
Improving the Energy Efficiency of
Hardware-Assisted Watchpoint Systems

Vasileios Karakostas1,2, Sasa Tomic1, Osman Unsal1, Mario Nemirovsky3, Adrian Cristal1,4
1Barcelona Supercomputing Center
2Universitat Politecnica de Catalunya

3ICREA Senior Research Professor at Barcelona Supercomputing Center
4Spanish National Research Council (IIIA-CSIC)

{first.lastname}@bsc.es

ABSTRACT
Hardware-assisted watchpoint systems enhance the execu-
tion of numerous dynamic software techniques, such as mem-
ory protection, module isolation, deterministic execution,
and data race detection. In this paper, we show that pre-
vious hardware proposals may introduce significant energy
overheads, and propose WatchPoint Filtering (WPF), a novel
filtering mechanism that eliminates unnecessary watchpoint
checks. We evaluate WPF on two state-of-the-art proposals
for hardware-assisted watchpoints using two common mem-
ory checkers. WPF eliminates 83% of the watchpoint checks
(up to 99.7%) and reduces 57% of the dynamic energy over-
head (up to 78%) on average, without introducing additional
performance execution overhead.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—cache mem-
ories; C.0 [General]: hardware/software interfaces; D.2.0
[Software Engineering]: General—protection mechanisms

General Terms
Design, Performance

Keywords
Watchpoints, Metadata cache, TLB, Filtering, Optimization

1. INTRODUCTION
Writing bug-free code is a difficult task that presumes

dedicating a significant amount of time to testing and de-
bugging. However, the demand for higher productivity and
for meeting tight release deadlines often results in insuffi-
ciently tested software. For instance, a very common type
of bugs are memory-related. These bugs often pass devel-
opment tests and manifest themselves under obscure con-
ditions only after release. To bridge this gap, runtime sys-
tems should provide always-on and low-overhead support
for analysis tools that improve the quality of executed code
and increase the reliability of the system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

Tools based on dynamic binary instrumentation [1, 5, 6,
8, 12] provide the desired functionality but they impose sig-
nificant performance degradation (e.g. more than 30× slow-
down in Valgrind’s MemCheck [12]). The root cause is the
instrumentation overhead: all memory accesses are checked
in software. Furthermore, commodity processors lack hard-
ware support to accelerate such memory checks. The Trans-
lation Lookaside Buffer (TLB) checks access rights at coarse
page-level granularity, while debug registers are limited to
watching only a few memory locations.

To overcome these limitations, hardware-assisted watch-
point systems [4, 11, 14, 15, 17, 19, 21] have been proposed
to enhance analysis tools in production runs. The hardware
support typically includes a metadata-cache that accelerates
watchpoint checks. Although these proposals seem to have
good performance, they often make unneeded watchpoint
checks and introduce significant dynamic energy overhead.
We find that a high performance scheme that accesses the
metadata-cache in every memory operation introduces up to
15.8% dynamic energy overhead - only due to the metadata-
cache - with respect to the dynamic energy consumed in the
private per-core caches. Taking into account the increasing
importance of energy consumption in future processors, ven-
dors are expected to employ hardware support for unlimited
watchpoints only if they can provide both minimal energy
and performance execution overheads.

In this paper, we propose WatchPoint Filtering (WPF), a
novel mechanism that filters unnecessary watchpoint checks.
Our proposal leverages the existing hardware in most com-
modity processors – the Virtual Memory mechanism. WPF
repurposes an unused bit in the TLB entry, to mark whether
the page has any defined watchpoints. This way, WPF man-
ages to eliminate unnecessary watchpoint checks, reduces
the number of accesses to the metadata-cache and improves
the energy efficiency and performance of the system. Being
orthogonal to the previous proposals for watchpoint support,
WPF can be applied to almost any proposed implementa-
tion.

The main contributions of this paper are:

• We identify a gap between energy efficiency and perfor-
mance in the state-of-the-art hardware-assisted watch-
point systems, and propose a filtering mechanism that
eliminates unnecessary watchpoint checks.

• We demonstrate how WPF integrates with two previ-
ously proposed hardware watchpoint mechanisms and
show that applying WPF requires only minor modifi-
cations to the original proposals.

• We evaluate the performance of WPF with two mem-
ory checkers. WPF eliminates on average 83% of the
metadata checks and reduces 57% of the dynamic en-
ergy overhead, without introducing additional perfor-
mance overhead.

In Section 2 we discuss the shortcomings of the hardware-
assisted watchpoint systems. We describe the WPF mech-
anism and demonstrate how WPF can be applied to two
state-of-the-art proposals in Section 3. We evaluate the effi-
ciency of WPF in Section 4. In Section 5 we discuss related
work and, finally, in Section 6 we conclude our study.

2. BACKGROUND & MOTIVATION
In this section we provide information about watchpoint

systems, and we elaborate on the motivation for our work.

2.1 Watchpoints
Watchpoints allow the detection or the prevention of ac-

cesses to certain memory locations in user-level [4, 11, 15,
17, 21]. A memory watchpoint is defined by: (i) a memory
range that needs to be watched, (ii) the desired access rights,
and (iii) an exception handler. An access violation invokes
a lightweight user-level handler. This handler may report
an error, start a debugger, or perform a healing action to
automatically recover from the access violation. All watch-
point information (the metadata) is stored in data structures
managed by the software runtime.

Watchpoints can enhance a multitude of analysis tools to
operate efficiently. For example, Venkataramani et al. [17]
explain how watchpoints can prevent common memory bugs
from manifesting. Shriraman et al. [15] apply watchpoints
to enhance multi-module software engineering in Apache.
Greathouse et al. [4] show how watchpoints can acceler-
ate dynamic dataflow analysis, deterministic execution, and
data race detection tools among others.

To accelerate the always-on execution of such analysis
tools, watchpoint systems employ additional hardware sup-
port that mitigates the overheads of checking memory ac-
cesses in software. The hardware support typically includes
a metadata-cache [4, 15, 17, 19, 21]. In case the hardware
detects a watchpoint violation or a metadata-cache miss, the
software runtime takes control of the execution.

2.2 Motivation
There are two main categories of hardware-assisted watch-

point systems. The first category targets high-performance;
the processor accesses the metadata-cache in parallel with
the L1 cache on every memory access [4, 17, 19, 21]. Mem-
Tracker [17] is a typical representative of this category. We
find that a MemTracker-like approach introduces up to 15.8%
of dynamic energy overhead only due to the metadata-cache
with respect to the dynamic energy consumed in the private
per-core caches (i.e. TLB, L1 and L2 cache) during normal
execution (Section 4.2).

The second category targets energy efficiency; a represen-
tative example of this approach is Sentry [15]. The metadata-
cache is consulted in the L1 miss path trading off perfor-
mance for energy reduction. Indeed, the Sentry-like ap-
proach increases performance overhead around 2× compared
to MemTracker [15]. Furthermore, we find that in such an
approach, the total dynamic energy overhead can be up to
13.6% due to the high interaction of the metadata-cache
with the L2 cache (Section 4.2).

Access
Metadata Cache

VPN PPN

0x683

0x623

0x725

VM Prot.

r/w

r/w

r-o

0x60758

0x60342

0x6884C

ASID

0x7

0x7

0x7

. . .

. . .

. . .

. . .

.

.

.

.

0x623080

WRITE

Tag Array Data Array

Regular TLB Data

WP

0

0

1

. . .

. . .

TLB

Figure 1: TLB filtering of memory-watchpoint checks. The WP-
bit marks whether there are watchpoints in the corresponding
page. The WP-bit is set and cleared by user-level instructions.

Therefore, we identify a gap between energy efficiency and
high performance in the proposed hardware-assisted watch-
point systems. In this paper we narrow the gap with a filter-
ing mechanism that orthogonally improves the energy effi-
ciency in both categories without affecting the performance.

3. WATCHPOINT FILTERING
In this section we describe the WatchPoint Filtering (WPF)

mechanism, we demonstrate how WPF integrates into two
state-of-the-art hardware-assisted watchpoint systems, and
we explain the implementation details of WPF.

3.1 The Idea
WPF reuses the Translation Lookaside Buffer (TLB) and

assigns novel functionality to a currently unused (reserved)
bit in the TLB entry. We name it as WatchPoint (WP) bit
and it indicates the existence of watchpoints in the corre-
sponding page (Figure 1). In case the WP-bit is set, the
page contains defined watchpoints that should be checked
in the metadata-cache. Otherwise, there are no watchpoints
set and no further checks are performed.

WPF improves the energy efficiency in several ways. First,
WPF filters out metadata checks for pages that do not have
defined watchpoints. This reduces the dynamic energy spent
in the metadata-cache. Second, WPF eliminates the pollu-
tion of the metadata-cache with non-restrictive watchpoints,
i.e. useless entries that do not enforce any restriction in
memory accesses. This results in higher metadata hit-ratio
and enables the employment of smaller metadata-caches with-
out affecting the performance. Third, by improving the
metadata hit-ratio, WPF also filters out the transitions to
the software runtime, reducing further the execution over-
head and the cache interference due to these routines. Fi-
nally, by reusing the existing hardware of TLB (extending it
with simple logic), WPF increases neither the latency, nor
the static power dissipation, or the area of the TLB.

WPF avoids unnecessary checks in the metadata-cache
leveraging the observation that watchpoints are typically set
on a limited part of the address space. The amount of the
reduced checks depends on how the analysis tool utilizes
the watchpoints. Since WPF is an unintrusive optimization
mechanism, the resulting system achieves lower dynamic
power dissipation and better overall efficiency. Being or-
thogonal to previous mechanisms, WPF can be applied to
almost any existing watchpoint implementation.

3.2 Integrating WPF
WPF with MemTracker-like approach. MemTracker

[11] is the main representative of high performance hardware-
assisted watchpoint designs. In MemTracker, the metadata-

CPU

Metadata
Cache

L1 Data
Cache

L2 Cache

L3 Cache / Memory

TLB

(a) MemTracker

CPU

L1 Data
Cache

L2 Cache

L3 Cache / Memory

TLB Metadata
Cache

(b) MemTracker-WPF

Figure 2: MemTracker architecture with and without WPF.
The hardware support for watchpoints is hatched, while WPF
is shaded in gray.

IF ID REN IW REG EXE MEM WB PCMT CMT

L1 Data
Cache

Read &
propagate
the WP-bit

if (WP-bit==1)
 access metadata
else
 proceed

TLB

CHK

Metadata
Cache

Figure 3: Integration of WPF into the processor pipeline of Mem-
Tracker. The processor fetches the WP-bit in the MEM stage
of the pipeline when the TLB is accessed. In the pre-commit
stage (PCMT), the WP-bit is checked. According to its value,
the metadata-cache is accessed. Finally, the memory access is
checked in the CHK stage.

cache is accessed in parallel with the L1 cache on every mem-
ory operation (Figure 2a). Although the metadata-cache
typically has a small size (around 4KB) it can introduce a
significant amount of dynamic energy consumption. In Sec-
tion 4 we show that such an approach introduces up to 15.8%
overhead of dynamic energy consumption with respect to the
per-core cache structures (i.e. TLB, L1 and L2 cache).

In MemTracker with WPF, the watchpoint checks take
place only if the WP-bit is set (Figure 2b). MemTracker
checks for watchpoint violations in the last stage of the exe-
cution pipeline, just before an instruction commits. To in-
tegrate WPF with a MemTracker-like system, no additional
pipeline stages are required (Figure 3). In this way, WPF
reduces the number of accesses to the metadata-cache and
improves the energy efficiency of MemTracker.

WPF with Sentry-like approach. Sentry [15] targets
energy efficiency and caches watchpoints in a metadata-
cache placed on the L1 miss path. The metadata-cache
reuses the L1 cache coherence states to elide checks on L1
hits. For example, if a cache-line is in shared state, it can be
read directly without consulting the metadata-cache. If the
watchpoint access rights are down-graded, the corresponding
L1 cache lines are invalidated. The next memory reference
to this cache line causes a miss in L1 and a check in the
metadata-cache.

Figure 4 shows the design of Sentry and its enhanced
version with WPF. Although Sentry is able to reduce the
metadata-cache accesses compared to a performance-aggres-
sive design (such as MemTracker), WPF can improve the
dynamic energy and performance overheads even further.

Discussion. When we refer to MemTracker and Sentry in
this paper, we focus on when the metadata-cache is accessed:
(i) in parallel with the L1 cache (MemTracker), or (ii) in the
L1 miss path (Sentry). The rest of their key mechanisms
(e.g. the programmable state machine in MemTracker or
the protection domain support in Sentry) are independent
of our proposal. However, in Section 5 we explain how WPF

CPU

L1 Data
Cache

L2 Cache

L3 Cache / Memory

Metadata
Cache

TLB

(a) Sentry

CPU

L1 Data
Cache

L2 Cache

L3 Cache / Memory

TLB

Metadata
Cache

(b) Sentry-WPF

Figure 4: Sentry architecture with and without WPF. The
metadata-cache is accessed only when a memory reference misses
in L1 and the WP-bit for the corresponding page is set.

compares to their optimization techniques for reducing the
number of accesses to the metadata-cache.

3.3 Implementation Details
WP-bit in memory. The software runtime holds vari-

ous data structures that associate watchpoints with access
rights and exception handlers. Thus, the software runtime
is slightly extended to hold and control the WP-bit informa-
tion (one bit per virtual page). In case of a TLB miss, the
WP-bit is set and the software runtime is invoked to update
it lazily without affecting the TLB-miss critical path.

Updating the WP-bit. Every time the programmer
modifies a watchpoint, the software runtime serves the re-
quested modification by updating its data structures and the
metadata-cache. This is when the software runtime updates
the corresponding WP-bit through a new unprivileged in-
struction added to the Instruction Set Architecture, which
modifies the WP-bit from the user-level code. Security is-
sues are prevented using the same mechanisms that disable
arbitrary code to update watchpoints (e.g. state permission
in MemTracker, or protection domains in Sentry).

Multi-core configurations. In multi-core systems, each
processor has its own private TLB. To maintain the WP-bit
coherent across the TLBs, we should invalidate the relevant
entries. This could happen using the classic TLB shootdown
approach, where the initiator core uses inter-processor inter-
rupts to notify the rest of the cores to update the WP-bit
of their entry. Note that the shootdown algorithm takes
place immediately only when the check of the watchpoints
is enforced (WP-bit goes from 0 to 1) so that no watchpoint
checks are missed. The best approach is to build WPF on
top of hardware-coherent TLBs, as proposed in [13] and [18].
This allows better performance execution by eliminating the
need for inter-processor interrupts.

Large pages. Modern operating systems provide sup-
port for large pages [2, 10]. The use of large pages somewhat
reduces the benefits of WPF, since the WP-bit represents a
larger memory range. However, we show that WPF provides
decent advantages even with large pages in Section 4.2.

4. EVALUATION
In this section we evaluate how WPF improves the dy-

namic energy consumption and the performance of hardware-
assisted watchpoint systems.

4.1 Simulation Methodology
Watchpoint Tools and Benchmarks. We imple-

ment two memory checkers. The first is the return-address
checker ; it protects the control flow of an application by dis-
allowing writes to the return addresses of functions (stored in

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalancbm

k

m
ean

R
ed

u
ce

d
 A

cc
es

se
s

in
 M

et
ad

at
a−

ca
ch

e
(%

)

MemTracker−WPF with return−address checker

Sentry−WPF with return−address checker

MemTracker−WPF with heap cehcker

Sentry−WPF with heap checker

(a) SPECint2006

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

barnes

fm
m

ocean

raytrace

w
ater

cholesky

fft
lu radix

m
ean

R
ed

u
ce

d
 A

cc
es

se
s

in
 M

et
ad

at
a−

ca
ch

e
(%

)

MemTracker−WPF with return−address checker

Sentry−WPF with return−address checker

MemTracker−WPF with heap cehcker

Sentry−WPF with heap checker

(b) SPLASH2

Figure 5: Percentage of reduced checks in the metadata-cache due to WPF.

Feature Description

Processor(s) 8 cores, x86 in-order

L1 Cache 32 KB, 64B cache line, 4-way assoc.,
private, writeback, 2 cycles latency

L2 Cache 256 KB, 64B cache line, 8-way assoc.,
private, writeback, 8 cycles latency

L3 Cache 8 MB, 64B cache line, 16-way assoc.,
shared, writeback, 16 cycles latency

Data TLB 256 entries, 4-way assoc., 4 KB page,
accessed in parallel with L1

main memory 4GB, 200 cycles latency

MemTracker [17] 4KB, 4-way assoc., in parallel with L1

Sentry [15] 4KB, 4-way assoc., on L1 miss path

Table 1: Simulator Configuration.

the stack) with watchpoints. The second is the heap checker
that sets a no-access watchpoint in each memory dealloca-
tion to prevent dangling pointer usage. In a memory al-
location, the checker removes possible watchpoints so that
the allocated memory can be used, and prevents from out-of-
bounds accesses by setting no-access watchpoints before and
after the allocated area. On top of these memory checkers,
we run the SPECint2006 benchmarks [7] with the test inputs
and the Splash2 [20] benchmarks with the default inputs.

Simulation Infrastructure. To evaluate the efficiency
of WPF, we use Pin [8] to implement the two checkers (by
capturing the events that trigger watchpoint updates ac-
cording to the checker) and to simulate an x86 chip multi-
processor. The simulated system consists of simple x86 in-
order cores with IPC=1 except on memory accesses. The
TLB and the data cache hierarchy are modeled in detail.
Caches are inclusive and are kept coherent through a MESI
directory-based protocol (Table 1). To evaluate the energy
savings of WPF, we use CACTI 6.5 [9] with 32nm technol-
ogy. For TLB, L1 caches, L2 caches, and the MemTracker’s
metadata-cache we use high-performance transistors (“itrs-
hp”), while for the metadata-cache of Sentry we use low-
power transistor technology (“itrs-lop”).

4.2 Evaluation Results
We first evaluate how efficiently WPF filters unnecessary

checks in the metadata-cache, and what improvements WPF
provides in dynamic energy consumption. We then show
how WPF affects the system’s performance and increases
the hit-ratio of the metadata-cache. Finally, we make a sen-
sitivity analysis of the parameters that WPF depends on.

Reducing Metadata Checks. Figure 5 shows the per-
centage of reduced watchpoint checks that WPF achieves for

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

 18%

M
em

Tracker

M
em

Tracker−W
PF

Sentry

Sentry−W
PF

M
em

Tracker

M
em

Tracker−W
PF

Sentry

Sentry−W
PF

D
y
n
am

ic
 E

n
er

g
y
 O

v
er

h
ea

d
 (

%
)

Return−address checker Heap checker

Metadata−cache

TLB

L1 cache

L2 cache

Figure 6: Breakdown of dynamic energy overhead. The overhead
is estimated with respect to the per-core caches (i.e. TLB, L1
and L2 cache). WPF reduces significantly the dynamic energy
consumption in both the metadata-cache and the cache hierarchy.

MemTracker and Sentry, using the return-address checker
and the heap checker.

WPF eliminates 79% of metadata checks for MemTracker
and 87% for Sentry on average. The efficiency of WPF with
the evaluated checkers depends on various characteristics of
the applications, such as the percentage of stack/heap ac-
cesses, the frequency of calling functions and the frequency
of memory allocations/deallocations. For example, Mem-
Tracker-WPF with the return-address checker shows less
benefits for applications that call functions frequently, such
as gcc, omnetpp and xalancbmk. However, even for these ap-
plications, WPF eliminates more than 50% of the metadata
checks. Similarly, Sentry-WPF with the heap checker ex-
hibits smaller improvements for the applications that stress
the memory allocator, but still eliminates more than 61% of
metadata checks on average for this checker.

Reducing Dynamic Energy. Figure 6 shows the dy-
namic energy overhead spent in the per-core private caches
(i.e. TLB, L1, L2 and metadata-cache) with respect to that
of the normal execution without watchpoint support and
checkers. The figure shows important findings for both orig-
inal schemes and the potential benefits of WPF.

Regarding the original schemes, we find that MemTracker
introduces up to 15.8% of dynamic energy overhead spent
only in the metadata-cache. In Sentry the energy overhead
of the metadata-cache is significantly lower than in Mem-
Tracker, but the total dynamic energy overhead can be up
to 13.6% due to the high interaction with the L2 cache.
Hence, we conclude that the hardware-assisted watchpoint
systems may introduce significant energy overheads.

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalancbm

k

m
ean

P
er

fo
rm

an
ce

 O
v

er
h

ea
d

 (
%

)

MemTracker

MemTracker−WPF

Sentry

Sentry−WPF

(a) SPECint2006

 0%

 10%

 20%

 30%

 40%

 50%

 60%

barnes

fm
m

ocean

raytrace

w
ater

cholesky

fft
lu radix

m
ean

P
er

fo
rm

an
ce

 O
v

er
h

ea
d

 (
%

)

MemTracker

MemTracker−WPF

Sentry

Sentry−WPF

(b) SPLASH2

Figure 7: Performance overhead for the return-address checker. The overheads for the heap checker are less than 2% on average across
all configurations. WPF achieves slight performance improvement by reducing the pressure in the metadata-cache.

WPF reduces by 71% and by 44% the total dynamic
energy overhead of MemTracker and Sentry respectively.
While WPF reduces the dynamic energy spent in the meta-
data checks, it cannot eliminate the metadata updates. How-
ever, the checks are more frequent than the updates, and
therefore WPF brings significant improvements in the dy-
namic energy overhead of the metadata-cache itself. Besides
this, WPF also achieves to reduce the watchpoint-induced
overheads in the rest of the memory hierarchy by improving
the hit-ratio of the metadata-cache. Better hit-ratio trans-
lates to less memory accesses and less interference with the
application’s data in the cache hierarchy because less meta-
data misses have to be resolved.

Figure 6 shows also that MemTracker-WPF can be more
energy efficient than Sentry-WPF (6.6% vs. 13.7%) with
tools that update watchpoints frequently (return address
checker), and less energy efficient (3.5% vs. 0.4%) with tools
that update watchpoints less often (heap checker). This
tradeoff should be considered in the implementation of hard-
ware-assisted watchpoint systems.

Improving Performance. Among the two evaluated
checkers, the return-address checker demands more frequent
watchpoint updates and introduces higher overheads. Fig-
ure 7 compares the performance overhead of MemTracker
and Sentry with and without the WPF mechanism running
the return-address checker.

The results show that WPF achieves a slight performance
improvement for MemTracker and Sentry. The main sources
of overhead for the original schemes are: (i) the software
runtime updates, and (ii) the implications of accessing the
metadata-cache in every memory operation (in every L1 miss
for Sentry), i.e. increased pressure in the metadata-cache,
unnecessary resolutions of metadata-cache misses and in-
terference with the data in the memory hierarchy. WPF
can reduce only the second source of overhead. On average,
WPF reduces the performance overhead from 6.1% to 5%
for MemTracker, and from 13.6% to 12.5% for Sentry.

Increasing Metadata Hit-Ratio. WPF eliminates
the pollution of the metadata-cache with non restrictive
watchpoint entries by not accessing the metadata-cache on
every memory operation. Figure 8 shows the hit-ratio of the
metadata-cache with various sizes, from 4KB (default) to
256B. The results show that WPF increases the hit-ratio of
the metadata-cache for each size configuration. Moreover,
WPF maintains high hit-ratio as the metadata-cache size
reduces - for MemTracker the hit-ratio remains practically
the same. This way, WPF can further improve the energy
efficiency of the watchpoint system by employing a smaller

 0%

 20%

 40%

 60%

 80%

 100%

4KB 2KB 1KB 512B 256B

M
et

ad
at

a−
ca

ch
e

H
it

−
ra

ti
o
 (

%
)

Metadata−cache size

MemTracker

MemTracker−WPF

Sentry

Sentry−WPF

Figure 8: Sensitivity analysis for the metadata-cache hit-ratio.
WPF can further improve the energy efficiency by employing a
smaller metadata-cache, while maintaining similar performance.

 0%

 20%

 40%

 60%

 80%

 100%

1 2 4 8 16 32 64 512

R
ed

u
ce

d
 A

cc
es

se
s

in
 M

et
ad

at
a−

ca
ch

e
(%

)

Filter Size (bits)

MemTracker−WPF

Sentry−WPF

Figure 9: Sensitivity analysis for the filter size. The proposed
WPF mechanism with 1 bit per TLB entry is sufficient regarding
the tradeoff of performance against area and power.

metadata-cache, while maintaining similar performance.
Sensitivity Analysis for Filter Size. The efficiency of

WPF comes from its ability to filter out unnecessary meta-
data checks by repurposing a single unused bit in each TLB
entry. We evaluate WPF with various sizes of filters, where
the filter applies as a mask to the corresponding TLB entry.

Figure 9 shows the results of the sensitivity analysis for the
filter size ranging from 1 to 512 bits which represents an ideal
per-word filter. As the filter size increases, the percentage of
reduced accesses to the metadata-cache also increases. We
found no significant differences for 1 to 8-bits filters, how-
ever for filters that are larger than 16-bits, the improvement
becomes significant, while an ideal filter achieves more than
98% reduced metadata accesses. Considering the tradeoff of
performance against area and power, we conclude that WPF
with 1 bit per TLB entry is sufficient.

Sensitivity Analysis for Page size. WPF’s improve-
ments also depend on the page size. Figure 10 shows the re-
sults for various page sizes from 4KB to 4MB. Regarding the
return-address checker, WPF is not significantly affected by
the page size since most of the watchpoints are concentrated
in a small region of the memory space. Even with 4MB page
size, WPF reduces more than 66% of the metadata checks
for MemTracker and 93% for Sentry. On the other hand, the

 0%

 20%

 40%

 60%

 80%

 100%

4KB 8KB 64KB 256KB 1MB 2MB 4MB

R
ed

u
ce

d
 A

cc
es

se
s

in
 M

et
ad

at
a−

ca
ch

e
(%

)

Page Size

MemTracker−WPF with return−address checker

Sentry−WPF with return−address checker

MemTracker−WPF with heap checker

Sentry−WPF with heap checker

Figure 10: Sensitivity analysis for page size. Even with large
pages, WPF eliminates a significant amount of metadata checks.

efficiency of WPF with the heap checker reduces as the page
size increases. However, WPF still eliminates the metadata
checks by 36% for MemTracker and 18% for Sentry.

5. RELATED WORK
Several proposals reduce metadata checks using dedicated

registers. iWatcher [21] introduces a register to completely
turn on/off the watchpoint system. Mondrian [19] uses side-
car registers (SRs) to cache the metadata for an arbitrary
range of memory addresses. MemTracker [17] can execute
multiple checkers concurrently. To minimize overheads, Mem-
Tracker uses an event mask register that masks out unused
checkers. WPF acts complementary to the event mask reg-
ister without completely turning off a checker.

HeapMon [14] adds a bit per cache line to indicate that a
line access should be checked in software. Chen et al. pro-
posed idempotent filters (IF) to eliminate redundant meta-
data checks in Log-Based Architectures [3]. WPF acts com-
plementary to IFs for deciding whether the metadata check
that skipped IF need to be performed or not.

SoftSig [16] relies on the programmer to mark code regions
whose memory accesses should be checked in order to reduce
the accesses to the signature file. WPF depends on the
distribution of watchpoints across the address space. Thus,
WPF improves SoftSig in an orthogonal way.

Greathouse et al. [4] accelerate watchpoint support intro-
ducing two different on-chip caches: a bitmap and a range
cache. Incorporating WPF in [4] is straightforward, since
the range cache contains the necessary information for up-
dating the WP-bit.

Sentry [15] utilizes the F-bit that has some relevance to
the WP-bit in the sense that they both reduce accesses to
the metadata-cache. However, the F-bit is stored in the Page
Table Entry (PTE). Updating the F-bit requires a slow call
to the operating system; the authors claim that an optimized
low-overhead system call takes around 300 cycles in modern
microarchitectures. In addition, they do not further evalu-
ate the benefits of the F-bit. In this paper, we propose and
quantify the benefits of having lightweight user-space control
of the WP-bit, we explore the WPF mechanism as a univer-
sal optimization method applicable to a general hardware
watchpoint mechanism, and we show that WPF enables
high-performance hardware-assisted watchpoint systems be-
ing more energy efficient than those that target solely energy
efficiency under tools that update watchpoints frequently.

6. CONCLUSIONS
In this paper we presented WPF, a filtering mechanism for

hardware-assisted watchpoint systems. Using only one bit

per TLB entry, we showed that WPF eliminates up to 99.7%
of the watchpoint checks, and reduces up to 78% of the dy-
namic energy overhead. WPF introduces nearly no area or
static power dissipation overhead and can orthogonally en-
hance almost any existing watchpoint implementation.

7. ACKNOWLEDGMENTS
The authors would like to thank Srdjan Stipic, Nehir Son-

mez, Adria Armejach and Daniel Nemirovsky for their feed-
back. This work was partially supported by the cooperation
agreement between the Barcelona Supercomputing Center
and Microsoft Research, by the Ministry of Science and
Technology of Spain and the European Union (FEDER funds)
under contracts TIN2007-60625 and TIN2008-02055-E, and
by the European Network of Excellence on High Perfor-
mance Embedded Architecture and Compilation (HiPEAC).

8. REFERENCES
[1] D. Bruening. Efficient, transparent, and comprehensive

runtime code manipulation. PhD thesis, MIT, 2004.
[2] K. Chen et al. Improving enterprise database performance

on intel itanium architecture. In Ottawa Linux Symposium,
2003.

[3] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, et al. Flexible
hardware acceleration for instruction-grain program
monitoring. ISCA, 2008.

[4] J.L. Greathouse, H. Xin, Y. Luo, and T. Austin. A case for
unlimited watchpoints. ASPLOS, 2012.

[5] S. Hangal and M. Lam. Tracking down software bugs using
automatic anomaly detection. ICSE, 2002.

[6] R. Hastings and B. Joyce. Purify: Fast detection of
memory leaks and access errors. USENIX, 1991.

[7] J. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34:1–17, Sept. 2006.

[8] C. Luk, R. Cohn, R. Muth, H. Patil, et al. Pin: building
customized program analysis tools with dynamic
instrumentation. PLDI, 2005.

[9] N. Muralimanohar et al. Architecting efficient interconnects
for large caches with cacti 6.0. IEEE Micro, 28:69–79,
January 2008.

[10] J. Navarro et al. Practical, transparent operating system
support for superpages. OSDI, 2002.

[11] N. Neelakantam and C. Zilles. Ufo: A general-purpose
user-mode memory protection technique for application
use. Technical report, UIUC, 2007.

[12] N. Nethercote et al. Valgrind: a framework for heavyweight
dynamic binary instrumentation. PLDI, 2007.

[13] B. Romanescu, A. Lebeck, D. Sorin, and A. Bracy. Unified
instruction/translation/data (unitd) coherence: One
protocol to rule them all. HPCA, 2010.

[14] R. Shetty et al. Heapmon: A helper-thread approach to
programmable, automatic, and low-overhead memory bug
detection. Ibm Journal of Research and Development,
50:261–276, 2006.

[15] A. Shriraman and S. Dwarkadas. Sentry: light-weight
auxiliary memory access control. ISCA, 2010.

[16] J. Tuck, W. Ahn, L. Ceze, and J. Torrellas. Softsig:
software-exposed hardware signatures for code analysis and
optimization. ASPLOS, 2008.

[17] G. Venkataramani et al. Memtracker: Efficient and
programmable support for memory access monitoring and
debugging. HPCA, 2007.

[18] C. Villavieja et al. Didi: Mitigating the performance impact
of tlb shootdowns using a shared tlb directory. PACT, 2011.

[19] E. Witchel, J. Cates, and K. Asanovic. Mondrian memory
protection. Sigplan Notices, 37:304–316, 2002.

[20] S. Woo et al. The splash-2 programs: characterization and
methodological considerations. ISCA, 1995.

[21] P. Zhou, F. Qin, et al. iwatcher: Efficient architectural
support for software debugging. ISCA, 2004.

