for data-caching, media-
streaming and web-search, while 44.3% accounts to both
file-system and scheduler/synchronization activities for data-
serving. Moreover, we identify two hotspot functions respon-
sible for page walks: 7.1% for data-caching and 16.9% for
media-streaming of total page walks occur only in the kernel
function tcp_poll() due to network activity, and 5.7% for
data-caching, 14.3% for media-streaming and 9.1% for web-
search only in fget_light() due to both network and file-
system activity.

Findings

• The MMU overhead for the scale-out applications is
significantly high up to 16%.

• The kernel page walks may contribute more than 50%

 0

 20

 40

 60

 80

 100

 120

 140

 160

data−analytics

data−caching

data−serving

graph−analytics

media−streaming

software−testing

web−search

N
o

rm
al

iz
ed

 c
y
cl

es
 s

p
en

t
in

 p
ag

e
w

al
k
s

(%
)

4KB pages

2MB pages

Fig. 2: Normalized cycles spent in page walks due to data
accesses with 4K pages and 2M pages.

of the total MMU overhead mainly due to network and
file-system activity.

B. Do Large Pages help?

To observe the impact of the page-size in the performance
of the MMU, we leverage the Transparent Huge Pages (THP)
that enable 2M pages. Depending on the application behavior,
large pages may decrease the time spent in page walks due
to: (i) reducing the number of TLB misses by increasing the
TLB reach (Section IV-D), and/or (ii) reducing the average
cost of page walk by requiring one memory reference less
(Section IV-E). Figure 2 shows the cycles spent in page walks
due to the employment of 2M pages normalized to the page
walk cycles with 4K pages.

First, we notice that increasing the page-size reduces
mostly the MMU overhead by up to 65.9% for data-analytics,
data-serving and graph-analytics. Data-serving gets the least
benefits from 2M pages among these three applications
(23.6%). The reason is that data-serving accesses the NoSQL
database through memory-mapped files. However, THP lack
support for memory-mapped files as discussed in Section III-A.
Consequently, the THP mechanism covers with 2M pages less
part of the working set (only the java heap) for data-serving
than for data-analytics and graph-analytics (Table III).

Second, we notice that large pages reduce slightly the time
spent in page walks by less than 2% for data-caching. We
find that the number of page walks cycles due to user code
with large pages decreases by 31% on one hand. On the other
hand, the number of the dominant page walks cycles due to
kernel code increases by 19%. The reason for this behavior
is the combination of the application’s poor locality with the
increased pressure on the TLB for 2M pages: (i) the TLB
supports only 32 entries for 2M pages, (ii) the kernel typically
uses 2M pages for its internal structures [7], [24], (iii) with
THP enabled there is contention between user-level and kernel-
level TLB entries in the limited-sized TLB for 2M pages,
since x86 64 architecture does not lock TLB entries for kernel
usage. Consequently, the time spent in page walks for the
application data decreases at the cost of increasing the kernel
overheads.

Third, we notice that for web-search, increasing the page-
size actually increases the time spent in page walks by 54%.

Similarly to data-caching, the reason for this behavior is the
limited TLB support for 2M pages in combination with the
low data locality of the application.

Fourth, 2M pages bring negligible benefits for media-
streaming and software-testing. Surprisingly we found THP
fail to allocate any 2M pages for media-streaming. The reason
is that this scale-out application performs a small number
of memory allocations (mmap()) with such arguments (size,
flags and access rights) that do not allow the THP mechanism
to allocate large pages. Finally, the reduction of page walk
cycles for software-testing is limited by the ability of THP
to back only 25.7% of the application’s working set with 2M
pages.

Figure 1 shows the percentage of execution time spent in
TLB misses with 2M pages (right bar). This percentage is now
computed based on the total execution time with 2M pages (we
discuss the actual performance differences in Section IV-C).
We observe that an important fraction of time - more than 6%
- is still spent in page walks even for those applications that
take benefit from 2M pages (e.g. data-analytics and graph-
analytics). For the rest of the applications the percentage
remains practically the same. These results indicate that in
case the application performance depends directly on any
improvements in the MMU performance, there is still ample
space for optimizing the MMU.

Findings

• Large pages reduce the MMU overhead for some
scale-out applications by up to 65.9%. However, the
limited hardware support for large pages may actually
increase the MMU overhead by up to 54%.

• Large pages put more pressure on the TLB for those
applications that suffer from a high number of kernel
page walks due to the limited support for 2M.

• The software implementation of some scale-out appli-
cations cannot use large pages.

• Even if large pages benefit the application perfor-
mance, still a significant percentage of time spent in
page walks leaving space for optimizations.

C. Do TLB misses affect performance?

In this section we quantify the application speedup due
to improving the MMU performance by changing the page-
size from 4K to 2M. To assess the importance of the MMU
performance in the processor pipeline, we compute also the ex-
pected performance with 2M pages based on Equation 1 [13].
The expected performance with 2M pages is computed as the
measured number of execution cycles with 4K pages reduced
by the measured improvement in cycles spent in page walks
when increasing the page-size from 4K to 2M. In other words,
the expected performance assumes that the page walks do not
affect at all (neither positively nor negatively) the processor
pipeline (out-of-order execution, memory hierarchy, etc.).

ExpectedTotalCycles2M =

TotalCycles4K − T lbCycles4K + T lbCycles2M (1)

 0.90

 0.95

 1.00

 1.05

 1.10

 1.15

data−analytics

data−caching

data−serving

graph−analytics

media−streaming

software−testing

web−search

S
p

ee
d

u
p

 (
x

)

Measured

Expected

Fig. 3: Speedup due to increasing the page-size from 4K to
2M. The left bar corresponds to the actual measurements, while
the right bar corresponds to the expected speedup based on
Equation 1. The difference indicates the positive impact of re-
ducing the MMU overhead in the processor pipeline. Note that
we do not report expected speedup for those applications that
use throughput as performance metric, i.e. media-streaming,
software-testing and web-search.

Figure 3 shows the measured speedup that is achieved due
to employing large pages on the left bar, and the expected
speedup based on Equation 1 on the right bar.

Regarding the measured speedup we see that the perfor-
mance increases for those applications that reduce the time
spent in page walks (Figure 2). More specifically, 2M pages
boost the performance of data-analytics, data-serving and
graph-analytics by 9.7%, 6.4% and 13.9% respectively. The
rest of the applications achieve negligible speedup, while the
performance of web-search slightly drops by 2% as expected
due to spending more cycles in page walks.

Regarding the expected speedup we notice a positive gap
between the expected speedup and the measured one, i.e. 9.7%
vs. 7.2% for data-analytics, 6.4% vs. 2.6% for data-serving
and 13.9% vs. 10.5% for graph-analytics. We believe that the
difference in expected and measured performance is due to the
impact of page walks on the out-of-order execution and the
memory hierarchy. The page walks occur less frequently and
need less cycles to complete with large pages, allowing better
utilization of the available pipeline resources. To verify this
behavior, we measure also the number of stalled cycles in the
back-end of the processor pipeline. We find that by using 2M
pages, the number of back-end stalled cycles reduces by 16.7%
for data-analytics, by 10.7% for data-serving and by 10.1%
for graph-analytics, and we also find that the IPC increases
by 12.3% for data-analytics, by 8.1% for data-serving and
by 7.4% for graph-analytics. We also observe fewer cache
misses with 2M pages as we will explain next in Section IV-G
respectively. Our results suggest that future improvements in
MMU performance will bring more-than-expected application
speedup by exploiting the available execution resources better.

Findings

• Improved MMU performance speeds up the scale-out
applications by up to 13.9%. However, the limited
hardware support for 2M pages may reduce the ap-
plication performance by 2%.

 0

 1

 2

 3

 4

 5

 6

 7

4K 2M 4K 2M 4K 2M 4K 2M 4K 2M 4K 2M 4K 2M

M
is

se
s

p
er

 1
0
0
0
 i

n
st

ru
ct

io
n
s

data−analytics

data−caching

data−serving

graph−analytics

media−streaming

software−testing

web−search

Kernel Stores

Kernel Loads

Application Stores

Application Loads

Fig. 4: Page walks (i.e. TLB misses) per 1000 instructions
(MPKI) due to data accesses with 4K and 2M pages.

 0

 10

 20

 30

 40

 50

 60

data−analytics

data−caching

data−serving

graph−analytics

media−streaming

software−testing

web−search

A
v

er
ag

e
cy

cl
es

 p
er

 p
ag

e
w

al
k

4KB Pages

2MB Pages

Fig. 5: Average number of cycles per page walk due to data
accesses with 4K and 2M pages.

• The difference between the expected and the measured
application speedup indicates that optimizations in the
MMU will result in more efficient utilization of the
execution pipeline.

D. How often do TLB misses occur?

Figure 4 shows the number of page walks (i.e. TLB misses)
per thousand instructions (MPKI) due to data accesses when
using 4K and 2M pages. By changing the page-size from 4K
to 2M, the MPKI reduces for those applications that the page
walk overhead decreases (e.g. data-analytics, data-serving and
graph-analytics), but not in the same ratio as in Figure 1 since
2M pages reduce also the cost per TLB miss as we will show
in the following subsection. However, we notice that the MPKI
actually increases for data-caching and web-search with 2M
pages. This behavior confirms the limited hardware support for
2M in current MMUs.

Findings

• The frequency of page walks decreases for some
applications due to large pages. However the limited
TLB support for 2M pages may increase the MPKI.

Results for 2M pages normalized to 4K pages

Benchmark Page walks Average cycles Time spent
per 1000 instr. per page walk in page walks

Data-analytics 0.68 0.71 0.48
Data-caching 1.17 0.83 0.98
Data-serving 0.78 0.97 0.76
Graph-analytics 0.81 0.46 0.34
Media-streaming 1.01 0.98 0.99
Software-testing 0.95 1.01 0.98
Web-search 2.32 0.67 1.54

TABLE IV: Summarized results for page walks per 1000
instructions, average cycles per page walk and cycles spent
in page walks with 2M pages normalized to 4K pages (lower
is better).

E. What is the cost of a TLB miss?

Figure 5 shows the average cost of a page walk with 4K
and 2M pages respectively. We observe that the average cost
of page walk with 4K pages is far lower than 100 cycles
for all applications. This indicates that resolving a page walk
does not require any off-chip memory access on average. Our
results corroborate previous studies that focused on different
applications and concluded that the page walks references
typically hit in the cache hierarchy [11], [37].

The latency of the average cost per page walk depends on
(i) the performance of the MMU cache, which dictates how
many memory accesses (up to four) are necessary to resolve
the page walk, and (ii) the locality of the page table references
in the data cache hierarchy (i.e. L1, L2 or LLC). Unfortunately,
our experimental machine does not provide any counters for
measuring the performance of the MMU cache. However, in
Section V-B we perform an upper-bound analysis of perfect
MMU caches varying the level of data cache hierarchy where
the page table references hit and we draw some conclusions
about the locality of the page table references in the cache
hierarchy.

By comparing the results for the two page-size config-
urations, we observe that the average cost per page walk
is lower for most scale-out applications with 2M pages. In
conjunction with the results of the previous sections - which
are summarized in Table IV - we observe that the average
cost of a page walk with 2M pages reduces significantly
for data-analytics and graph-analytics as expected. For data-
caching and web-search, the average cost also decreases and
compensates the increase in MPKI, while for data-serving,
media-streaming and software-testing, which have low use of
2M pages, the average cost remains practically the same.

Findings

• The average TLB miss cost indicates that page walk
references typically hit in the data cache hierarchy.

F. Comparison with other benchmark suites

In this section we compare the performance of the MMU
across different benchmark suites. Figure 6 shows the percent-
age of execution time spent in page walks for SPEC 2006 [5],
BioBench [8], Parsec [18] and CloudSuite.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

SpecInt

SpecFp

BioBench

Parsec

CloudSuite

P
er

ce
n
ta

g
e

o
f

R
u
n
ti

m
e

(%
)

4KB pages

2MB pages

Fig. 6: Comparison of the MMU performance with various
benchmark suites (geometric mean per suite).

We observe that the scale-out applications consistently
stress the MMU more compared to other benchmark suites
in terms of runtime overhead. Moreover, we find that the
scale-out applications suffer almost an order of magnitude
more frequently from page walks than other benchmarks;
the page walks per 1000 instructions is well below 1 for
the majority of Spec, BioBench and Parsec applications even
with 4KB pages (35 out of 47 applications). The reason is
that these suites consist of several benchmarks with small
working sets that fit in the TLB hierarchy. Although there
are some benchmarks that cause high MMU overheads (e.g.
mcf, omnetpp, cactusADM, mummer, tiger, canneal) they still
have smaller working sets, limited kernel activity and enjoy
better performance improvement with large pages compared
to the scale-out applications. Based on these findings, we
corroborate a previous study [25] that pointed out the distinct
characteristics of scale-out applications compared to other
benchmarks, and we further show that the same observation
holds with respect to the MMU behavior.

Findings

• Scale-out applications stress more the MMU per-
formance compared to other compute-intensive and
multi-threaded applications.

G. Interference in the cache hierarchy

In this section we quantify the interference in the data-
cache hierarchy between the application data and the page table
references. To accomplish this, we count the number of L1, L2
and LLC misses for the two page-size configurations. Figure 7
shows the percentage of reduced cache misses due to changing
the page-size from 4K to 2M.

We observe that the number of cache misses for most
scale-out applications reduces by up to 11.2% for L1 cache
(software-testing), 4.8% for L2 cache (graph-analytics) and
6.5% for LLC (data-analytics). This happens due to the im-
proved MMU performance that cause fewer memory accesses
due to the page walks and less interference with the application
data in the cache hierarchy since: (i) the page table occupies
less memory space due to the elimination of one level in the
page tree, and (ii) page walks occur less often and are cheaper
(Figures 4 and 5). The only exceptions are data-caching and
web-search which suffer more frequently from page walks with

 −2

 0

 2

 4

 6

 8

 10

 12

data−analytics

data−caching

data−serving

graph−analytics

media−streaming

software−testing

web−search

R
ed

u
ce

d
 a

cc
es

se
s

(%
)

L1 misses

L2 misses

LLC misses

Fig. 7: Percentage of reduced L1, L2 and Last Level Cache
(LLC) misses due to increasing the page-size from 4KB to
2MB. The results show that by improving the MMU perfor-
mance, less interference occurs in the cache hierarchy between
the application data and the page table.

2M than with 4K pages as we showed earlier in Section IV-D,
increasing slightly the number of LLC misses.

Moreover, we notice that just reducing the number of L1
misses, as it happens for (software-testing), does not affect sig-
nificantly the performance because they can be hidden by the
out-of-order execution. However, we observe a correspondence
between performance improvement and reduced data-cache
interference - in L2 cache and LLC - for those applications
that benefit most from 2M pages (data-analytics, data-serving
and graph-analytics).

Findings

• Poor MMU performance can result in increased inter-
ference with application data in the cache hierarchy.

H. Interaction with Hardware Prefetchers

Previously we showed the interference between the applica-
tion data and the page table in the cache hierarchy. However,
the page table can be cached up to the L1 cache. Here we
quantify this interference due to the activity of the hardware
prefetchers from the MMU performance point of view.

Our experimental machine has four prefetching mecha-
nisms; the two of them (DCU and IP stride) are responsible for
prefetching data to the L1 cache, while the other two (ACL
and Spatial) are responsible for prefetching data to the L2
and the LLC [27]. Table V summarizes three basic metrics
of the MMU performance due to data accesses for the scale-
out applications with 2M pages for three different prefetcher
configurations: (i) all prefetchers are disabled, (ii) only L1
prefetchers (DCU and IP prefetchers) are enabled, and (iii) all
prefetchers are enabled. The table shows the total number of
page walks, the average number of cycles per page walk, and
the total number of cycles spent in page walks, normalized
to the case when all prefetchers are disabled. We make the
following observations.

We see that the total number of page walks changes for dif-
ferent prefetcher configurations and actually increases for most
scale-out applications compared to when all prefetchers are
disabled. These results were not expected since the prefetcher

ON only L1 prefetchers ON all prefetchers

Benchmark #page walks #average cycles #cycles spent #page walks #average cycles #cycles spent
per page walk in page walks per page walk in page walks

Data-analytics 1.11 1.49 1.65 1.00 1.28 1.29
Data-caching 0.79 1.08 0.86 0.77 1.17 0.90
Data-serving 1.22 1.02 1.25 1.22 0.98 1.20
Graph-analytics 0.98 0.85 0.83 0.96 0.55 0.53
Media-streaming 1.00 1.05 1.05 1.06 1.07 1.14
Software-testing 0.81 1.02 0.83 1.04 1.14 1.19
Web-search 1.62 0.94 1.53 1.66 0.95 1.57

TABLE V: Summarized results for page walks, average cycles per page walk and cycles spent in page walks with 2M pages for
various prefetcher configurations normalized to the case when all prefetchers are disabled (lower is better).

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

4K 2M 4K 2M 4K 2M 4K 2M 4K 2M 4K 2M 4K 2M

P
er

ce
n
ta

g
e

o
f

R
u
n
ti

m
e

(%
)

data−analytics

data−caching

data−serving

graph−analytics

media−streaming

software−testing

web−search

Kernel

Application

Fig. 8: Page walk overhead due to instruction TLB misses.

requests are supposeed not to trigger page walks [27]. We
speculate that the number of page walks differs across config-
urations because the prefetcher requests either affect the TLB
replacement policy (positively or negatively depending on the
application), or indeed trigger page walks.

Similarly, we observe that the total number of cycles spent
in page walks (and the average cost of page walk respectively)
changes across the various configurations. More specifically,
the number of page walk cycles is lower when all prefetchers
are disabled for most of the scale-out applications. These re-
sults indicate that the prefetchers fetch aggressively application
data that interfere with the page table in the cache hierarchy.
However, we see that the hardware prefetchers reduce by 47%
the cycles spent in page walks for graph-analytics, even though
the number of page walks is reduced by only 4%. Thus,
we observe an interaction between the hardware prefetchers
and the MMU performance that require further research and
documentation.

Findings

• The interference between the application data and the
page table in the cache hierarchy due to the activity of
the hardware prefetchers suggest that there is potential
for reducing the MMU overhead if there is isolation
between them in the memory hierarchy.

I. Instruction TLB misses

Figure 8 shows the time spent in page walks due to
instruction accesses. We see that all scale-out applications,

except for data-serving, spend a negligible amount of time
in page walks due to instruction accesses (less than 0.6%).
However, data-serving spends 2.45% of the total execution
time in page walks due to instruction accesses with 4K pages.
This MMU overhead accounts for 25% of the total MMU
overhead, and far exceeds typical I-TLB results [17]. The
reason lies on the software implementation of data-serving
which is based on a high-level language (Java) with a managed
runtime and extensive use of libraries. When 2M pages are
employed, we find that the MPKI reduces by almost 50% due
to the lower interference between instruction and data entries in
the TLB. However, it is still comparable to the MPKI of TLB
misses due to data accesses (0.8 for instruction TLB misses
vs. 3.7 for data TLB misses).

Findings

• Instruction references may add non-negligible MMU
overheads due to high-level languages and libraries.

J. Summary & Implications

We show that the MMU overhead for the scale-out appli-
cations is significantly high, up to 16% of the total execution
time. As the data-sets for these applications constantly grow,
these overheads are expected to increase. Thus, improving the
MMU performance should be of paramount importance for
the efficient execution of such applications in the big-data
era [13], [15]. Moreover, to quantify the correlation between
the MMU performance and the application performance, we
conducted experiments with large pages. The results show that
lower MMU overhead yields up to 13.9% application speed-up.
However, even though large pages reduce the MMU overhead,
the hardware support for large pages is limited and may
actually harm the performance. These findings dictate investing
effort in improving the limited hardware support for large
pages. Furthermore, the kernel code contributes significantly to
the total MMU overhead for most of the scale-out applications
mainly due to intense network and file-system activities. This
behavior requires further investigation from both operating
system and architecture researchers. Finally, the interference
between the application data and the poor MMU performance
indicates the need for an holistic approach in boosting the
performance of the memory hierarchy.

V. POTENTIAL IMPROVEMENTS IN MMU

Until now we have shown that the MMU overhead accounts
for a significant percentage of the total execution time. In this

 0

 1

 2

 3

 4

 5

 6

 7

 8

data−analytics

data−caching

data−serving

graph−analytics

media−streaming

software−testing

web−search

M
is

se
s

p
er

 1
0

0
0

 i
n

st
ru

ct
io

n
s

Page walks

LLC misses

Fig. 9: Comparison of page walks and LLC misses per 1000
instructions due to data accesses with 2M pages.

section we discuss potential solutions and we present upper-
bound analyses of performance improvements in the MMU.

A. Virtual Caches

Virtual caches [14], [19], [20], [33], [43], [47] have been
proposed as an alternative to reduce the performance and
power dissipation overheads of the MMU. Virtual caches use
virtual addresses to access the cache hierarchy down to a
certain level and only consult the TLB on a cache miss
beyond the supported level in the cache hierarchy. Although
the virtual caches provide attractive properties, ensuring correct
execution requires extra hardware support and complexity (due
to synonyms, access rights, etc.).

We want to identify the potential of virtual caches for
the scale-out applications regarding performance, assuming a
virtual cache design that accesses the MMU on LLC misses.
To this end, we compare the MPKI of page walks (left bar)
with that of LLC (right bar) with 2M pages in Figure 9. We
make the following observations.

First, the results show that four out of seven applications
experience similar or higher LLC miss rate compared to the
page walks rate. The reason is that these scale-out applications
operate on large data-sets suffering from LLC misses that are
spread over a big memory space that will likely miss in the
TLB as well. Consequently, although virtual caches would help
in reducing the power dissipated in the TLB hierarchy, they
would provide similar behavior in terms of performance due
to the exposed cost of address translation in cache misses.
Second, we observe that data-caching, data-serving and web-
search suffer more often from page walks than from LLC
misses. Such behavior indicates that there is useful data in
the LLC that is not covered by the TLBs, thus exposing the
inadequate design of current MMUs.

Based on these findings, we conclude that employing
virtual caches and removing the MMU from the critical path
would bring negligible performance improvement while it
would add significant complexity in the implementation of the
system.

B. Perfect MMU Caches

The MMU cache helps in reducing the cost of page
walks by caching memory references of the upper levels

of the page table. In this part of our analysis we evaluate
the potential for reducing the time spent in page walks by
implementing a perfect MMU cache. This means that the
page walk requires only one memory reference that always
hits in some level of the cache hierarchy. Bhattacharjee [15]
performed a similar analysis to show potential improvements
due to perfect MMU caches. In this paper, we go one step
further and we quantify also the impact of the hit-level in the
cache hierarchy during the page walk for perfect MMU caches.
Using microbenchmarks [10], we found that the minimum cost
for resolving a page walk that completely hits in the MMU
cache and requires only one page table reference that hits in
the L1, L2 and LLC cache is 12, 20 and 43 cycles on our
platform respectively. Based on these values per page walk
and the actually measured number of page walks, we estimate
potential performance improvements of perfect MMU caches.
Note that we assume pessimistically that the TLB misses have
no effect on the rest of the execution pipeline, so that the
baseline remains the same for all analyses. However, as we
showed earlier in Section IV-C, better MMU performance will
bring more-than-expected application speedup by exploiting
better the available execution resources.

PerfectMMULLC(%) =
TLB Misses ∗ 43cycles
Total Execution T ime

(2)

PerfectMMUL2(%) =
TLB Misses ∗ 20cycles
Total Execution T ime

(3)

PerfectMMUL1(%) =
TLB Misses ∗ 12cycles
Total Execution T ime

(4)

In Figure 10 we plot the percentage of time spent in
page walks due to data accesses (i) for the real evaluated
hardware (blue bar), (ii) enhanced with perfect MMU caches
that require a single memory reference that hits in the LLC
(PerfectMMULLC - Equation 2 - yellow bar), (iii) in the L2
cache (PerfectMMUL2 - Equation 3 - green bar), and (iv) in
the L1 cache (PerfectMMUL1 - Equation 4 - red bar).

We observe that for 4K pages, the actual measured per-
formance overhead is close to that of PerfectMMULLC or
even lower. Since the MMU cache is not perfect for the real
measurements, we conclude that the page table references with
4K pages typically hit earlier in the cache hierarchy, well
before accessing the LLC. Regarding the configuration with
2M pages, we observe that the measured performance overhead
is lower than that of PerfectMMULLC and close to that of the
PerfectMMUL2. This implies that the page walks with 2M
pages typically hit in L2.

Regarding the potential improvements of the perfect MMU
cache itself, that motivated also a recent proposal for improv-
ing their performance [15], we notice that the perfect MMU
cache brings better performance improvement for the scale-
out applications with 4K pages rather than with 2M pages.
However, the performance benefits still depend heavily on
the level of the cache hierarchy where the page walk hits,
indicating the need to keep the page table references as close
as possible to the processor.

 0

 2

 4

 6

 8

 10

 12

 14

 16

data−analytics

data−caching

data−serving

graph−analytics

media−streaming

software−testing

web−search

P
er

ce
n

ta
g

e
o

f
R

u
n

ti
m

e
(%

)

(a) 4KB Pages

 0

 2

 4

 6

 8

 10

 12

 14

 16

data−analytics

data−caching

data−serving

graph−analytics

media−streaming

software−testing

web−search

P
er

ce
n

ta
g

e
o

f
R

u
n

ti
m

e
(%

)

Measured page walk overhead

Perfect MMU cache − LLC hit

Perfect MMU cache − L2 hit

Perfect MMU cache − L1 hit

Perfect third−level TLB

(b) 2MB Pages

Fig. 10: Potential improvements for the MMU overheads.

C. Perfect Cache Interference

Overall, the perfect MMU cache provides limited per-
formance benefits for the scale-out applications unless it is
incorporated with a mechanism that preserves or promotes
the page table references in the cache hierarchy closer to the
processor (Figure 10). On the other hand, we showed that
interference exists between the application data and the page
table in the cache hierarchy, increasing the average cost of
page walks and degrading the application performance.

The interference between application data and page table
references in the cache hierarchy has been pointed by Wu
et al. [48]. However, their study targeted compute-intensive
applications that exhibit high cache hit ratio and low TLB
miss ratio respectively. Thus, their proposal treated the page
table references as polluting cache entries by de-prioritizing
them through the cache replacement policy in favor of appli-
cation’s data. We believe that an opposite approach should be
considered in the context of scale-out applications that suffer
from poor data-cache locality, so that the page walks hit early
in the cache hierarchy. Such a research direction is similar
in vein with [25] that advocated for preserving instruction
references in the cache hierarchy due to the high number of
expensive instruction cache misses that take place in the scale-
out applications.

D. Perfect TLBs

Here we discuss the possibility of employing a perfect
third-level TLB that always hits (Equation 5 - black bar
in Figure 10), i.e. the TLB has unlimited entries or reach,
having the same latency (7 cycles) as the actual second-
level TLB [27]. The results show that, in this case, the page
walk overhead is reduced to less than 2% for all the scale-
out applications making the use of virtual memory almost
invisible.

PerfectTLB(%) =
TLB Misses ∗ 7cycles
Total Execution T ime

(5)

One direction for achieving such performance is through
architecting a third-level TLB with a high number of en-
tries. However, such an implementation is likely unfeasible
according to the CMOS technology predictions [3] due to

leakage power and area overheads. On the other hand, novel
memory technologies (e.g. STT-RAMs, Memristors) have been
proposed to overcome these CMOS’ limitations for other on-
chip components such as last-level caches [22], [49]. Leverag-
ing their unique characteristics and designing novel third-level
TLBs with such memory technologies should be considered
for future research in our opinion.

Another future direction for improving the MMU perfor-
mance is to design a third-level range-TLB that can capture
efficiently ranges of pages without constraints on the coverage
by a single TLB entry (in contrast to [41], [42], [46]). Direct
Segments [13] actually follow this approach, but they provide
only a single range. Taking advantage of the fact that a third-
level range-TLB is not on the critical path of every memory
operation but it is accessed only when misses occur in the
higher TLB levels, a more complex design with higher latency
and improved range capacity could be beneficial.

Finally, TLB misses could be effectively hidden through
smart prefetching. Surprisingly we notice limited proposals
in the literature for TLB prefetching [16], [31], [45]. We
believe that the high overheads of the MMU for the scale-out
applications in combination with their distinct characteristics -
low locality and limited sharing among threads [25] - require
an effort in optimizing prefetching TLB entries, similarly as
inter-core cooperative prefetching [37] leveraged the frequent
sharing patterns of the multi-threaded applications to boost the
TLB performance.

VI. RELATED WORK

The MMU performance has attracted the interest of both
academia and industry for several decades. Early evaluations
of the MMU showed its importance in the overall processor
performance [9], [21], [23], [40], [44]. However, these studies
were conducted under systems with limited physical memory
and less sophisticated MMU organization targeting different
workloads compared to today’s trends in the MMU archi-
tectural support and the big-memory scale-out applications
respectively.

Jacob and Mudge [28] compared various MMU organiza-
tions and showed that the total MMU overhead is roughly twice
to what was previously thought due to the interference between
the application data and the page table in the cache hierarchy.

Kandiraju et al. [32] presented a detailed characterization of
the data TLB behavior for the Spec2000 benchmark suite. The
authors suggested that multi-level TLBs are useful in cutting
down access times and evaluated different kinds of prefetching.
McCurdy et al. [38] evaluated the MMU performance under
scientific applications, addressing the limited TLB support for
2M pages and concluded that the false choice of page size can
result in performance degradations of up to nearly 50%, while
Morari et al. [39] evaluated the TLB miss impact in future
HPC systems.

The most recent work in characterizing and analyzing the
TLB performance was conducted in the context of Parsec
multi-threaded applications [17]. The authors showed that the
TLB misses are predictable due to sharing patterns among
threads, and that inter-core TLB cooperation and prefetching
mechanisms can be applied to improve TLB performance.

Finally, Basu et al. [13] showed that big-data applications
stress the MMU performance even with 1G pages. However,
their study includes a subset of the applications we use in this
paper. Similarly, Bhattacharjee [15] showed that a significant
amount of execution time is due to the MMU overhead.
However, their study did not focus on scale-out applications.

Our approach. In contrast to previous works, we compre-
hensively characterize the MMU performance using represen-
tative scale-out applications from CloudSuite. We also provide
deep insights in the interactions between the MMU and other
processor components, and we point out to future directions
for improving the performance of the MMU in the context of
the emerging memory-intensive scale-out applications.

VII. CONCLUSIONS

Understanding the characteristics of the scale-out applica-
tions and identifying performance inefficiencies have turned
out as fundamental requirements to boost the efficiency of
datacenters and to further spread the deployment of the cloud-
computing paradigm. With this goal in mind, we compre-
hensively analyzed the performance execution of the Mem-
ory Management Unit under the execution of the scale-out
applications. We showed that the MMU overhead accounts
up to 16% of the total execution time and we quantified the
interference between the application data and the page walks.
By reducing the MMU overheads through large pages, we
found that the application performance accelerates by up to
13.9% due to better exploitation of the available execution
resources. However, the limited hardware support for large
pages may expose inefficiencies of the current support for the
Virtual Memory. Consequently, based on upper-bound analyses
for perfect improvements in the MMU, we suggested future
directions for improving the MMU performance with the hope
to motivate and help other researchers in designing novel
MMU implementations.

VIII. ACKNOWLEDGMENTS

We would like to thank Srdjan Stipic, Nehir Sonmez,
Ibrahim Hur, Jayneel Gandhi, Gulay Yalcin and all anonymous
reviewers for their comments and feedback. This work was
partially supported by the cooperation agreement between the
Barcelona Supercomputing Center and Microsoft Research, by
the Ministry of Science and Technology of Spain and the

European Union (FEDER funds) under contracts TIN2007-
60625 and TIN2008-02055-E, by the European Network of
Excellence on High Performance Embedded Architecture and
Compilation (HiPEAC), and by the National Science Foun-
dation under grant CNS-1302260. Vasilis Karakostas is also
supported by an FPU-Research grant from the Spanish MEC.

REFERENCES

[1] “Cloudsuite Overview,” http://parsa.epfl.ch/cloudsuite/overview.html.
[2] “Huge Pages Part 1 (Introduction),” http://lwn.net/Articles/374424/.
[3] “International Technology Roadmap for Semiconductors: 2012,”

http://www.itrs.net/Links/2012ITRS/Home2012.htm.
[4] “Perf wiki,” https://perf.wiki.kernel.org/index.php/Main Page.
[5] “SPEC CPU 2006,” https://www.spec.org/cpu2006/.
[6] “The /proc filesystem,” www.kernel.org/doc/Documentation/filesystems/

proc.txt.
[7] “Transparent Huge Pages in 2.6.38,” http://lwn.net/Articles/423584/.
[8] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W.

Tseng, and D. Yeung, “BioBench: A Benchmark Suite of Bioinformatics
Applications,” ISPASS, 2005, pp. 2–9.

[9] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska,
“The interaction of architecture and operating system design,” ASPLOS,
1991, pp. 108–120.

[10] V. Babka and P. Tuma, “Investigating Cache Parameters of x86 Family
Processors,” SPEC Benchmark Workshop on Computer Performance
Evaluation and Benchmarking, 2009, pp. 77–96.

[11] T. W. Barr, A. L. Cox, and S. Rixner, “Translation Caching: Skip, Don’t
Walk (the Page Table),” ISCA, 2010, pp. 48–59.

[12] L. A. Barroso, J. Clidaras, and U. Hlzle, The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines, Second
Edition, ser. Synthesis Lectures on Computer Architecture, 2013.

[13] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
Virtual Memory for Big Memory Servers,” ISCA, 2013, pp. 237–248.

[14] A. Basu, M. D. Hill, and M. M. Swift, “Reducing memory reference
energy with opportunistic virtual caching,” ISCA, 2012, pp. 297–308.

[15] A. Bhattacharjee, “Large-reach Memory Management Unit Caches,”
MICRO, 2013, pp. 383–394.

[16] A. Bhattacharjee and M. Martonosi, “Inter-core Cooperative TLB for
Chip Multiprocessors,” ASPLOS, 2010, pp. 359–370.

[17] A. Bhattacharjee and M. Martonosi, “Characterizing the TLB Behavior
of Emerging Parallel Workloads on Chip Multiprocessors,” PACT, 2009,
pp. 29–40.

[18] C. Bienia, “Benchmarking Modern Multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[19] M. Cekleov and M. Dubois, “Virtual-address caches part 1: Problems
and solutions in uniprocessors,” IEEE Micro, vol. 17, no. 5, pp. 64–71,
Sep. 1997.

[20] M. Cekleov and M. Dubois, “Virtual-address caches, part 2: Multipro-
cessor issues,” IEEE Micro, vol. 17, no. 6, pp. 69–74, Nov. 1997.

[21] J. B. Chen, A. Borg, and N. P. Jouppi, “A Simulation Based Study of
TLB Performance,” ISCA, 1992, pp. 114–123.

[22] Y.-T. Chen, J. Cong, H. Huang, B. Liu, C. Liu, M. Potkonjak, and
G. Reinman, “Dynamically Reconfigurable Hybrid Cache: An Energy-
efficient Last-level Cache Design,” DATE, 2012, pp. 45–50.

[23] D. W. Clark and J. S. Emer, “Performance of the VAX-11/780 transla-
tion buffer: simulation and measurement,” ACM Trans. Comput. Syst.,
vol. 3, no. 1, pp. 31–62, Feb. 1985.

[24] C. Dougan, P. Mackerras, and V. Yodaiken, “Optimizing the Idle Task
and Other MMU Tricks,” OSDI, 1999, pp. 229–237.

[25] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing
the Clouds: A Study of Emerging Scale-out Workloads on Modern
Hardware,” ASPLOS, 2012, pp. 37–48.

[26] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 3rd ed., 2002.

[27] Intel Corporation, Intel R© 64 and IA-32 Architectures Optimization
Reference Manual, April 2012, no. 248966-026.

[28] B. L. Jacob and T. N. Mudge, “A Look at Several Memory Manage-
ment Units, TLB-refill Mechanisms, and Page Table Organizations,”
ASPLOS, 1998, pp. 295–306.

[29] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM Caches for
Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache,” ISCA, 2013, pp. 404–415.

[30] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo, “Characterizing Data
Analysis Workloads in Data Centers,” IISWC, 2013, pp. 66–76.

[31] G. B. Kandiraju and A. Sivasubramaniam, “Going the distance for TLB
prefetching: an application-driven study,” ISCA, 2002, pp. 195–206.

[32] G. B. Kandiraju and A. Sivasubramaniam, “Characterizing the d-TLB
Behavior of SPEC CPU2000 Benchmarks,” SIGMETRICS, 2002, pp.
129–139.

[33] S. Kaxiras and A. Ros, “A new perspective for efficient virtual-cache
coherence,” ISCA, 2013, pp. 535–546.

[34] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin servers with smart pipes: designing SoC accelerators for mem-
cached,” ISCA, 2013, pp. 36–47.

[35] P. Lotfi-Kamran, B. Grot, and B. Falsafi, “NOC-Out: Microarchitecting
a Scale-Out Processor,” MICRO, 2012, pp. 177–187.

[36] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Pi-
corel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-
out processors,” ISCA, 2012, pp. 500–511.

[37] D. Lustig, A. Bhattacharjee, and M. Martonosi, “TLB Improvements for
Chip Multiprocessors: Inter-Core Cooperative Prefetchers and Shared
Last-Level TLBs,” ACM Trans. Archit. Code Optim., vol. 10, no. 1, pp.
2:1–2:38, Apr. 2013.

[38] C. McCurdy, A. L. Cox, and J. Vetter, “Investigating the TLB Behavior
of High-end Scientific Applications on Commodity Microprocessors,”
ISPASS, 2008, pp. 95–104.

[39] A. Morari, R. Gioiosa, R. W. Wisniewski, B. S. Rosenburg, T. Inglett,
and M. Valero, “Evaluating the Impact of TLB Misses on Future HPC
Systems,” IPDPS, 2012, pp. 1010–1021.

[40] D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, and R. Brown,
“Design tradeoffs for software-managed TLBs,” ISCA, 1993, pp. 27–38.

[41] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing TLB
reach by exploiting clustering in page translations.” HPCA, 2014, pp.
558–567.

[42] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT:
Coalesced Large-Reach TLBs,” MICRO, 2012, pp. 258–269.

[43] X. Qiu and M. Dubois, “Towards Virtually-Addressed Memory Hierar-
chies,” HPCA, 2001, pp. 51–62.

[44] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta,
“The Impact of Architectural Trends on Operating System Perfor-
mance,” SOSP, 1995, pp. 285–298.

[45] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-based TLB
Preloading,” ISCA, 2000, pp. 117–127.

[46] M. Talluri and M. D. Hill, “Surpassing the TLB Performance of
Superpages with Less Operating System Support,” ASPLOS, 1994, pp.
171–182.

[47] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, and J. M. Pendleton,
“An In-cache Address Translation Mechanism,” ISCA, 1986, pp. 358–
365.

[48] C.-J. Wu and M. Martonosi, “Characterization and dynamic mitigation
of intra-application cache interference,” ISPASS, 2011, pp. 2–11.

[49] W. Xu, H. Sun, X. Wang, Y. Chen, and T. Zhang, “Design of Last-level
On-chip Cache Using Spin-torque Transfer RAM (STT RAM),” IEEE
Trans. Very Large Scale Integr. Syst., vol. 19, no. 3, pp. 483–493, Mar.
2011.

