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Abstract. Nowadays, virtual machines are becoming widely used and their
range of applications include a large number of scientific fields. From HPC
to IaaS, communication between co-located VMs is a critical factor of ef-
ficiency. In our paper, we examine communication methods between VMs
located in the same physical node, optimizing communication cost without
sacrificing upper-layer API compatibility. We present YASMIN (Yet Another
Shared Memory Implementation for Intra-Node), a generic socket-compliant
framework for intra-node communication in the Xen hypervisor. We build on
the concept of Vchan, a Xen library for intra-node communication between
different VMs and we use Xen granting and signaling mechanisms to provide
an efficient communication framework. The key of our design is the transport
layer which runs underneath the AF_VSOCK protocol family, implemented as a
dynamically inserted module. We are able to achieve 4.4x higher bandwidth
rate and 65% lower latency without the need of application binary recompila-
tion.
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1 Introduction

The advent of High-Performance-Computing (HPC) systems and the increasing needs
for better control, isolation and resource management have made Virtual Machines
(VMs) a significant part of modern data centers, HPC scientific applications and
enterprise service platforms [1][2][3]. The key reason that make VMs such a critical
factor of modern computing systems is the ability to execute intense applications and
services providing a secure, isolated environment of execution, improving system uti-
lization and communication cost between applications [6]. Today, power consumption
is becoming an important topic for data center providers [5]. Virtual machines pro-
vide the capability of more efficient system utilization which results in energy cost
reduction [4]. For these reasons, investing in virtualization technologies is a major
trend for different applications and service providers.
Due to the benefits that virtualization provides to infrastructure providers, the same



concept is also exploited in network facilities. With the exploding data traffic through
vast network infrastructures, middleboxes, i.e hardware network devices, are a fun-
damental part of today’s networks. Although there are many advantages in using
hardware middleboxes, there are also many reasons for shifting to virtualized network
functions (VNFs), such as IP Routing, firewall, intrusion detection etc. [7][8]. VNFs
are part of modern network function virtualization infrastructures (NFV) where VMs
run on top of hardware network infrastructure and take responsible for providing net-
work services [9].In addition to the above topics, virtual machines are also used in
distributed execution environments, such as Hadoop MapReduce [11]. This framework
is widely used in applications that require intensive data computations [12]. Virtual
machines have become an attractive entity for hosting MapReduce workloads, which
require fast communication between parallel tasks. For example, cloud-based services,
such as Amazon’s EC2, rely on VMs to process large amount of data by spawning
tasks on different VMs.
Thus, recent virtualization techniques have given rise to a major set of new capabil-
ities, but also to a number of limitations that researchers try to overcome. The field
of improving virtualized computing environments is of great interest and refers to a
large number of topics, from hypervisor scheduler optimization [13] to virtual machine
reconfiguration [14][15].
In addition to these aspects, one important limitation that arise in both HPC appli-
cations but also in Cloud Computing applications is the communication cost between
VMs. Virtual machines can reside in the same physical node or in different nodes.
Proper placement or migration of VMs is a basic factor for providing low-latency and
high-bandwidth communication for the reason that VMs hosting HPC or cloud appli-
cations can exploit their physical locality to increase performance. For instance, VNFs
running in co-located VMs (such as routing, load balancing, firewall) may intensively
exchange traffic, hence, taking advantage of proper VM placement and optimizing
intra-node communication can offer significant overall performance gain. We focus
on Xen [10] hypervisor and explore communication mechanisms in VMs located in
the same physical node to achieve improvement in both latency costs and bandwidth
rates.
We introduce YASMIN, a generic socket-compliant, efficient intra-node communi-
cation framework for co-located VMs in the Xen hypervisor. Although our imple-
mentation is build on Xen mechanisms, the basic concept can be applied to other
hypervisors as well. YASMIN exploits the Xen’s grant table and event channel mech-
anisms and provides page sharing between co-located VMs to simplify the data path
in the network stack without sacrificing transparency. We achieve this by creating a
communication channel between VMs that are aware of their location, bypassing the
TCP/IP stack. We evaluate YASMIN using generic micro-benchmarks and compare
it to conventional communication paths and bare-metal memory bandwidth (Sect. 4).
We can observe that our framework outperforms the conventional methods both in
terms of throughput as well as latency.



2 Background

2.1 Overview of Xen Architecture

Xen is a bare-metal hypervisor (Virtual Machine Monitor - VMM) which enables
virtualization in paravirtualized mode. This means that the kernel of the guest VMs
(domains) is modified in order to allow them to communicate with the privileged guest
VM (Dom0). Basic operations for paravirtualized guests (disk, networking, GPU,
etc.) are serviced through requests to the control domain which is responsible for
communication with the hardware. Xen also exposes a set of hypercalls to guests.
Hypercalls are privileged requests to the hypervisor which include granting page access
to foreign domain, transferring and copying pages between domains and setting up
an interrupt mechanism between domains.

2.2 Xen Default Networking

An overview of Xen’s default network data path is shown in Fig.1. Networking is
based upon the split-driver model; control domain is responsible for the coordination
between the two communication ends. One end (domainX) forwards packets through
the network stack (TCP/IP) to a virtual ethernet driver (netfront). The driver then
copies the requests to a memory area mapped to the control domain. The driver in
the control domain (netback) reads the requests from a ring buffer and copies the
data in a proper kernel structure of the other end’s netfront memory and delivers a
signal. The other end (domainY) can now accept the new packet and forward it to the
network stack (TCP/IP). The main limitation of this method is that all networking
has to pass through the control domain which is a huge bottleneck for scaling to
either a large number of processes between the same pair of VMs or a large number
of processes between different pairs of VMs in the same physical node.
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Fig. 1. The default inter-domain communication path in the Xen hypervisor. Numbers cor-
respond to steps involved in the data path. Page is mapped before any exchange of data
(step 0).



3 Design and Implementation

3.1 Design Overview

We decide to implement YASMIN design on top of the Xen hypervisor 4.4 using Linux
3.16 as guest OS. We build on Vchan [24], a Xen library which invokes system calls
(open(), ioctl(), mmap()) to Xen’s exported devices (xen_gntdev, xen_gntalloc)
in order to initialize a channel between co-located domains and exchange data. We
take this idea further and implement a transport layer for vSockets [25], i.e a generic
sockets API similar to the POSIX interface which supports fast and efficient com-
munication between guest virtual machines. vSockets API introduces a new address
family (AF_VSOCK) and refers to the common socket-layer calls (socket(), bind(),
connect(), etc.). A socket connection between two guest VMs can be established
by using their domain ID numbers and a remote port. YASMIN consists of a load-
able kernel module and a shared library to intercept system calls. The shared library
intercepts IPv4 socket calls and translate them to vSockets socket calls, by using a
1-1 mapping between intra-node IP addresses and local domain IDs. An overview of
YASMIN design is shown in Fig. 2.
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Fig. 2. YASMIN design overview

3.2 Implementation details

YASMIN implementation is based on Xen’s primitive hypercalls, i.e granting page
access to foreign VMs through grant-table mechanism, mapping pages using grant
tables index number and invoking interrupts through the event channel mechanism.
We exploit the producer-consumer shared ring technique, which does not require
any locking mechanisms between the reader and the writer. Contrary to common
approaches which do not take transparency into account, thus resulting in efficient
but not binary-compatible code, we decide to design not only an efficient but also
a transparent framework. In order to achieve this, we bypass the TCP/IP protocol



stack which introduces an extra overhead to each packet transmission, and we take
utilize the vSockets socket protocol layer. It is a part of Linux kernel release and
currently designed to support VMCI [26] as well as VIRTIO [27] transport layers.
We extend this work and build a new transport layer for vSockets by adapting to
Xen mechanisms. In this way, not only we avoid building a new network protocol
from scratch but we also provide users with the capability of choosing the transport
layer on the fly. To provide an architectural overview, we briefly describe how the
operations are realized in each layer, from top to bottom:

Application layer : One of the most important aspects of our design is the API
compatibility with the generic socket interface. Specifically, we aspire to provide a
low-overhead socket communication framework to applications running in co-located
VMs without the need to refactor, reimplement or even recompile them. We imple-
ment a shared library which intercepts all system calls, filters out socket-API system
calls (bind(), listen(), accept() etc.) and replaces them as follows: Our library
queries a file which consists of entries of domain id-to-IP-addresses mappings of all
running guest domains in the same physical node. If the socket-call’s target IPv4 ad-
dress is matched, then the respective structures are initialized and the system call is
forwarded to the kernel as a vSockets socket call (i.e AF_VSOCK). Otherwise, the remote
application is not located in the same node and the default data path is followed.

Transport layer - Link layer : Each socket call invoked by userspace that corre-
sponds to AF_VSOCK is serviced by vSockets protocol. This protocol is responsible for
data fragmentation and packet delivery to the transport layer. The transport layer
is the core of our implementation and is capable of creating a communication chan-
nel between co-located VMs, deliver messages and notify the remote domain for new
packets. It is implemented as a kernel module and dynamically inserted to the ker-
nelspace of each guest VM. Link layer is embedded in this module as a producer -
consumer ring buffer in memory mapped between communicating VMs.

As mentioned earlier, Xen provides grant table mechanism which enables page
sharing between VMs; one domain (granter) allocates a new page, grants access to
the foreign domain by invoking a hypercall and refers to that page using its index in
the grant-entry table. The other-end domain (grantee) allocates a new page and maps
this page to the granter’s page (also by invoking a hypercall) using the same grant-
entry table index. The shared producer-consumer ring is part of the communication
channel and is implemented as a set of pages shared by the two ends using the previous
mechanism. Xen also introduces a simple signal passing mechanism between VMs,
the event-channel, so as to inform the other end for packet delivery. The first domain
(allocator) creates a new connection with the remote domain (binder) by invoking
a hypercall which returns a local channel port number. Allocator then registers a
new interrupt handler to this port. Binder can now “bind” to the port by invoking a
hypercall, which in turn returns a local channel port number. Binder then registers
a new interrupt handler to its local port. Each end can then invoke a hypercall and
raise a virtual interrupt to notify the other end that data are available in the ring
buffer and the respective interrupt handler will be invoked. We can now describe the
path for a successful client-server message transmission between two co-located VMs.
The overview of our design is presented in Fig. 3.
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Fig. 3. YASMIN implementation overview. Each new socket connection is established
through the control channel (control path arrows). For every connected pair of sockets,
a new perport channel with its own shared ring is created, where data are exchanged (data
path arrows)

– The inserted module, exports a XenStore path which will be monitored for in-
coming connection requests. When the client invokes a connect() socket call,
our transport checks if previous requests to the specified remote domain have
been made. If not, it creates a new intra-node communication channel between
the domains and caches channels parameters for future communication requests.
Channels parameters1 are transmitted to remote domain via its XenStore path.
This channel (control channel) is used only for transmission of control messages
between domains (e.g new socket connection request, socket release). After the
establishment of the control channel between a pair of guest VMs, a single-page
queue is realized, which is used for sending new socket connections requests. These
packets consist of the packet header, the grant-table’s indices and event channel
ports which will be used by the remote domain for mapping and registering re-
spectively.

Next, it creates a new persocket channel and sends a new connection request to the
remote application using the control channel. The new connection request specifies
a remote domain ID and a remote port to connect to, similarly to IPv4 requests
to a remote IP and a remote port. This channel is used for packet transmission
between connected sockets. When the remote domain successfully registers the
persocket channel, a reference to this channel is stored and vSockets connect()

returns successfully. Each connection request to a new socket between the com-
municating VMs will create a new persocket channel but the control channel is
unique for each pair of communicating VMs and will be teared-down only if guests
shutdown or migrate.

1 grant-entry index and event-channel port number



– Server-side applications can call socket(), bind(), and listen() to wait for in-
coming connections similarly to corresponding IPv4 socket calls. When the new
connection request is made by the client-side application through the control chan-
nel, a virtual interrupt is triggered and the server-side’s interrupt handler is in-
voked causing proper packet processing and enqueuing in listener’s accept queue.
This packet contains the grant references and event-channel ports of the persocket
channel. The server-side will map the shared pages and bind the event-channel.

– A call to accept() by the server-side will dequeue the new connection request
and send a Connection OK message to the client.

– send() socket call will cause a memory copy from userspace to the shared ring
located in kernelspace and the update of the producer index.

– Similarly, recv() will cause a memory copy from the shared ring to userspace
and the update of the consumer index.

Finally, to retain compatibility and transparency with AF_INET applications, we wrap
around socket calls a library that re-issues all IPv4 calls with AF_VSOCK family.

4 Performance Evaluation

We setup a host machine with 2x Xeon E5335, 8GB RAM and single core guest VMs
in order to evaluate the performance of our implementation in comparison to the
default netback/netfront data path. We perform two microbenchmark experiments to
test throughput and latency as well as scaling. We compare our results with the per-
formance of bare-metal Unix Sockets and also with the system’s bare-metal memory
bandwidth. We use NetPIPE [28] to test latency and scaling, Iperf [29] to test through-
put, netperf [30] to measure Unix Sockets throughput and STREAM benchmark [31]
to compare to bare-metal memory bandwidth.

4.1 Microbenchmark Evaluation

As shown in Fig. 4 and Fig. 5, YASMIN outperforms the netback/netfront model in
comparison to latency as well as throughput.

However, ring size is an important variable of performance. In Fig. 4 we can
observe the effect of ring size on latency and in Fig. 5 the effect on throughput. For
low message sizes (up to 1Kb), latency is not affected by the increase in ring size.
We also observe that bandwidth is increasing for message sizes up to 2MB. However,
there is a decrease in performance for messages up to 4MB, as depicted in Fig. 5. We
are certain that this is caused due to increased contention on the memory bus. We
plan to perform a detailed break-down analysis to validate our assumption.

In addition, throughput increases proportionally to the increase in ring size, as
shown in Fig. 6. Throughput performance for ring size of 2MB reaches 76% of through-
put performance of Unix Sockets on the bare-metal system, as shown in Fig. 6.

Nonetheless, we choose to implement a ring size of 512kB (128 pages) trading-
off throughput and lower kernel memory consumption. For this ring size, latency is
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reduced by 65%2 compared to netback/netfront and average throughput is increased
by a factor of 4.4, as measured by Iperf. Compared to the system’s bare-metal memory
bandwidth, YASMIN can perform at 16 Gbps (2048 MBytes/sec) while memory bus
performance is measured at 2813 MBytes/sec for 1 executing thread and Unix Socket
performance at 3250MB/s. The difference between memory bus and Unix Sockets
performance is observed due to cache-miss penalties. Indeed, as we can measure using
system’s Performance Counters (PC), L2 cache misses were 32.6% of L2 cache hits
while testing memory bandwidth but L2 cache misses were only 0.02% of L2 cache
hits while testing Unix Sockets.
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formance of the netback/netfront model and the line labeled ”Unix So” to bare-metal Unix
Sockets throughput.

2 This value refers to a 1 Byte message



4.2 Scaling evaluation

Finally, in order to test YASMIN scaling performance, we setup in parallel up to 8
single core VMs which exchange messages in pairs (VM1 to VM2, VM3 to VM4, and
so on. . . ). Each VM is pinned to a CPU core and communicating VMs share a 4MB L2
cache memory. For example, when VM1 and VM2 are exchanging data, VM1 is pinned
to CPU0 and VM2 to CPU1, where CPU0 is sharing a L2 cache with CPU1. The
results of this experiment are depicted in Fig. 7. We can observe that the aggregate
throughput increases proportionally to the number of communicating VMs. For in-
stance, two VMs are exchanging a 512 KB message at 13.2 Gbps, while 8 VMs achieve
4x aggregate throughput for the same message size (53 Gbps or 6625MBytes/s). In
comparison to the above result, we point out that bare-metal memory bus throughput
for 8 threads of execution is measured at 3784Mbytes/s.
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5 Related Work

Due to the significance of optimizing intra-node communication, literature in this field
include a large number of proposals. A common proposed concept involves shared
memory buffers between communicating VMs. Diakhate et al. [17] use shared mem-
ory techniques on the KVM hypervisor [17] by modifying QEMU [18] instances. IVC
[19] proposes creating a one-way channel by using shared pages techniques and a new
userspace API. XenSocket [20] also uses shared pages through Xen grant table hy-
percalls in order to create an one-way channel, by modifying BSD Sockets API and
presenting a new address family. In addition to this work, an new address family im-
plemented from scratch is introduced in XenSock [21]. Although these techniques can
achieve better latency and bandwidth performance compared to the default model,
transparency and compatibility are sacrificed. Applications need to be aware of run-
ning in co-located VMs and source code needs to be refactored and recompiled. Xen-
Loop [22] creates a full-duplex channel between co-located VMs without sacrificing



transparency by intercepting outgoing packets from the network layer and establish-
ing a fast communication channel between these VMs. A kernel module is responsible
for analysing the packet destination MAC address and forwarding it in the established
channel. A software bridge is responsible for keeping records of co-located MAC ad-
dresses. Although this technique can perform better in terms of throughput, there is
not significant reduction in latency. Another approach in intra-domain communication
is proposed by V4VSockets [23], a generic socket-applicant framework which performs
better in terms of bandwidth as well as latency. The key idea of this implementation is
based on copies made by the hypervisor to the receiver via the V4V mechanism, which
resides in the Xen hypervisor. However, in this approach, the hypervisor is modified
and the data path consists of three copies between the sender and the receiver.

In our implementation we combine the best parts of each of these techniques by
bypassing both the control domain and the TCP/IP network stack. We also pro-
vide transparency and avoid the need of binary recompilation as well as hypervisor-
intrusive techniques.

6 Conclusion and Future Work

YASMIN is a complete framework for intra-node communication which optimizes
both throughput and latency compared to the default netback/netfront model. The
data path includes only two copies, the first from sender’s userspace to the kernelspace
shared ring and the second from the shared ring to the receiver’s userspace. Moreover,
our implementation can also successfully respond to scaling challenges, as shown in
Fig. 7. In addition to these, YASMIN optimizes communication between co-located
VMs without the need to recompile binaries.

We conclude that in a large field of applications where communication is a critical
factor of performance, placement of VMs in the same physical node is crucial for
performance due to the fact that optimization techniques can be exploited. For these
reasons, YASMIN can provide benefits to applications running in virtualized context.

We plan to improve YASMIN by upgrading the hosts file query process. Currently,
the hosts file, which is queried by guest VMs to determine if a remote IP is co-located
in the same node, is maintained by the node administrator. Therefore, in order to
resolve VM migration issues, we plan to build a control domain backend driver or
a guest VM daemon which will be responsible for monitoring any changes due to
migration of virtual machines.

Finally, we plan to test our framework in NFV environments, where different VNFs
can run on top of YASMIN transport layer. Suitable for testing are network functions
such as routers, firewalls, load balancers, because they require fast packet processing
and low latency response time.

YASMIN is an open-source framework and can be found at https://github.com/
mrozis/YASMIN.git
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