
The Journal of Supercomputing, 32, 197–226, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Hyperplane Grouping and Pipelined Schedules: How to
Execute Tiled Loops Fast on Clusters of SMPs

MARIA ATHANASAKI maria@cslab.ntua.gr
ARISTIDIS SOTIROPOULOS sotirop@cslab.ntua.gr
GEORGIOS TSOUKALAS gtsouk@cslab.ntua.gr
NECTARIOS KOZIRIS nkoziris@cslab.ntua.gr
PANAYIOTIS TSANAKAS panag@cslab.ntua.gr
National Technical University of Athens, School of Electrical and Computer Engineering, Computing Systems
Laboratory, Zografou Campus, Zografou 15773, Greece

Abstract. This paper proposes a novel approach for the parallel execution of tiled Iteration Spaces onto a cluster
of SMP PC nodes. Each SMP node has multiple CPUs and a single memory mapped PCI-SCI Network Interface
Card. We apply a hyperplane-based grouping transformation to the tiled space, so as to group together independent
neighboring tiles and assign them to the same SMP node. In this way, intranode (intragroup) communication is
annihilated. Groups are atomically executed inside each node. Nodes exchange data between successive group
computations. We schedule groups much more efficiently by exploiting the inherent overlapping between commu-
nication and computation phases among successive atomic group executions. The applied non-blocking schedule
resembles a pipelined datapath, where group computation phases are overlapped with communication ones, instead
of being interleaved with them. Our experimental results illustrate that the proposed method outperforms previous
approaches involving blocking communication or conventional grouping schemes.

Keywords: supernodes, loop tiling, tile grouping, pipelined schedules, hyperplanes

1. Introduction

Modern high performance communication architectures allow new, low latency messaging
protocols [15, 18–20] to provide the vehicle of very efficient communication in clusters.
Available bandwidth is constantly increasing, while there is a trend towards offloading
host CPU from the burden of communication [15] through the use of bus mastering, DMA
enabled NICs. In this way, CPU has more time to spend on useful application calculations.

When a (user level) process needs to access a conventional network interface, overall
communication is delayed [31], since, through a system call, the OS switches to kernel level
and assumes the copying of data from user areas to kernel areas for protection. Nevertheless,
modern network technologies (i.e. SCI, Myrinet, etc.) are mitigating this startup latency with
optimized communication protocols (i.e. VIA) with Zero-Copy [13,44], DMA support and
User-Level [10] characteristics. With the advent of programmable NICs, many aspects of
protocol processing can be off loaded from user space to the NIC, leaving the host processor
to dedicate more cycles to the application [11,42]. In [4,9] various communication systems
(i.e. Generic Active Messages, Virtual Memory Mapped Communication over a Myrinet
architecture) are tested, evaluated and compared to each-other, while in [14, 35, 46] the
effects of communication latency and bandwidth are explored.

198 ATHANASAKI ET AL.

Not only these novel network interfaces are reducing the message startup latency, but they
can also alleviate the communication burden from the CPU. Current parallel applications
should be rescheduled to exploit these enhanced features. The parallel execution of any
computationally intensive code, containing nested loops, is a very good testbed for such
enhanced communication architectures for clusters. Parallel loop execution requires for
frequent synchronization points and extensive exchange of data between different nodes.
Thus, loops are most suitable for being rescheduled, if we adopt zero-copy, DMA enabled,
messaging features. The key issue is to mitigate communication overhead by efficiently
controlling the computation to communication grain. When using enhanced network inter-
faces, the objective should also be to hide as much as possible this communication overhead,
gaining extra cycles for useful computation, since the CPU is now disengaged. Of course,
in order to further reduce the communication overhead, one should take into considera-
tion the message latencies imposed by the network. The utilized network topology remains
always another critical issue, apart from efficient scheduling. As shown in [3, 8], using a
“smart” topology, like a reconfigurable multi-ring network, with low diameter, low degree
of connectivity and at the same time reasonable algorithmic and hardware complexity, we
can further reduce the latency of transmitted messages.

In the past, many researchers presented methods for controlling the computation to com-
munication grain for parallel loop execution. In order to reduce the communication overhead,
as far as fine grain parallelism is concerned, several methods have been proposed to group
together neighboring chains of iterations [32,40], while preserving the optimal hyperplane
schedule [17, 41, 45]. As far as coarse grain parallelism is concerned, Irigoin and Triolet
proposed supernode partitioning [29] of the iteration space, where neighboring iteration
points are grouped together to build a larger computation node (tile) that can be atomically
executed without any intervention. Data exchanges are also grouped and performed within
a single message for each neighboring processor, at the end of each atomic supernode ex-
ecution. Later, Ramanujam and Sadayappan in [38] showed the equivalence between the
problem of finding a set of extreme vectors for a given set of dependence vectors and the
problem of finding a tiling transformation H that produce valid, deadlock-free tiles. The
problem of determining the optimal shape was surveyed, and more accurate conditions were
also given by others, as in [12, 16, 25–28, 47].

Hodzic and Shang [24] proposed a method to correlate optimal tile size and shape, based
on overall completion time reduction. Their approach considers a straightforward time
schedule, where each processor executes all tiles along a specific dimension, by interleaving
computation and communication phases. All processors first receive data, then compute and
finally send result data to neighbors in explicitly distinct phases, according to the hyperplane
scheduling vector. In [22] an alternative method for the problem of scheduling the tiles to
single CPU nodes was proposed. Each atomic tile execution involves a communication
and a computation phase and this is repeatedly done for all time planes. This sequence of
communication and computation phases is compacted, by overlapping them. The proposed
method acts like enhancing the performance of a processor’s datapath with pipelining [37],
because a processor computes its tile at k time step and concurrently receives data from all
neighbors to use them at k + 1 time step and sends data produced at k − 1 time step. Since
data communications involve some startup latencies, the computation grain is adjusted to

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 199

make room for this overhead and try to overlap with all communication, which can be done
in parallel.

As far as tile execution to symmetric multiprocessors (SMPs) is concerned, in [34]
Manjikian and Abdelrahman have presented a method of allocating tiles to the CPUs of
a multiprocessor so as to minimize the required communication among them. In order to
achieve this minimization, they assign to a processor neighboring tiles and they modify the
wavefront in order to correspond just one tile to each processor during each time step.

Although, in [22], we first proposed the notion of pipelined schedule for clusters of
single CPU nodes, the merit of using advanced communication architectures to achieve true
overlapping was accentuated in [43]. In this paper we present a complete framework which
extends the overlapping (pipelined) schedule, for multiple-CPU SMP nodes. We group
together neighboring tiles along a hyperplane. Hyperplane-grouped tiles are concurrently
executed by the CPUs of the same SMP node. In this way, we eliminate the need for
tile synchronization and communication between intranode CPUs. As far as scheduling of
groups is concerned, we take advantage of the overlapping schedule of [22] in order to
“hide” each group communication volume within the respective computation volume.

In order to evaluate the proposed method, we use a Linux cluster of dual SMP nodes, in-
terconnected using the same networking technology (PCI-SCI Dolphin D330 NICs), which
supports shared memory programming either through PIO messaging or through DMA.
We are using the NICs’ kernel-level DMA support for messaging. We compare our method
versus blocking schedules and vertical grouping of neighboring tiles along a specific di-
mension. Vertically grouped tiles are assigned to the same node, and an optimal hyperplane
time schedule is applied. However, this imposes additional intranode synchronization de-
lays. All experimental results show that when the hyperplane grouping of tiles together with
the overlapping schedule are applied, the overall completion time is considerably reduced,
under the condition of controlling the computation to communication grain.

The rest of this paper is organized as follows: In Section 2 we describe some hard-
ware concepts used in our experiments, as well as basic terminology used throughout the
paper and definitions of loop tiling. A short description of the non-overlapping and the
overlapping schemes is given in Section 3. In Section 4 we supply an algorithm for the
application of the overlapping scheme on clusters of SMP nodes and we investigate the
resulting time schedule. In Section 5 we describe the experiments executed on a cluster
of SMPs using PCI-SCI Network Interface cards. Finally, in Section 6 we summarize our
results.

2. Background concepts

2.1. Hardware high performance features

Recent advances in high speed networks and improved microprocessor performance are
making clusters of workstations an appealing vehicle for cost effective parallel comput-
ing. The trend in parallel computing is to move away from custom-designed platforms of
the established HPC industry to general purpose systems consisting of loosely coupled
components built up from single or multi-processor workstations or PCs.

200 ATHANASAKI ET AL.

Figure 1. Single-Copy Protocol and packetization process.

The de-facto 100 Mbps networking of commodity clusters can be a bottleneck for many
applications, when scaling beyond a small number of nodes. The last years, new networking
technologies such as SCI [23], Myrinet and Gigabit Ethernet offer increased bandwidth and
low startup latencies, which however, are never efficiently utilized by user applications.
Therefore, high-performance clusters are introduced, which provide the computationally
intensive applications with increased performance using special communication primitives,
such as Zero-Copy Protocols and DMA transfers.

2.1.1. Zero-copy protocols. Network protocol stacks, such as TCP/IP, aggravate the com-
munication procedure with the extra copying of data sent or received, to and from kernel
space, respectively. As Figure 1 depicts, when sending data from an application (user space)
buffer to the network, data must be initially copied from the application buffer to kernel
buffers. TCP, IP and network headers must be added and then, as a packet, transferred
to NIC’s buffer for transmission. A respective procedure takes place when data reach the
receiving node.

The previous sequence of actions is unavoidable when using legacy network technolo-
gies, but could be avoided when novel communication technologies are used. SCI achieves
Zero-Copy Communication, since it supports a Distributed Shared Memory approach,
which is implemented using kernel area memory mapped regions for communication. An
SCI communication scenario involves the following stages: A process in an SCI node
exports a memory segment which is imported by a process that resides in another SCI
node. Every imported memory segment is directly mapped to the PCI I/O space of the
PCI-SCI NIC. It is part of the importer’s (process) virtual memory through the prior in-
vocation of an SCIConnectSegment() driver call. When the importing node needs to
send data, it just writes them directly to the imported memory segment (thus, no ker-
nel copies). Data are transferred to the exporter’s memory and communication is per-
formed, without any kernel intervention. No other data processing is needed within each
send.

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 201

Figure 2. Locked and memory mapped “RAM device” for SCI communications.

2.1.2. DMA transfers. Message data can be usually transferred in two ways: Programmed
I/O (PIO) mode and DMA mode. In PIO mode, CPU handles data transferring completely,
word by word. For example, data transferring of 1Kwords involves the initial copying of
these words from main memory to the NIC’s buffers with the aid of CPU. From a parallel
application’s point of view, these are considered “lost” CPU cycles, since useful calculations
could have been executed instead. On the contrary, using DMA mode, CPU just programs
the NIC’s DMA engine with the information of which data to transfer from main memory
and where to send it. CPU is not used (or blocked from a program’s perspective) during the
transfer and can perform other (useful) tasks.

The DSM feature of SCI allows the efficient use of its DMA capabilities. Using special
SCI driver calls, the system returns physically contiguous allocated memory. The allocated
memory is first “pinned down” and then mapped to user’s virtual memory (Figure 2). User
is able to read/write that memory region like the ordinary memory regions returned by
LIBC malloc(). Despite the fact that DMA transfer is only invoked as a kernel system
call, the complete transfer of the specific memory area will be performed with only one
DMA invocation. On the contrary, even if the NIC in Figure 1 was DMA enabled, a new
DMA invocation should take place for each {data,TCP,IP,NET} packet, which would be
time consuming.

2.2. Algorithmic model-loop tiling

In this paper we consider algorithms with perfectly nested FOR-loops and uniform data
dependencies. That is, our algorithms are of the form:

FOR j1 = l1 TO u1 DO
. . .
FOR jn = ln TO un DO
Loop Body

ENDFOR
. . .

ENDFOR

where: li and ui are affine functions of the outer loop indices.

202 ATHANASAKI ET AL.

Throughout the paper the following notation is used: N is the set of natural numbers
and n is the number of nested FOR-loops of the algorithm. J n ⊂ Zn is the set of indices:
J n = { j(j1, . . . , jn)| ji ∈ Z ∧ li ≤ ji ≤ ui , 1 ≤ i ≤ n}. Each point in this n-dimensional
integer space is a distinct instantiation of the loop body. A dependence vector is denoted di =
(di1, . . . , din)T , 1 ≤ i ≤ q. The Dependence Matrix D of an algorithm is the concatenation
of all dependence vectors of this algorithm: D = [d1|d2| . . . |dq].

In a supernode or tiling transformation, the Iteration Space J n is partitioned into identical
n-dimensional parallelepiped areas (tiles or supernodes) formed by n independent families
of parallel hyperplanes. Tiling transformation is defined by the n-dimensional square matrix
H . Each row vector of H is perpendicular to one family of hyperplanes forming the tiles.
Dually, tiling transformation can be defined by n linearly independent vectors, which are
the sides of the tiles. Similar to matrix H , matrix P contains the side-vectors of a tile as
column vectors. It holds P = H−1.

Formally, tiling transformation is defined as follows:

r : Zn −→ Z2n, r (j) =
[�H j�

j − H−1�H j�
]
,

where �H j� identifies the coordinates of the tile that index point j(j1, j2, . . . , jn) is mapped
to and j − H−1�H j� gives the coordinates of j within that tile relative to the tile origin. The
Tile Space J S and the Tile Dependence matrix DS are defined as follows: J S = { j S | j S =
�H j�, j ∈ J n}, DS = {d S | d S = �H (j0 + d)�, d ∈ D, j0 ∈ J n|�H j0� = 0} where j0
denotes the index points belonging to the first complete tile starting from the origin of the
Iteration Space J n . The Tile Space can be also written as J S = { j S(j S

1 , . . . , j S
n) | j S

i ∈
Z ∧ l S

i ≤ j S
i ≤ uS

i , 1 ≤ i ≤ n}, where l S
i , uS

i can be directly computed from the functions
l1, . . . , ln , u1, . . . , un and the matrix H , as described in [1, 21]. Each point j S in this n-
dimensional integer space J S is a distinct tile with coordinates (j S

1 , j S
2 , . . . , j S

n).
Given an algorithm with dependence matrix D, for a tiling to be legal, it must hold

H D ≥ 0 (see [29,38]). This ensures that tiles are atomic and that the initial execution order
is preserved. In the opposite case, any execution order of tiles would result in a deadlock. In
this paper, as in [22], we assume that all dependence vectors are smaller than the tile size,
thus they are entirely contained in each tile’s area, which means that |H D| < 1 [48], or,
alternatively, that the tile dependence matrix DS contains only 0’s and 1’s. This assumption
is quite reasonable, since dependence vectors for common problems are relatively small,
while tile sizes may result to be orders of magnitude greater in systems with very fast
processors. In this case every tile needs to exchange data only with its nearest neighbors,
one in each dimension of J n .

3. Non-overlapping vs. overlapping schedule

In [24], Hodzic and Shang have presented a scheme for scheduling loops that have been
transformed through a supernode transformation. Their approach is to minimize total ex-
ecution time, as follows: Firstly, the optimal tiling matrix H is determined and then it is
applied to the original Iteration Space. The resulting Tile Space J S is scheduled using a

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 203

linear time hyperplane �. All tiles along a certain dimension are mapped to the same pro-
cessor. Total execution of tiles consists of successive computation phases interleaved with
communication ones. A processor receives the data needed to execute a tile at time step
i , performs the computations and sends to its neighboring processors the boundary data,
which will be used for tile calculations in time step i + 1.

Thus, the total execution time is given by T = ℘(Tcomp + Tcomm), where ℘ is the
number of time hyperplanes needed to execute the algorithm, Tcomp the execution time of
a tile and Tcomm the communication time. Tcomm can be expressed as the communication
startup latency (Tstartup), and a factor expressing the transmission time (Ttransmit). That is
Tcomm = Tstartup + Ttransmit.

Therefore, the overall parallel loop execution consists of atomic computations of tiles
interleaved with communication for the transmission of the results to neighboring proces-
sors. Since Tile Space J S has only the unitary dependence vectors (see Section 2.2), the
optimal linear time schedule can be easily proved to be: � = [1 1 . . . 1]. In Figure 3, the
non-overlapping schedule is shown for a Tile Space using six processors. We see that the
overall schedule has computation subphases interleaved with communication ones.

This quite straightforward model of execution results in very good execution times, since
it exploits all inherent parallelism at the tile level. However, an important drawback of
this execution model is that each processor has to wait for essential data before starting the
computation of a certain tile, and wait for the transmission of the results to its neighbors, thus
resulting in significant idle processor time. It would be ideal if a node was able to receive,

Figure 3. Non-overlapping Time Schedule.

204 ATHANASAKI ET AL.

compute and send data at the same time. Modern network interfaces have DMA engines
that enable them to work in parallel with the CPU. This means that some communication
work can be overlapped with actual CPU cycles. In fact, even some part of the non-blocking
communication needs the CPU, i.e. DMA initialization. Nevertheless, all subsequent data
transferring actions can be ideally overlapped with useful computation.

However, what really imposes such inefficient processor utilization, is the data flow
between successive time steps. Specifically, it seems that computations and respective com-
munication substeps for each time step should be serialized to preserve the correct execution
order. Every processor should first receive data, then compute and finally send the results to
be used at the next time step by its neighbor. A much more thorough look at the correct data
flow in the non-overlapping case, reveals the following interesting property: If we slightly
modify the initial linear schedule, then we could overlap some communication time with
computations. This means that, in each time step, the processor should send and receive
data that is not directly dependent to the data computed at this step. A valid time execution
scheme would be for a processor to receive data from all neighbors to use them at k +1 time
step, send data produced at previous time step (k − 1) and compute its results (Figure 4). In
this case, every processor computes a tile and receives+sends data produced in the previous
step or needed in next one, respectively.

In Figure 4 the overlapping schedule is shown. Note the arcs shown in Figure 4. They
depict the actual flow of data between successive time steps (computes-sends-receives) in a

Figure 4. Overlapping Time Schedule.

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 205

pipelined way. The outcome of this schedule is to have successive computations overlapped
with communication phases, thus 100% processor utilization. A more detailed description
of this schedule can be found in [22] and [43]

If we implement the overlapping of computation and communication, then we will have
the following scheme: A processor first initiates all the non-blocking send operations and
then performs the actual atomic tile computations. While the processor performs compu-
tations, the NIC is receiving data from neighbors and sending previously computed data to
others as well. When communication work is finished, the processor receives an interrupt.

In order to achieve actual overlapping of computation and communication, hardware
should assist. The CPU and the NIC must be able to work simultaneously on different tasks.
The most important issue is support from DMA, which should exist and be enabled to the
NIC. Another aspect is that the invocation of DMA communication should be done in user
level (User-Level DMA), without kernel intervention. Furthermore, zero-copy communi-
cations should be used and finally, the software packetization process involved in every
communication must be avoided.

According to the previous properties, the total execution time for the overlapping sched-
ule, as deduced from Figure 4, is given by:

Toverlap = ℘(tstart dma + max(tcomp, tcomm dma) + tsynchro), (1)

where ℘ is the number of execution steps of the resulting algorithm. The time needed
to initiate the DMA engine is tstart dma, tcomp is the tile execution time, tcomm dma is the
communication time which can be overlapped with computation and tsynchro is the required
synchronization time between successive time steps.

Since the concept of overlapping of actions is crucial, it should be noted that the actions
initiated by a non-blocking call are overlapped with the actions initiated by calls following
the non-blocking call. On the contrary, a blocking call implies no overlapping of actions,
since a following call can be initiated only after the blocking call has completed.

4. Application of the overlapping schedule to SMP nodes

Let us consider the following scenario: A 2-dimensional nested loop to be executed onto a
cluster of 3 single CPU nodes. We tile the Iteration Space of the algorithm and assign each
row of tiles to a CPU node. We should select the size and shape of tiles so that the Iteration
Space is partitioned into 3 rows of tiles (since 3 CPUs are available). Then, the tiles can
be computed using either the overlapping, or the non-overlapping schedule presented in
Section 3.

If, instead of 3 single CPU nodes, we have 3 SMP nodes, with 2 CPUs each, then we
can split each tile into two subtiles and assign each subtile to one of the CPUs of the
corresponding SMP node, as indicated in Figure 5. Equivalently, we may tile the initial
Iteration Space, selecting the size of tiles so as to get six rows of tiles. Then, we assign a
row of tiles to each CPU of the SMP nodes and group together neighboring tiles assigned
to the same SMP node, as in Figure 5. It is obvious that the tiles grouped together by this
scheme cannot be simultaneously executed, unless they are split into subtiles.

206 ATHANASAKI ET AL.

Figure 5. Vertical grouping.

Figure 6. Hyperplane grouping.

A more efficient scheme can be obtained if we group the tiles assigned to the same
SMP nodes as indicated in Figure 6. Then, both tiles belonging to the same group can be
simultaneously executed by the CPUs of an SMP node.

4.1. Grouping transformation

In order to generate an appropriate time schedule, we need to group together the tiles of J S

that will be concurrently executed by the CPUs of the same SMP node. So, we further apply
an additional supernode transformation to the Tile Space J S . Thus, from the Tile Space
J S we produce the Group Space J G = { j G | j G = �H G j S�, j S ∈ J S}. This grouping
transformation is defined by the n × n non-singular matrix H G . In correspondence to
the tiling matrix H , we call the n × n matrix H G as grouping matrix. The n × n matrix
PG = (H G)−1 is called inverse grouping matrix. The matrix PG should consist only of
integer elements and its column-vectors are parallel and equal in size to the edges of a
group-hyperparallelepiped in J S .

In order to be valid, a grouping transformation should preserve the constraint of atomicity
of groups (H G DS ≥ 0 in correspondence to H D ≥ 0 for tiling). In addition, since within a
group all tiles are concurrently executed by the CPUs of an SMP node, in order to preserve
data consistency, there should be no direct or indirect dependence among them.

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 207

Figure 7. Set of tiles assigned to an SMP node.

4.2. Intuition of our algorithm

Let us consider a 3-dimensional Tile Space J S . We want to assign all tiles along dimension
j S
1 to the same CPU of an SMP node. Since all CPUs within a node have access to the

shared memory, we are assigning neighboring rows of tiles, which exchange data, to the
CPUs of the same node. In this way, the part of the Tile Space assigned to a node will have
the rectangular form depicted in Figure 7.

We seek for an appropriate transformation matrix that will group together the tiles of
Figure 7 which can be executed simultaneously by different CPUs. So we shall group
together the tiles that belong to the same plane which is perpendicular to the vector (1, 1, 1),
as indicated in Figure 8. In the sequel, we shall call this grouping scheme as “hyperplane
grouping”. On the contrary, any other grouping scheme along a specific dimension, such as
the one presented in Figure 5, will be called “vertical grouping”. It is obvious that vertical
grouping imposes additional synchronization overhead due to intragroup tile dependencies.

The column-vectors of the inverse grouping matrix PG define a hyper-parallelepiped (in
general) that contains the group tiles, similar to the way the columns of P define a tile. So,
as shown in Figure 9, the appropriate vectors are pG

1 = (1, 0, 0), pG
2 = λ(−1, 1, 0) and

pG
3 = µ(−1, 0, 1). (In Figures 7–9 it holds λ = 4, µ = 2.) Thus, the appropriate inverse

Figure 8. Groups of tiles executed simultaneously in an SMP node.

208 ATHANASAKI ET AL.

Figure 9. Constructing inverse grouping matrix.

grouping matrix is

PG =

1 −λ −µ

0 λ 0

0 0 µ

 ,

where λ, µ ∈ N . Thus, the maximum number of tiles grouped together will be λ × µ and
this product must be equal to the number of CPUs inside a node, so as to assign one tile to
each CPU during each time step.

4.3. Determining PG according to the number of CPUs within a node

Consider now the general case, where we have an n-dimensional tiled Iteration Space and
a cluster of SMP nodes, each with m processors inside. Our objective is to assign the tiles
of J S along the 1-st dimension to the same CPU of an SMP node. Let us assume that the
natural number m can be written as m = m2 × m3 ×· · ·× mn , where m2, m3, . . . , mn ∈ N .
Then, we select the grouping matrices to be

PG =

1 −m2 . . . −mn

0 m2 . . . 0
...

...
. . .

...

0 0 . . . mn

 , H G = (PG)−1 =

1 1 . . . 1

0 1
m2

. . . 0
...

...
. . .

...
0 0 . . . 1

mn

 . (2)

The maximum number of tiles contained inside a group is det(PG) = m, exactly equal to
the number of CPUs inside each SMP node.

Theorem 1 Matrix H G, defined by formula (2), defines a legal grouping transformation,

according to our algorithmic model.

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 209

Figure 10. 2D example.

Proof: In order to prove that H G defines a legal grouping transformation, it suffices
to prove that H G DS ≥ 0, where DS is the dependence matrix of the Tile Space J S

and that any two tiles (j S, j S ′ ∈ j G) within the same group are independent. We have
assumed (see Section 2.2) that the dependence matrix DS contains only 0’s and 1’s.
Consequently, the first condition is apparently valid. In order to prove the second con-
dition, we assume that the dependence matrix DS is equal to the unitary matrix. Even
if there is a dependence vector with more than one 1’s, it is the sum of more than one
unitary dependence vectors. So it will be included in the following proof as an indirect
dependence:

If tiles j S, j S ′ ∈ J S belong to the same group j G , then it holds that: �H G j S� =
�H G j S ′� ⇒ j S

1 + j S
2 +· · ·+ j S

n−1 + j S
n = j S

1
′ + j S′

2 +· · ·+ j S′
n−1 + j S

n
′
. In addition, if there is

a direct or an indirect dependence from j S to j S ′
, it holds that j S ′ = j S +∑n

i=1 λi di , where
λi ∈ N and di is a unitary dependence vector. Thus, j S

i
′ = j S

i +λi , i = 1, . . . , n. Therefore,
the equality j S

1 + j S
2 + · · · + j S

n−1 + j S
n = j S

1
′ + j S

2
′ + · · · + j S

n−1
′ + j S

n
′

can be rewritten
as follows: λ1 + λ2 + · · · + λn = 0. As λ1, . . . , λn ∈ N , it holds that λ1 = · · · = λn = 0.
Consequently, there is no direct or indirect dependence between two tiles belonging to the
same group j G ∈ J G and all tiles of a group in J G can be computed simultaneously by the
CPUs of an SMP node. Thus, the above grouping transformation is valid according to our
algorithmic model.

Example 1 We have a cluster of SMP nodes with 2 CPUs and a NIC each. We assume a
2-dimensional rectangular Tile Space J S . Let us assign the tiles along dimension j S

1 to the
same CPU, as indicated in Figure 10 by the grey arrows. The CPUs of the same SMP node
will process two neighboring rows of tiles.

Then, during the time step t = 0, the CPU-0 of the SMP node0 computes tile (0, 0).
During the time step t = 1, the CPU-0 of node0 computes tile (1, 0), while the CPU-1
of the same SMP node computes tile (0, 1). Similarly, during the time step t = 2, the
CPU-0 computes tile (2, 0), while the CPU-1 computes tile (1, 1). At the same time, the
data computed in tile (0, 1), which are necessary for the computation of tile (0, 2), can be
sent to node1. During the time step t = 3, the CPUs of node0 can continue the execution
as above, while the CPUs of node1 start executing the same routine with the rows of tiles
(•, 2) and (•, 3).

210 ATHANASAKI ET AL.

Figure 11. Group Space for the 2D example.

In order to construct a time schedule for this example, we group together the tiles
that should be concurrently executed by the same SMP node. In particular, we perform
grouping to the Tile Space J S , as indicated in Figure 10 and derive the Group Space J G

(Figure 11). The appropriate grouping matrices, according to the formula (2), for this case are

PG =
[

1 −2

0 2

]

and

H G = (PG)−1 =
[

1 1

0 1
2

]
.

In this way, tiles (1, 0) and (0, 1) which, as we have already mentioned, are simultane-
ously executed by the same SMP node, are grouped together in j G = �H G(1, 0)T � =
�H G(0, 1)T � = (1, 0)T . Similarly, tiles (2, 0) and (1, 1) are grouped together in j G =
(2, 0)T . In Figures 10–11, the time step, when each group will be computed, is shown, to-
gether with the time step, where each data transfer will take place. It can be easily deduced
that a group j G = (j G

1 , j G
2) ∈ J G will be executed during the time step t(j G) = j G

1 + j G
2

in the SMP node j G
2 . Therefore, the linear time scheduling vector for this example is

�G = (1, 1).

4.4. Linear time schedule

Theorem 2 The appropriate linear time scheduling vector for the Group Space derived
by grouping, as defined in formula (2), is �G = (1, 1, . . . , 1).

Proof: Applying the grouping transformation defined by formula (2), the 1-st column-
vector of the dependence matrix DS = I is transformed to the vector dG

n
′ = H Gd S

n =
(1, 0, . . . , 0)T . In addition, the j-th column-vector of the dependence matrix DS = I ,
j = 2, . . . , n, is transformed to the vector H Gd S

j = (1, 0, . . . , 0, 1
m j

, 0, . . . , 0)T . It
imposes the dependencies (1, 0, . . . , 0, � 1

mi
�, 0, . . . , 0)T = (1, 0, . . . , 0, 0, 0, . . . , 0)T and

(1, 0, . . . , 0, � 1
m j

, 0, . . . , 0)T = (1, 0, . . . , 0, 1, 0, . . . , 0)T in the Group Space. Thus, the

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 211

dependence matrix of the Group Space can be written as:

DG =

1 1 . . . 1 1

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . 0 1

.

We are searching for an appropriate linear time scheduling vector �G = (πG
1 , . . . , πG

n)
such that each group j G ∈ J G is computed during the time step t = �G j G . Consider the
last (n − 1) coordinates of a group indicating which SMP node of the cluster will execute
this group. Then, the groups j G = (j G

1 , . . . , j G
n) and j G ′ = (j G

1 + 1, j G
2 , . . . , j G

n) will
be successively computed within the same SMP node. There is a dependence between
them, as indicated by the first column of DG , but there is no need for a communication
step between their successive computation steps, because the necessary data are already
located in the local shared memory of the SMP node. Consequently, their time distance
�G j G ′ −�G j G = πG

1 may be equal to 1. Thus πG
1 = 1. In addition, the i-th column of DG

(i = 2, . . . n) imposes a dependence between the groups j G = (j G
1 , . . . , j G

n) and j G ′ =
(j G

1 + 1, j G
2 , . . . , j G

i−1, j G
i + 1, j G

i+1, . . . , j G
n). These groups are executed in neighboring

SMP nodes, thus a communication step is required between their computation steps. It means
that their time distance �G j G ′ − �G j G = πG

1 + πG
i must be equal to 2. Consequently,

πG
i = 1, i = 2, . . . , n. So, the vector �G = (1, 1, . . . , 1) is selected for the linear time

scheduling of our Group Space J G .

Notice that, in [22, 43], for the single CPU pipelined schedule, � was (1, 2, . . . , 2)
according to the UET-UCT theory [2]. In other words, the optimal overlapping schedule
could be achieved when we had equal computation to communication times, so that all
communication could be hidden (overlapped) with the computation phase. Nevertheless,
in the SMP case presented here, the labeling of coordinates of groups, that is the grouping
transformation PG slightly skews the space (see Figure 10 and the resulting Group Space
in Figure 11, the relative positions of groups (3, 0) and (3, 1)). So the optimal overlapping
schedule is achieved by (1, 1, . . . , 1). Notice, also, that this scheduling vector is not the
same with Hodzic’s [24] scheduling vector, since we are now referring to groups, while
Hodzic was scheduling tiles.

4.5. Assigning tiles to CPUs

For node labeling reasons, consider that the available SMP nodes form a virtual (n − 1)-
dimensional mesh. Thus, each node is identified by a (n − 1)-dimensional vector. Note,
however, that it is not a physical layout restriction, but a convention to give each node a
unique tag. Then, the last (n − 1) coordinates of a group indicate the SMP into which it
will be executed. The first coordinate affects only the time of its execution. Thus, a tile

212 ATHANASAKI ET AL.

j S = (j S
1 , . . . , j S

n), belonging to group j G = (j G
1 , . . . , j G

n), will be executed in node
(j G

2 , . . . , j G
n) = (� j S

2
m2

�, . . . , � j S
n

mn
�).

Similarly, inside each SMP we consider a (n−1)-dimensional CPU virtual mesh contain-
ing labels { �cpu ∈ Zn−1 | 0 ≤ cpux < mx+1, 1 ≤ x ≤ n−1}. Then, a tile j S = (j S

1 , . . . , j S
n)

will be executed by CPU (j S
2 %m2, . . . , j S

n %mn) of SMP node (� j S
2

m2
�, . . . , � j S

n
mn

�). So,
apparently, only tiles with the same coordinate j S

1 will be assigned to the same CPU of the
same node.

4.6. Generalization: Grouping along an arbitrary dimension of J S

If we want to assign the iterations along the i-th dimension of J S to the same CPU of an
SMP node, then it can be similarly proven that the appropriate grouping matrices are

PG =

m1 . . . 0 0 0 . . . 0
...

. . .
...

...
...

...
0 . . . mi−1 0 0 . . . 0

−m1 . . . −mi−1 1 −mi+1 . . . −mn

0 . . . 0 0 mi+1 . . . 0
...

...
...

...
. . .

...

0 . . . 0 0 0 . . . mn

,

(3)

H G =

1
m1

. . . 0 0 0 . . . 0
...

. . .
...

...
...

...

0 . . . 1
mi−1

0 0 . . . 0

1 . . . 1 1 1 . . . 1

0 . . . 0 0 1
mi+1

. . . 0
...

...
...

...
. . .

...

0 . . . 0 0 0 . . . 1
mn

,

where m1 × · · · × mi−1 × mi+1 × · · · × mn = m. As previously, the time scheduling
vector is �G = (1, . . . , 1). In addition, a tile j S = (j S

1 , . . . , j S
n) belonging to group

j G = (j G
1 , . . . , j G

n), will be executed within node (j G
1 , . . . , j G

i−1, j G
i+1, . . . , j G

n) by CPU
(j S

1 %m1, . . . , j S
i−1%mi−1, j S

i+1%mi+1, . . . , j S
n %mn).

Example 2 We have a cluster of SMP nodes with 2 CPUs and a NIC each. We assume
a 3-dimensional rectangular Tile Space J S . Let us assign the tiles along dimension j S

3 to
the same CPU, as indicated in Figure 12 by the grey arrows. The CPUs of the same SMP
node will execute two neighboring rows of tiles which belong to the same j S

1 − j S
3 plane.

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 213

Figure 12. 3D example.

In respect to the formula (4), we choose the grouping matrices to be:

PG =

2 0 0

0 1 0

−2 −1 1

 and H G = (PG)−1 =

1
2 0 0

0 1 0

1 1 1

 .

In Figure 12 we show the grouping of tiles and when each computation step and each
communication step will be executed. It can be easily deduced that a group (j G

1 , j G
2 , j G

3) ∈
J G will be executed in node (j G

1 , j G
2) during the time step t(j G) = j G

1 + j G
2 + j G

3 . Therefore,
the linear time scheduling vector for this example is �G = (1, 1, 1).

4.7. Optimal selection of mk’s

Lemma 1 The function f (x1, . . . , xn) = x1 + · · · + xn, where x1 × · · · × xn = c and
x1, . . . , xn > 0, is minimized when x1 = · · · = xn = c

1
n .

Lemma 2 The function f (x1, . . . , xn) = a1
x1

+· · ·+ an
xn

, where x1×· · ·×xn = c, a1, . . . , an

are positive constants and x1, . . . , xn are positive, is minimized when xi = ai (c
a1×···×an

)
1
n ,

i = 1, . . . , n.

Proof: It holds that a1
x1

× · · · × an
xn

= a1×···×an
c = constant. Thus, according to Lemma 1

the function f (x1, . . . , xn) is minimized when a1
x1

= · · · = an
xn

= (a1×···×an
c)

1
n ⇒ xi =

ai (c
a1×···×an

)
1
n , i = 1, . . . , n.

Let us consider a rectangular Tile Space J S: ∀ j S ∈ J S it holds 0 ≤ j S
i < uS

i , 0 ≤
i ≤ n. A tile j S ∈ J S is assigned to the group j G = �H G j S� = (� j S

1
m1

�, . . . ,
� j S

i−1

mi−1
�, j S

1 + · · · + j S
n , � j S

i+1

mi+1
�, . . . , � j S

n
mn

�). According to the time scheduling vector

214 ATHANASAKI ET AL.

�G = (1, . . . , 1), it will be computed during the time step t(j G) = � j S
1

m1
� + · · ·

+� j S
i−1

mi−1
� + � j S

i+1

mi+1
� + · · · + � j S

n
mn

� + j S
1 + · · · + j S

n .
The group (0, 0, 0) will be computed during the first time step tmin = 0. The group

(� uS
1 −1
m1

�, . . . , � uS
i−1−1
mi−1

�, ∑n
k=1(uS

k − 1), � uS
i+1−1
mi+1

�, . . . , � uS
n −1
mn

�) will be computed during the

last time step tmax = � uS
1 −1
m1

� + · · · + � uS
i−1−1
mi−1

� + � uS
i+1−1
mi+1

� + · · · + � uS
n −1
mn

� + (uS
1 − 1) + · · · +

(uS
n − 1). Thus, the number of execution steps required for the completion of the algorithm

will be ℘ = tmax − tmin + 1 ⇒

℘ =
∑
k �=i

⌈
uS

k

mk

⌉
+

n∑
k=1

uS
k − 2n + 2 (4)

In order to minimize the total completion time, we should apparently choose the i-th
dimension, along of which we allocate the tiles to the same CPU, so that it holds uS

i ≥
uS

k , ∀k = 1, . . . , n, as uS
i is the only upper bound of J S which is involved in (4) only once.

After the selection of the i-th dimension, we can eliminate the ceiling functions involved in
the expression (4) as follows:

∑
k �=i

uS
k

mk
+ ∑n

k=1 uS
k − 2n + 2 ≤℘ <

∑
k �=i

uS
k

mk
+∑n

k=1 uS
k −

n + 2. Thus, we can assert that the completion time of the algorithm is approximately
minimum when the expression

∑n
k=1 uS

k is minimized. According to Lemma 2 this condition
is valid, if

mk = uS
k

(
m

uS
1 . . . uS

i−1uS
i+1 . . . uS

n

) 1
n−1

, k = 1, . . . , n, k �= i. (5)

Of course, it is not always feasible because the numbers mi should be natural. But it always
applies an approximate criterion for the selection of mk’s. Intuitively, it means that mk’s

should be chosen so that uS
k

mk
’s are as close to each other as possible.

Example 3 Let us consider a cluster of SMP nodes with m = 4 CPUs each and a 3-
dimensional space J S with size 20 × 100 × 20. It means that uS

1 = 20, uS
2 = 100, uS

3 = 20.
Then, according to our previous analysis the best choice will be: i = 2, m1 = 20(4

20×20)
1
2 =

2, m3 = m
m1

= 2. If we apply these values in the expression (4) we get that the number of
steps required for the completion of the algorithm will be ℘ = 156. In contrast, if we chose
m1 = 4, m3 = 1, then the expression (4) would get the value ℘ = 161 > 156.

If the size of J S is 20×120×150 (uS
1 = 20, uS

2 = 120, uS
3 = 150, then, according to our

previous analysis, the best choice will be: i = 3, m1 = 20(4
20×120)

1
2 = 0.816. The closest

natural number which divides m = 4 is m1 = 1. Thus m2 = m
m1

= 4. If we apply these
values in the expression (4), we get that the number of steps required for the completion of
the algorithm will be ℘ = 336. In contrast, if we chose m1 = m2 = 2, then the expression
(4) would get the value ℘ = 356 > 336.

As one can easily observe in the previous example, the significance of the selection of
mk’s, as it has just been described, is less when the maximum dimension uS

i is much longer
than dimensions uS

1 , . . . , uS
i−1, uS

i+1, . . . , uS
n . So, it may be preferable to choose the values of

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 215

Figure 13. Tile communication load.

Figure 14. Communication load of a group.

mk’s taking into consideration the minimization of the communication requirements among
the SMP nodes.

Let us represent with lk the communication load of a tile along of the k-th dimension, as
indicated in Figure 13. If we group together m1m2 tiles, then the communication loads among
the SMP nodes will be l1m2 = m

m1
l1 and l2m1 = m

m2
l2, as indicated in Figure 14. Similarly,

if we group together m1 . . . mi−1mi+1 . . . mn tiles, then the communication loads among
the nodes of the cluster will be m

mk
lk . Thus the total communication load of a group will

be ltotal = m(l1
m1

+ · · · + li−1

mi−1
+ li+1

mi+1
+ · · · + ln

mn
). According to Lemma 2 it is minimized

when mk = lk(m
l1···li−1li+1···ln

)
1

n−1 , k = 1, . . . , n, k �= i . Of course, as the numbers mk should
be natural, this criterion is also approximative.

In the rest of this paper we shall theoretically and experimentally compare the proposed
methods with each other. Although our above theoretical results can be applied to any convex
tile space, as explained in Section 2.2, we shall go on using only rectangular tile spaces,

216 ATHANASAKI ET AL.

Figure 15. Splitting tiles in vertical scheme.

as in our previous examples. We consider that this simplification is convenient for clearly
expressing some ideas and it does not constrain any of the advantages or disadvantages of
the proposed methods.

4.8. Comparison

In this section we shall compare vertical grouping, which is indicated in Figure 5, with the
proposed scheme of hyperplane grouping, which is shown in Figures 6 and 10 in the case
of a 2-dimensional algorithm and a cluster of SMPs with 2 CPUs each.

As we have already mentioned, vertical grouping cannot exploit the computational power
of both CPUs of our SMPs unless we split each tile into smaller subtiles and compute some
of them in parallel, as shown in Figure 15. Let us assume that a CPU needs time α for
the computation of a tile with dimensions x , y (Figure 15(a)). Consequently, it will need
time α

N for the computation of a respective subtile with dimensions x
N , y (Figure 15(c)).

The subtiles which are created can be computed by 2 CPUs in N + 1 computational steps,
interleaved with N synchronization steps, following an optimal linear time schedule (1, 1)
as in Figure 15(c). If the average time consumed for the synchronization of 2 CPUs of an
SMP node is tsynch in, then the total time required for the computation of a pair of initial
tiles is

β = α
N + 1

N
+ Ntsynch in. (6)

β is minimized when

N =
√

α

tsynch in
. (7)

Therefore, the minimum value of β is βmin = α + 2
√

αtsynch in > α.
If we consider an Iteration Space with size X × Y , tiled with rectangular tiles with size

x × y, (for example in Figures 5 and 6 we have X
x = 10, Y

y = 6), then we have the following
options:

1. Following the non-overlapping scheme (which can be implemented using blocking
calls) in combination with vertical grouping, the number of time steps required for

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 217

the completion of the algorithm is ℘ = X
x + Y

2y − 1. The minimum duration of a time
step is βmin + tcomm, where tcomm is the time required for the communication between
two SMP nodes. Thus, the total time required is Tblocking,vertical = ℘(βmin + tcomm) �
(X

x + Y
2y)(βmin + tcomm).

2. Following the overlapping scheme (which can be implemented using non-
blocking calls) in combination with vertical grouping, the number of time
steps required for the completion of the algorithm is ℘= X

x + Y
y − 2.

According to the formula (1), if we set tcomp = βmin, the minimum dura-
tion of a time step is tstart dma + max(βmin, tcomm dma) + tsynchro. Thus, the total
time required is Tnon−blocking,vertical =℘(tstart dma + max(βmin, tcomm dma) + tsynchro) �
(X

x + Y
y)(tstart dma + max(βmin, tcomm dma) + tsynchro). If βmin ≥ tcomm dma, then

Tnon−blocking,vertical � (X
x + Y

y)(tstart dma + βmin + tsynchro).
3. Following the overlapping scheme in combination with hyperplane grouping, the

number of time steps required for the completion of the algorithm is ℘ = X
x + 3Y

2y − 2.
According to the formula (1), if we set tcomp = α, the minimum duration of a
time step is tstart dma + max(α, tcomm dma) + tsynchro. Thus, the total time required is
Tnon−blocking,hyperplane = ℘(tstart dma +max(α, tcomm dma)+ tsynchro) � (X

x + 3Y
2y)(tstart dma +

max(α, tcomm dma) + tsynchro). If α ≥ tcomm dma, then Tnon−blocking,hyperplane � (X
x + 3Y

2y)
(tstart dma + α + tsynchro).

In most real problems it holds that Y/y
X/x = λ � 1. Therefore, the overlapping scheme

in combination with vertical grouping is more efficient than the non-overlapping
scheme, in case that βmin ≥ tcomm, when tcomm dma > (tstart dma + βmin + tsynchro)

Y
2y

X
x + Y

2y
⇔ tcomm > λ

2 (tstart dma + βmin + tsynchro). In addition, the overlapping scheme,

in combination with hyperplane grouping, is more efficient than the overlapping scheme,
in combination with vertical grouping, when (X

x + 3Y
2y)(tstart dma + α + tsynchro) < (X

x + Y
y)

(tstart dma + α + 2
√

αtsynch in + tsynchro). If we consider tstart dma + tsynchro � α, then, we

get 2
√

tsynch in

α
>

λ/2
1+λ

� λ
2 ⇒ tsynch in > α(λ

4)2. This is due to the fact that, using verti-
cal grouping, the pipeline filling is faster, while, using hyperplane grouping, the pipeline
throughput is faster. So, hyperplane grouping is preferable when the mapping dimension of
the Tile Space is long enough in comparison to its other dimensions. However, in any case,
the hyperplane grouping has the advantage that it needs no extra tiling inside each tile in
order to exploit the computational force of the CPUs.

Consequently, which communication and grouping policy is optimal, depends on the
hardware characteristics. That is, one should estimate the time parameters involved in the
model (computation, transfer initialization overhead, actual transfer overhead) and deter-
mine which scheme is going to give the peak performance. In general, the purpose of the
overlapping scheme, in combination with hyperplane grouping, is to exploit all modern
architectural characteristics of NICs, such as DMA, RDMA, Zero Copy, or even NICs with
embedded processors. Thus, this scheme will be optimal when these characteristics are
actually available.

218 ATHANASAKI ET AL.

5. Experimental verification

5.1. Experimental platform and algorithm

In [43] we applied the pipelined schedule proposed in [22], using a cluster of single CPU
nodes with PCI-SCI NICs. In this paper, in order to evaluate the proposed methods, we
ran our experiments on a Linux SMP cluster with 8 identical nodes. Each node had 128M
of RAM and 2 Pentium III 800 MHz CPUs. The cluster nodes were interconnected with
an SCI ring, using SCI Dolphin’s PCI-SCI D330 cards. SCI NICs support shared memory
programming, either through PIO (Programmed-IO) messaging, or through DMA. We are
using their kernel-level DMA support for messaging. Invoking kernel system calls, causes
extra CPU cycles overhead. However, we can avoid extra copying from user space to kernel
space (physical memory) when using DMA. We allocate user level pages, which correspond
to physically contiguous pre-reserved memory regions, for DMA communications.

Our test application was the following code:

for(i= 1; i<= X; i++)
for(j= 1; j<= Y; j++)

for(k= 1; k<= Z; k++)
A[i][j][k]= func(A[i-1][j][k],A[i][j-1][k],A[i][j][k-1]);

where A is an array of X × Y × Z floats and X = Y � Z . Without lack of generality, we
select as a tile a rectangle with i j , ik and jk sides. The dimension k is the largest one, so
all tiles along k-axis are mapped onto the same processor, as proposed in Section 4.7. Each
tile has i , j dimensions equal to x and the tile’s “height” along k-axis equal to z. There are
X
x tiles along dimensions i and j and Z

z tiles along dimension k. Tile’s volume is equal to
g = x2z, and since the number of available processors is initially known, the only unknown
parameter is z.

We applied both vertical and hyperplane grouping, using both blocking and non-blocking
communication primitives. Since both vertical and hyperplane grouping can be combined
with both overlapping and non-overlapping communication, we experimented with all four
combinations. For each exemplary Iteration Space and each possible tile height, we calcu-
lated the total execution time for the above schemes. In order to implement these schemes,
we used Linux POSIX threads with semaphores for the synchronization among the proces-
sors of an SMP node and the SISCI driver and libraries for the communication among the
SMP nodes.

5.2. Tuning parameters

First of all, as far as the implementation of vertical grouping is concerned, we experimentally
verified formula (7), in order to find the optimal execution time for a couple of tiles by an
SMP node. We assigned the computation of two tiles to the two processors of an SMP node
and measured their execution time in respect to the number of subtiles into which each tile
was cut, in order not to violate the iteration dependencies. The experimental results, along

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 219

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0 50 100 150 200 250 300 350 400 450 500

Ti
le

 E
xe

cu
tio

n
Ti

m
e

(s
ec

)

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Ti
le

 E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Number of pieces

practical

theoretical

practical

theoretical

0 50 100 150 200 250

Number of pieces

Practical Minimun:(58, 0.0693)

Theoretical Minimun:(79, 0.0705)

(79, 0.0694)

Figure 16. Vertical grouping—Tile execution time in respect to the number of slices a tile is cut.

with the theoretically expected curve, are plotted in Figure 16. The theoretical plot was
calculated using the formula (6) with α � 69 msec and tsynch in � 11 µsec. These values
were experimentally measured by running a simple code fragment thousands of times
and calculating the average execution time. If we find the Nbest,theoretical, that is the point
N where the theoretical minimum is achieved and for this N we find the corresponding
experimental overall time, then the difference between this value and the experimental
minimum is less than 0, 15%. So we can safely use Nbest,theoretical as Nbest. This can be
simply justified as follows: If we consider a shift δN of N , then the shift of β will be
δβ = −α δN

N (N+δN) + tsynch inδN . If in this formula we set N = Nbest,theoretical we get that:

δβ

βmin
=

(
δN

Nbest,theoretical

)2

1 + δN
Nbest,theoretical

1

2 +
√

α
tsynch in

.

Therefore, the less the parameter tsynch in is in comparison to α, the less important the exact
selection of N is. Intuitively, in the extreme case, where tsynch in is 0, we could always
achieve the same results, no matter how fine grained the parallelism is (i.e. for very large
N ’s). However, tsynch in is always considerable and cannot be ignored for real life SMP
architectures.

5.3. Experimental results

Once vertical grouping was implemented and approximated with a theoretical formula,
we implemented both blocking and non-blocking communication schemes. As far as the
blocking communication scheme is concerned, it was implemented using the pseudo-code
of Table 1. On the other hand, the non-blocking scheme was implemented using the pseudo-
code of Table 2. Notice that during each time step every SMP node in the i j plane with
coordinates (i, j) receives from neighboring nodes (i − 1, j) and (i, j − 1), computes and
sends to nodes (i+1, j), (i, j+1) (Figure 17). Since thesend dma() call is not blocking, the
computation of the tiles will be performed concurrently with the transferring of data among

220 ATHANASAKI ET AL.

Table 1. Non-overlapping scheme Implementation.

Thread 0 Thread 1

foreach group assigned to node(i,j) do{ foreach group assigned to node(i,j) do{
receive from node(i-1,j) receive from node(i,j-1)
receive from node(i,j-1) compute tile(i,j,k,CPU1)
compute tile(i,j,k,CPU0) send to node(i+1,j)
send to node(i,j+1) send to node(i,j+1)
semaphore post(sem s1) semaphore post(sem s2)
semaphore wait(sem s2) semaphore wait(sem s1)

} }

Table 2. Overlapping scheme Implementation.

Thread 0 Thread 1 Explanation

foreach group assigned to foreach group assigned to
node(i,j) do{ node(i,j) do{
trigger interrupt to node(i-1,j) Inform “previous” nodes:
trigger interrupt to node(i,j-1) trigger interrupt to node(i,j-1) “I am ready to accept data”

wait interrupt from node(i+1,j) Wait until “next” nodes
wait interrupt from node(i,j+1) wait interrupt from node(i,j+1) are ready to accept data

send dma(node(i+1,j),data) Initialization of DMA
send dma(node(i,j+1),data) send dma(node(i,j+1),data) transfer to neighboring

nodes
compute tile(i,j,k,CPU0) compute tile(i,j,k,CPU1)

wait dma() Wait for DMA to complete
wait dma() wait dma()

trigger interrupt to node(i+1,j) Inform “next” nodes:
trigger interrupt to node(i,j+1) trigger interrupt to node(i,j+1) “Your data has arrived”
wait interrupt from node(i-1,j) Wait until “previous” nodes
wait interrupt from node(i,j-1) wait interrupt from node(i,j-1) have finished sending data
semaphore post(sem s1) semaphore post(sem s2)
semaphore wait(sem s2) semaphore wait(sem s1)

Implementation of a barrier

} }

the SMP nodes. After the execution of wait dma(), it is assured that both computation and
communication are already completed.

The implementation of vertical and hyperplane grouping was achieved by a proper com-
pute tile(i,j,k,CPUx) procedure. In order to implement vertical grouping, we used
the pseudocode of Table 3. The number of subtiles inside a tile was selected according to
formula (7). Notice that, the implementation of hyperplane grouping was much simpler, as
it is shown in Table 3.

The problem was solved using various values of X = Y and Z . For each schedule, we
are interested in the overall minimum execution time achieved at an optimally selected tile
height (see [22, 24, 43]). The experimental results, shown in Figures 18–19, illustrate that, in
every case, non-blocking communication is preferable to blocking communication and hy-
perplane grouping is preferable to vertical grouping. The lowest minimum is clearly achieved
when using hyperplane grouping, in combination with non-blocking communication, in all
cases.

HYPERPLANE GROUPING AND PIPELINED SCHEDULES 221

Figure 17. CPU communication directions.

As far as hyperplane grouping, in combination with non-blocking communication, is
concerned, according to our scheduling theory (formula (4)), the number of time steps
required for the completion of an experiment is℘(x, y, z) = 3X

2x + 2Y
y + Z

z −4. The minimum
duration of a time step, as mentioned in Section 4.8, is (tstart dma + tcomp + tsynchro). Thus,
Tnon−blocking,hyperplane = (3X

2x + 2Y
y + Z

z −4)(tstart dma + tcomp + tsynchro). This formula was used
to produce the theoretical curves of Figures 18–19 with values tstart dma+tsynchro = 100 µ sec
and tcomp = x2ztcomp1, where tcomp1 is the execution time of a single iteration and it was
measured equal to 39,6 nsec.

One can easily verify from Figures 18-19 that the graphs of the theoretical model are
very close to the corresponding experimental graphs not only at the desired minimum, but
along the whole graph. Thus, the theoretical model of scheduling is strongly verified by the
experimental results.

5.4. Scalability issues

The theoretical model presented in Section 4 is general enough, so as not to be differentiated
when scaling up the underlying hardware architecture. However, in this section, we shall
examine some practical problems, which may rise.

For example, if we add more SMP nodes, the initial iteration space may be cut into smaller
tiles. Thus, the computation to communication ratio of each tile tcomp

tcomm dma
may reduce for

two reasons: First, less computations are assigned to each SMP node, while the amount of

Table 3. Vertical vs. Hyperplane Grouping.

compute tile(i,j,k,CPU0) compute tile(i,j,k,CPU1)

Vertical grouping
foreach subtile of this tile do{ foreach subtile of this tile do{
compute each iteration of this subtile
semaphore post(sem1) semaphore post(sem2)
semaphore wait(sem2) semaphore wait(sem1)

compute each iteration of this subtile
} }

Hyperplane grouping
compute tile(i,j,k,CPU0) compute tile(i,j,k,CPU1)
compute each iteration of this tile compute each iteration of this tile

222 ATHANASAKI ET AL.

Figure 18. Experimental results.

data transfer required is not proportionally reduced. Second, if the network is saturated (by
more SMP nodes trying to send more data in more messages to each other), the increase in
tcomm dma will be more than relative to the increase in the volume of data transmitted. How-
ever, considering an application with uniform dependences, as described in the algorithmic
model in Section 2.2, and a torus interconnection topology, such as the one used for our
experiments, the network will be never saturated due to the increase of SMP nodes. This is
because each node need to communicate only with its neighbors, thus there are no shared
resources among different communication channels. Thus, only the first reason mentioned
above can potentially cause some trouble when adding more SMP nodes. But, if it still holds
tcomp ≥ tcomm dma, nothing will change in the implementation of our model. In the opposite
case (tcomp < tcomm dma), the use of even more nodes will not be efficient. This problem
will not concern our scheduling, but it will mean that the communication architecture is
too slow to exploit all the computation power of the computing system. Then, it would be
better not to use all the nodes available, as implied in [24].

If we add more CPUs inside each SMP node, we may again cut the initial iteration space
into smaller tiles. The computation to communication ratio of each tile tcomp

tcomm dma
will be

decreased again, but only for one reason: Less computations are assigned to each CPU.
In particular, tcomp

tcomm dma
will be conversely proportional to the number of CPUs inside each

SMP node. In this case, no more data need to be sent through the interconnection network,
since the additional CPUs communicate with each other and with the preexisting CPUs
through the SMP node’s shared memory. However, tsynchro and tstart dma will slightly increase,
because, firstly, more CPUs need to initialize their DMA sends and receives and, secondly,
these operations can not be executed at the same time by different threads of the same
node (no thread-safe environment—see the implementation code of Table 2). This problem
can be solved by assigning all communication overhead to one thread only and at the
same time reducing the computation overhead of this thread. Following that technique,
CPUs do not remain idle waiting to synchronize with each other, since the amount of

