
vPHI: Enabling Xeon Phi Capabilities
in Virtual Machines

Stefanos Gerangelos
Computing Systems Laboratory

National Technical University of Athens
sgerag@cslab.ece.ntua.gr

Nectarios Koziris
Computing Systems Laboratory

National Technical University of Athens
nkoziris@cslab.ece.ntua.gr

Abstract—Heterogeneous processing has gained popularity in
the high performance computing (HPC) area lately and it appears
to have a great potential for future data centers. In this regard,
accelerators, such as GPUs and Intel Xeon Phi, have already
started to play a significant role in HPC systems offering a high
degree of parallelism to application developers. Furthermore,
hardware virtualization is gaining interest in these domains as
well, due to the benefits it offers, such as server consolidation,
costs reduction and resource utilization. In this context, there
is a growing potential for integrating accelerators into the
virtualization stacks of the next generation.

In this paper we take a first step towards enabling Intel
Xeon Phi capabilities in virtual machines. We present vPHI, a
framework for efficient virtualization of Intel Xeon Phi resources.
To our knowledge, vPHI is the first approach that enables Xeon
Phi sharing between multiple VMs running on the same physical
node. We present vPHI as a proof-of-concept using QEMU-KVM
as the hypervisor. vPHI utilizes Intel’s SCIF API as the transport
layer for transferring data over the PCIe to the accelerator
device. Preliminary evaluation has shown promising results with
vPHI being able to attain 72% of native execution in terms of
peak throughput.

I. INTRODUCTION

Heterogeneous processing has gained popularity in the HPC
context lately and it appears that it has a great potential for
future data centers. As data creation worldwide keeps growing
with remarkable rates [1], the processing power needs to be
increased proportionally, in order to keep up with data creation
rate. However, the multicore scaling trend presents a limit in
the foreseeable future, which is referred in the literature as
the dark silicon era [2, 3]. In this context, computer scientists
and professionals estimate that the way data are processed
will adapt to the new conditions and future data centers
will gradually move from the scale-up paradigm to more
heterogeneous architectures [4, 5].

Additionally, numerous studies have shown that, despite
the large amount of processing power available in modern
data centers, only a small portion of it is being utilized by
the providers [6, 7]. One of the main reasons is that the
interference between different workloads running in a same
machine can in many ways severely hurt performance, despite
the fact that the available processing resources are more than
sufficient for the workloads to co-exist [8, 9]. Hence, providers
prefer to underutilize some of their resources in favor of a
more stable behavior with minimum performance variations

for their clients. Researchers have proposed that moving to
heterogeneous platforms can form a path to mitigate the
consequences of this problem [4, 10]. One of the building
blocks of heterogeneous computing ecosystem is accelerators,
such as GPUs, Intel Xeon Phi or FPGAs.

At the same time, cloud computing has been established
in many data-center infrastructures offering benefits both for
the end users as well as the service providers, such as
flexibility, server consolidation, costs reduction and resource
utilization among others. With the aforementioned potential
that heterogeneous computing and accelerators appears to
develop, there is a growing need for integration in the current
cloud stacks. In essense, virtualization-aware systems need to
embrace accelerators by adapting their components into the
specialized nature of this kind of hardware.

In recent years, there are efforts to enlarge the application
scope of accelerators inside Virtual Machines (VMs). Inter-
esting research works have been published mostly targeting
GPUs [11]–[19]. Additionally, in the enterprise section, com-
panies have started to offer GPUs as a service in a cloud
context [20, 21]. Based on our experience of accelerating
applications in virtualized environments, we argue that system
engineers have to design next generation accelerator tech-
nologies bearing in mind the need of device integration on
virtualized environments both in the software as well as the
hardware level.

Concerning Xeon Phi coprocessors family, Intel offers a
couple of solutions with KVM [22] and Xen hypervisor [23]
using the PCIe passthrough method. This virtualization ap-
proach offers near-native performance at the expense of inabil-
ity to share a single accelerator device to many VMs, since
the Xeon Phi card is being directly assigned exclusively to a
single VM.

To our knowledge, there is currently no solution enabling
Xeon Phi sharing between virtual machines in a same host. In
this paper, we make a first step towards Xeon Phi virtualization
and sharing between VMs. We propose vPHI, a low overhead
Xeon Phi virtualization framework, that accelerates virtual
machines by enabling them to execute code on a Xeon Phi
card. We implement vPHI using QEMU-KVM [24, 25] as
a proof-of-concept, but the concept can be applied to other
virtualization environments as well. vPHI provides virtualiza-
tion of Intel’s SCIF (Symmetric Communication Interface),

which is the transport layer that is used between the host and
the accelerator devices over the PCIe bus. vPHI is binary-
compatible with precompiled applications, alleviating the need
for porting or even recompiling existing source code. vPHI
supports all three modes that are defined in the Xeon Phi model
of execution, i.e. native, offload and symmetric. Preliminary
results in native execution mode show promising perspectives
for Xeon Phi sharing and integration in current cloud stacks.

The rest of the paper is organized as follows: we provide
the necessary background in Section II. Section III describes
the design and implementation of vPHI, while section IV
presents performance evaluation results. In Section V we
discuss related work and finally in Section VI we conclude
and present directions of future work.

II. BACKGROUND

Intel Xeon Phi is a product family of processors that employ
Intel’s MIC (Many Integrated Core) architecture. It consists
of a series of massively-parallel manycore processors that
provides x86 compatibility and can be used to accelerate
a system as a coprocessor, or even as a host processor
(e.g. Knights Landing). In this paper, we target Xeon Phi
coprocessor case and provide a solution that can be used in
virtualized environments. Next, we provide some background
details about the technologies and the software stacks that we
use.

A. Xeon Phi model of execution

Intel defines a model of execution, including three modes to
meet different use-case needs: native, offload and symmetric
modes of execution. In native mode the user supply the exe-
cutable directly on the Xeon Phi card. Offloading mode permits
the user to execute the application on the host CPU and offload
some compute-intensive workloads to the coprocessor using
the corresponding directives of a framework, e,g, OpenMP.
Finally, in symmetric mode Xeon Phi can be viewed as an
independent node and in that way a user can launch some
processes of the same parallel application on the host side
and some other processes on the accelerator, using for example
MPI. In this work, we evaluate vPHI using the native mode
of execution. However, vPHI supports all three modes, since
all of them utilize SCIF as the transport layer to communicate
with the device.

B. Xeon Phi system software stack

Current Xeon Phi devices are connected to the system
through the PCIe bus. Intel provides SCIF (Symmetric Com-
munication Interface), a low-level abstraction layer over PCIe,
in order to enable higher-level components to exploit DMA
capabilities of Xeon Phi without messing directly with PCIe
transactions. With vPHI, we essentially provide a virtualization
scheme of SCIF to enable the same functionality for VMs.
Figure 1 depicts the general system architecture of the software
stack that is used in a typical non-virtualized Xeon Phi
environment. Using SCIF, applications running in the host as
well as the device can communicate with each other using the

same API. In order to achieve that, Xeon Phi itself boots a
micro operating system (uOS), which consists of a modified
Linux kernel, that includes a SCIF driver. Also, to expose the
SCIF API, a SCIF library (libscif) is used. Furthermore, Xeon
Phi software stack includes an emulated network driver as part
of the uOS, that uses SCIF, and enables users to utilize network
tools (e.g. ssh) and remotely connect to the Xeon Phi device.
In this way, they can execute applications on the coprocessor
using a shell. Similar to the Xeon Phi card, the respective
components, libscif and SCIF driver, have been implemented
for the host side.

user

kernel

PC
Ie

COI library

SCIF library

SCIF driver

micnativeloadex

SCIF driver

SCIF library

COI deamon

COI library

Host Xeon Phi

hw

Fig. 1: Communication between host and Xeon Phi

The library exposes the SCIF API to the application-side
and communicates with the SCIF driver by performing system
calls to a character device, namely /dev/mic/scif. SCIF
API provides both one-way and two-way communication
semantics. There is a family of socket-like SCIF calls
(scif_bind(), scif_listen(), scif_accept(),
scif_connect(), scif_send(), scif_recv()) that
supports traditional send-receive communication and another
set of calls (scif_register(), scif_unregister(),
scif_(v)readfrom(), scif_(v)writeto(),
scif_mmap(), scif_munmap()) that exposes read/write
(RDMA) semantics. RDMA is a common communication
pattern used in high performance interconnects domain. In
such contexts, developers frequently use a combination of
RDMA and polling as an alternative to blocking methods,
in order to notify the client of an I/O completion event.
Similarly, SCIF provides scif_poll() to inform the
caller that a subsequent operation to a specific endpoint can
be performed without blocking, which for example could
mean that some data have been received. Finally, there is
another set of SCIF calls (scif_fence_*()) that act as
synchronization barriers. vPHI provides the same interface
to the applications running in VMs by redirecting the traffic
through the host.

However, for certain use cases even SCIF exposes unnec-
essary details that many runtime systems or libraries do not
need to be aware of. Hence, Intel provides a higher-level
library which uses SCIF as the transport layer and abstracts
the low-level details (Figure 1). This library is called COI
(Coprocessor Offload Infrastructure) and can be used to build
runtime frameworks in order to query and control the state

of Xeon Phi devices available in the system or to offload
computational workloads to the coprocessor, by loading the
appropriate libraries and executables, transferring the data over
PCIe. Intel has implemented a set of tools for this purpose,
which are included in their platform software stack (Intel
MPSS [26]). We use on of these tools (micnativeloadex)
to evaluate our framework in native mode of execution. Xeon
Phi device receives the respective requests from the host
through a COI daemon that is executed after uOS has booted.
By virtualizing SCIF transport layer, vPHI remains compatible
with higher-level frameworks, such as COI.

C. I/O Virtualization software stack
We implement vPHI in QEMU-KVM environment using

the paravirtualization approach. Paravirtualization enables low
overhead I/O virtualization by establishing an efficient com-
munication channel between the host and the VM (guest).
Using this method the virtual hardware exposes a software
interface to the respective driver in the guest, which is aware
that is being virtualized and thus reduces any unnecessary I/O
traffic that a virtualization unaware driver would produce. The
mechanism we use for this purpose is virtio [27], which is
a standardized interface used for development of virtualized
devices, as well as a mechanism to support communication
between the guest and the hypervisor.

Frontend

notifyvirtual
interrupt

VM

Backend

Hypervisor

Fig. 2: Virtio transport mechanism

Virtio follows the split-driver model approach, according
to which a paravirtualized frontend driver is inserted into the
guest, communicating with the respective backend on the host
side. For the communication to be realized a shared ring
structure is registered between the guest and the host (Fig-
ure 2). The frontend driver submits I/O requests by posting the
respective buffers in the shared ring and notifying the backend.
Afterwards, the backend processes the event, emulates the I/O
that is requested and produces a corresponding response. It
posts the response in the ring and notifies the guest side via
a virtual interrupt. Guest can either busy-wait on the shared
ring, consuming CPU cycles, or block until the request is
accomplished. In the latter case, the interrupt produced by
the host, wakes-up the guest, which pushes up the response
to the upper layers. We point out here that no copies are
involved during the communication between the guest and the
host, since a shared memory area (ring) is used and also the
host can access guest’s physical address space and map the
corresponding buffers to its own address space.

III. DESIGN AND IMPLEMENTATION

We implement vPHI as a proof-of-concept using QEMU-
KVM as the hypervisor and virtio as the paravirtualization
interface. As shown in Figure 3, vPHI consists of a guest
kernel driver and a QEMU backend device implemented in
host user space. We also need to make a slight modification
to the kvm host kernel module, in order to properly redirect
page faults to the guest. In general, we try to be as less
intrusive as possible. In this context, the QEMU backend
device and the guest kernel driver can be applied without
host kernel disruption. Nevertheless, the previously mentioned
modification to the host kernel kvm driver is necessary in order
to support mapping of guest user memory areas to Xeon Phi
device memory through scif_mmap(). We further analyze
this on the following paragraphs.

Essentially, the main role of vPHI is to intercept original
SCIF transport requests and to redirect them through the
backend QEMU device. Upon receiving these requests, the
backend driver forwards them to the host SCIF driver, which
controls the physical device. After the completion of an I/O
request, the results are pushed back to the stack following the
opposite direction eventually reaching the original requester,
which usually is a runtime’s transport layer. Simultaneous
multi-threaded execution requests from different VMs can end
up running in parallel on the Xeon Phi device spreaded across
the available cores of the card. If there is an oversubscription
considering requested threads to physical cores ratio, then the
resource multiplexing is accomplished by the scheduler of the
uOS which runs on a dedicated Xeon Phi core. In Figure 3 we
consider a SCIF request triggered by an application inside a
VM and show the corresponding I/O path. This is a represen-
tative scenario that occurs in any of the three aforementioned
Xeon Phi modes of execution. Solid lines represent control
path, while dashed lines represent data path. We refer to each
phase of Figure 3 in the subsequent paragraphs, as we describe
each component and how it operates.

Based on Figure 3 we describe the example of an application
launched on the Xeon Phi accelerator from a VM using
micnativeloadex from Intel MPSS [26]. This scenario
can occur in parallel with different applications inside a VM
or even by multiple VMs using vPHI, which enables sharing
at both levels. The tool has to request DMA transactions
with Xeon Phi as the destination for the binary, libraries etc.,
through (libscif) library (3a). Afterwards, libscif is-
sues (3b) the corresponding system call (open(), close(),
ioctl(), poll(), mmap()) depending on the operation
requested. Most of the SCIF functionality is exposed to user
space through different ioctl() commands. Since vPHI
implements SCIF operations, both the application-tool as well
as libscif remain intact and no recompilation is even
needed. Hence, the issued system call is intercepted by the
vPHI frontend driver.

vPHI frontend driver: We implement vPHI frontend driver
as a Linux kernel module which is inserted dynamically
at guest kernel space. The driver acts as a “glue” between

 micnativeloadex tool

libscif

 vPHI Frontend Driver

SCIF call

syscall

vPHI virtual device

notifyvirtual interrupt

data copy
pass by

reference

user
kernel

user

hardware

kernel

VM

SCIF driver

3i3ii

syscall

3e 3c

3b

3a

3d

Fig. 3: vPHI Architecture (Data and Control Path)

virtualization-unaware libscif and the rest of the stack by
forwarding the operations requested to vPHI backend device
through virtio communication channels. Among its duties, the
frontend driver multiplexes requests and orchestrates the user
space threads or processes that are waiting for a response from
the coprocessor. We had two design choices in this step: we
can either implement a polling-based method or an interrupt-
based one. Since busy-waiting on a shared resource consumes
CPU cycles, we choose the interrupt-based approach, adding
up some extra overhead when the driver sets up the sleeping
mechanism, in favor of better performance when the number of
parallel requests increases. Thus, the driver places a reference
to a buffer in the shared ring structure, then notifies the back-
end device (3c) that there is a pending request and registers
the waiting mechanism until a wakeup event arrives. When
this happens, the interrupt handler checks the last response in
the shared ring and wakes up the respective entity to continue
and push the data up to the stack. Throughout this procedure
the only copies that occur are the ones between user space
and kernel space at each direction of the path (3i, 3ii). Every
other data exchange is realized through references reducing
the virtualization overhead especially for large data transfers.

vPHI backend device: We design vPHI backend device as
a virtual PCI device and implement it as a QEMU extension.
As we mentioned previously, the backend is notified by the
frontend (3c) when a new request has been pushed to the
virtio ring. Then, the backend checks the shared ring and
maps the buffer to its address space avoiding again any copies.
The backend has access to the memory mappings of guest
hardware address space to host user space since it registers
guest memory when the VM boots. Afterwards, the backend
performs the relevant system call (3d) to the host SCIF driver
and waits for the result. When the system call returns, it pushes
the result in the shared ring and notifies the guest via a virtual

interrupt (3e). Following this approach, every VM on the same
physical machine, is represented by a different QEMU host
process. Thus, Xeon Phi sharing is enabled, as from the host
driver’s perspective, multiple VMs issuing SCIF request are
essentially multiple host processes that execute system calls
to SCIF driver in parallel.

Blocking vs non-blocking mode: QEMU has been imple-
mented based mainly on an event-driven approach. As such,
QEMU handles events as they are produced and during that
time the whole VM is in blocking mode. Any previously
running entity inside the guest pauses. This model prevents
race conditions and avoids many synchronization points at
the cost of suspending the execution of the virtual machine.
That way, event handling should complete as early as possible
to prevent noticeable pauses of the guest. In a few cases,
when this is not possible, QEMU follows a threading model,
according to which it spawns a worker thread that executes
the long-running handling of the event, and falls back to the
event-driven mode unfreezing the VM.

In designing vPHI functionality, we had to decide between
these two modes for SCIF operations. Following QEMU’s
approach, we choose the blocking mode for most SCIF oper-
ations and a non-blocking mode for operations that otherwise
would potentially block the virtual machine for an unaccept-
able period of time. For example, SCIF defines a connection-
oriented model between two endpoints before data transfers
begin and in this context it implements scif_listen() and
scif_accept() with similar logic to the POSIX sockets
API. Hence, we implement scif_accept() in a non-
blocking way, since we do not know beforehand when a
corresponding scif_connect() request will arrive. For
data transfer requests, we follow the blocking model, although
one can argue that the blocking cost increases proportionally
with the data size. The performance tradeoff to consider here
arises on the one hand from the blocking cost that prevents
any other threads inside the guest to make progress, while on
the other hand from the overhead of creating and eventually
destroying the worker thread. As the data size increases,
the non-blocking method appears more appealing. Thus, as
a future direction, we plan to implement a hybrid model,
according to which vPHI will use the blocking method for
smaller data transfers, while for larger ones, it will switch to
the non-blocking approach.

Guest memory registration and MMIO: Apart from
two-way send-receive communication semantics, SCIF also
supports remote memory access for exchanging data be-
tween host and device memory, exposing the relevant API
(scif_(v)readfrom(), scif_(v)writeto()). For a
buffer to be involved in a set of remote memory operations,
the relevant memory pages have to pinned. Memory pinning
refers to a procedure according to which a page or a set
of pages are marked in a way that prevents the operating
system from swapping them out. In this way, a subsequent
remote memory read from these pages would load valid data
to the remote node. If the respective pages are not pinned,
and happens to have been swapped out, the read operation

will acquire invalid data, without any chance to produce a
page fault and bring back the original data from the disk.
Likewise, a remote memory write operation could overwrite
data of some other process in case of a previous swap
out. SCIF exposes the memory pinning functionality through
scif_register()/scif_unregister() calls. In vPHI
implementation of memory pinning we first pin the pages that
the user requested in the guest operating system. These pages
correspond to the user-supplied buffer which is referred to the
guest user space. However, the buffers which are pushed to
the shared ring are always referred to the guest kernel space
and subsequently, virtio translates them to guest physical space
in order to be later accessed by QEMU backend through the
mapping to its own host user space. Thus, before it uses the
shared ring, vPHI first maps the respective pinned page to a
kernel address, and then it pushes this buffer to the virtio ring
for further processing.

Apart from remote read/write operations with the pinned
buffers, SCIF supports memory mapping of remote buffers
to the local address space through scif_mmap(). After a
successful call to scif_mmap(), in order to access Xeon
Phi memory, the user can simply dereference (load/store) the
relevant mmap’ed memory address without any intermediate
library or system call. This memory access would either
page fault to the host operating system, which will confirm
the validity of the mapping and fetch the corresponding
frame to main memory or retrieve the data from the main
memory that a previous memory access has forced to fetch.
Inside scif_mmap() host properly setups the corresponding
memory management structures pointing to device memory.
In vPHI, we perform a two-level mapping, one from the
user-supplied address to a guest physical frame and a second
from the guest physical frame to the host physical frame,
which corresponds to Xeon Phi memory. The problem with
this approach lies in the fact that if an application running
inside a virtual machine performs e.g. a pointer dereference
of a previously successfully mapped buffer, then it will fault
into kvm host kernel module, which will try to examine the
situation based on the address that faulted. However, this
address will be interpreted by the host driver as a reference to
its own address space leading to an invalid memory area. In
order to overcome this problem, we have to make a slight
modification to the host driver as well as the kvm. Linux
kernel separates different mappings by defining different vmas
(virtual memory areas). We therefore tag every vma that has
been created by vPHI during scif_mmap() using a new
label (VM_PFNPHI) and store the relevant physical frame
number. Then, in every fault that is triggered by a vPHI
mmap’ed area, kvm spots the frame number that corresponds
to the respective Xeon Phi memory region. The modifications
in terms of lines of code are slight (less than 10 LOC in kvm
and less than 15 LOC in host SCIF driver).

Implementation details: During a SCIF data transfer using
vPHI, the guest frontend driver first allocates a buffer and
copies the user-supplied data (for the send/write case) or
the received data (for the receive/read case). In this step

we want to allocate guest physically contiguous pages, so
we use kernel’s kmalloc() API, since this set of pages
will be later used for I/O between guest and host through
virtio ring. However, Linux memory subsystem imposes a
limitation on the maximum set of physically contiguous pages
that can be allocated. This upper limit is defined in the kernel
(KMALLOC_MAX_SIZE) and depends on the architecture.
Specifically, for x86_64 architecture the limit is 4MB. Hence,
if the requested data size is greater than this value, we
implement the data transfer breaking up the allocation to
KMALLOC_MAX_SIZE elements and proceed with each one
of them.

Host Xeon Phi driver exposes a set of information related to
the Xeon Phi, such as the family codename of the accelerator,
through the sysfs filesystem. Some of Intel’s MPSS software
runtimes and tools, including micnativeloadex, rely on
this information to operate as intended. Thus, we implement
the necessary functionality that is required, in order to be able
to successfully launch a MIC executable on the Xeon Phi, and
we expose the same information that is provided in the host.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

In this section we describe the experiments we performed to
analyze the behavior of vPHI and we present the correspond-
ing results. We setup a host machine with 1x Intel Xeon E5-
2695 v2, 64GB RAM (DDR3-1600Mhz), also equipped with
one Intel Xeon Phi 3120P coprocessor. We configure host as
a VM container using QEMU-KVM (version 2.2.50) as the
hypervisor.

At first, we implement a set of microbenchmarks to evaluate
SCIF performance and we show the results in the subsec-
tion IV-B. Next, we conduct a higher-level experiment using
dgemm from Intel samples [28] to multiply matrices. For the
dgemm experiment we follow the native mode of execution
according to Intel’s execution model.

In native mode of execution there are two choices. The user
can either ssh to the accelerator and execute the application
locally, or launch the MIC executable directly from the host.
In the first case the user should explicitly copy the executa-
bles, libraries and other dependencies on the coprocessor and
then execute the application. In a virtualized environment,
this can become possible by configuring a network bridge
on the host between the emulated mic0 network interface
and the interface that is attached to the VM. However, this
configuration is not well-suited for cloud environments. Such
setups can end up with many users logged in a shared
accelerator environment ruining the isolation characteristics of
cloud computing. Hence, we test native mode using the latter
case described, which is enabled by vPHI.

B. Microbenchmark Performance

We implement a set of microbenchmarks that exchange data
over the PCIe between the host and Xeon Phi using SCIF.
We execute these benchmarks in order to estimate the vir-
tualization overhead of vPHI. We analyze vPHI performance

using send-receive two-way communication as well as remote
memory operations. First, we execute the benchmark on the
host, in order to obtain the baseline performance. Then, we
spawn a single-core VM with vPHI and execute the benchmark
in the virtualized environment. In both cases, a corresponding
server is executed on the coprocessor, in order to serve SCIF
send request (in the send-receive case) or properly register
device memory (in the remote memory case).

In order to measure latency, we use the send-receive
benchmark, according to which a SCIF server is launched
on the accelerator, listens for connection requests and when
a connection is established, it blocks on scif_recv(),
waiting to serve data to the respective client. In this context,
a SCIF client is executed on the host (or on the VM), which
connects to the server and sends a number of data. We show
the corresponding latency measured for the host as well as for
the vPHI in Figure 4.

0

400

800

1200

1600

2000

2400

2800

3200

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K

La
te

nc
y

(u
se

c)

Data size (Bytes)

vPHI

host

Fig. 4: Send-receive communication latency

For the native (host) execution the latency for sending
1 Byte is 7 us, while for the virtualized one, the respective
latency climbs up to 382 us. Hence, the virtualization overhead
of vPHI is 375 us (=382−7). Since this is a notable increase,
we performed deeper breakdown measurements to further
investigate the cause of this overhead. Based on the breakdown
analysis, we conclude that 93% of this overhead attributes
to the waiting scheme of vPHI inside the frontend driver.
More specifically, when the frontend driver issues a SCIF
request to the shared ring, the relevant process is placed on a
waiting queue, until the request is fulfilled. When the backend
has finished the execution of the request, it triggers a virtual
interrupt and the interrupt handler in the guest wakes up all
sleeping processes, which check the shared ring to determine if
the reply is for them. The mechanism of sleeping and waking
up is the main source of performance degradation for latency-
sensitive workloads. As we mentioned in the previous sections,
this scheme is necessary for larger data transfers in order to
reduce the CPU utilization of an alternative busy-wait method.
However, we plan to implement a hybrid approach that uses
each time the best of the two available schemes depending on

the requested data size, so we can enable near-native latency
for small data sizes, while retaining acceptable transfer rate
for larger ones. Finally, in Figure 4 we can observe that the
previously mentioned overhead remains constant as data size
increases, so there is a constant offset in terms of latency
compared to the baseline measurement.

Next, we execute another benchmark using the SCIF remote
memory access model, which is more suitable for larger data
transfers, in order to estimate the maximum throughput that
vPHI can attain. In this experiment, we launch an executable
on Xeon Phi, that again listens for incoming connections and
then pins a device memory area based on the requested size
using scif_register(). In the host (or VM) side the
benchmark requests a connection and afterwards it performs
a remote read from the accelerator device. The results are
depicted in Figure 5. We can observe that host remote read can
reach 6.4GB/s, while vPHI’s respective throughput is 4.6GB/s,
which equals to 72% of the host case.

0

1000

2000

3000

4000

5000

6000

7000

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Th
ro

ug
hp

ut
 (M

B
/s

)

Data size (Bytes)

vPHI

host

Fig. 5: Remote memory access throughput

C. Application Performance

In this subsection we show the results of a higher-level
application that we used with vPHI. We measured the ex-
ecution of cblas_dgemm matrix multiplication from Intel
samples [28], which uses the MKL [29] library. We use
micnativeloadex, a tool that Intel provides to enable
launching of MIC executables to the coprocessor directly from
the host, following the native mode approach. As we previ-
ously described, micnativeloadex uses COI library and
communicates using the SCIF protocol with coi_daemon
executed on the coprocessor. micnativeloadex’s role is to
properly setup the environment, launch the necessary libraries
and executables and spawn the requested number of threads.

In this experiment we execute micnativeloadex with
dgemm as the supplied binary on the host and on the VM.
After the moment that dgemm executable has been launched
on Xeon Phi and since it is executed as a whole without vPHI
intervention, we observed no performance degradation for the
vPHI compared to the host concerning actual execution time
on the device. In order to estimate the overhead of vPHI in the

entire offloading procedure, however, we also measure the total
time of execution from the moment that micnativeloadex
is launched on the host (or the VM) until the final results are
produced and the tool finishes execution. We vary the number
of threads as well as the size of the matrices and plot the
results in Figure 6, Figure 7 and Figure 8 for 56, 112 and 224
number of threads respectively.

0x

 0.5x

 1x

 1.5x

 2x

84MB 160MB 313MB 618MB 1236MB

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Input Data Size

host
vPHI

Fig. 6: Launch and execution of dgemm using 56 threads

0x

 0.5x

 1x

 1.5x

 2x

84MB 160MB 313MB 618MB 1236MB

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Input Data Size

host
vPHI

Fig. 7: Launch and execution of dgemm using 112 threads

0x

 0.5x

 1x

 1.5x

 2x

84MB 160MB 313MB 618MB 1236MB

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Input Data Size

host
vPHI

Fig. 8: Launch and execution of dgemm using 224 threads

The Y axis represents the normalized total time of execution
that includes the launching of the necessary binaries using
micnativeloadex from the host (or the VM) and the
actual execution on the accelerator. The X axis represent the
total size of the two input arrays. We try to setup and present
a meaningful experiment in terms of input data size. From the
above figures we can draw the conclusion that for larger exper-
iments (order of seconds), which include longer-running loops
as well as transferring sizable binaries (libraries/executables)
over the PCIe, the virtualization cost of vPHI is amortized
and the relative overhead compared to the total execution
time is negligible. In contrast, as the size of transfered data
decreases, vPHI’s virtualization overhead has a greater impact,
as the previous latency experiments prove. However, given

the cost of a PCIe transaction, a typical scenario involving a
coprocessor usually consists of loading a substantial amount
of data following by a heavy computational phase, because
otherwise it may not worth the effort of offloading a small
amount of data and perform a light computation that could be
carried out on the local CPU with less overhead.

V. RELATED WORK

Xeon Phi consists of a relatively new and evolving architec-
ture family. In order to enable access from a VM, Intel [22, 23]
and VMware [30] use the PCIe passthrough technique to
directly assign the coprocessor to a single VM. Although,
using this method an application running in a virtual machine
can perform at a near-native rate, it does not support sharing
of one physical device to multiple VMs. To our knowledge,
there is currently no solution that enables sharing of a Xeon
Phi coprocessor to multiple virtual machines. Furthermore,
ScaleMP provides to the application a virtual pool of cores
and memory by aggregating resources from the host and the
accelerator in a unified manner [31]. This approach eventually
provides a large SMP configuration to the user rather than a
setup that uses the offload model of execution.

Considering the problem of accelerators virtualization,
many approaches have been proposed targeting mostly GPUs.
In the meantime, many cloud providers, such as Amazon [20],
Microsoft Azure [21] etc. have started to offer GPU computing
resources as a service. We briefly mention GPU virtualization
approaches here, as we propose a virtualization solution for
a different accelerator with different characteristics. However,
approaches from the GPU virtualization domain are included
in the set that motivates us for this work. Similar to the Xeon
Phi case, a class of proposed solutions includes the use of
passthrough technology to provide to a VM direct access to
a host device. Additionally, there are solutions [16, 32] that
expose a static number of virtualized GPUs, each one of them
is directly assigned to a virtual machine. Other works fall into
the full virtualization category [15], according to which no
modification is performed to the guest operating system. Some
approaches have been proposed using the paravirtualization
technique [11]–[13], while others employ both full virtual-
ization and paravirtualization methods [14]. API redirection
technique is used by some solutions in order to provide
GPU virtualization features [17] or to even remotely execute
GPU jobs [18]. In the context of remote execution, there are
efforts [19] to optimize the intra-node communication between
VMs located on the same host and thus to execute remote
GPU frameworks with lower overhead. Finally, there are
some approaches towards providing virtualization solutions for
FPGAs, targeting either a better exploitation of the underlying
hardware by different sections of an application [33] or the
integration to cloud stacks [34].

VI. CONCLUSION

In this work we present vPHI, a framework for efficient
virtualization of Intel Xeon Phi resources and sharing between
VMs running on the same host. We design vPHI following

the split-driver model, with a frontend driver running in the
guest operating system and the respective backend as a QEMU
process in the host userspace. vPHI provides transparency
and binary compatibility with existing precompiled MIC exe-
cutables, since it operates at the transport layer and complies
with Intel’s SCIF low-level API. Experimental evaluation of
our prototype reveals that vPHI has negligible overhead when
combined with large data transfers over the PCIe, which are
present in many typical coprocessor use cases.

In this work we evaluate our framework using the native
mode of Xeon Phi execution model. However, since vPHI
supports all three execution modes, we plan to thoroughly
evaluate vPHI in offload and symmetric mode of execution
as a future work, using popular frameworks, such as OpenMP
and MPI respectively. Finally, future endeavors also include
optimizing further our framework by implementing hybrid
models that will combine blocking and non-blocking mode
depending on the data size and deeply investigating the guest
driver’s waiting scheme, in order to also enable potential
latency-sensitive applications to benefit from vPHI.

REFERENCES

[1] In Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update 20142019 White Paper.

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-
ceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp.
365–376.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Power challenges may end the multicore era,” Commun.
ACM, vol. 56, no. 2, pp. 93–102, Feb. 2013.

[4] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward dark
silicon in servers,” IEEE Micro, vol. 31, no. 4, pp. 6–15, July 2011.

[5] M. Shafique, S. Garg, T. Mitra, S. Parameswaran, and J. Henkel, “Dark
silicon as a challenge for hardware/software co-design: Invited special
session paper,” in Proceedings of the 2014 International Conference on
Hardware/Software Codesign and System Synthesis, ser. CODES ’14.
New York, NY, USA: ACM, 2014, pp. 13:1–13:10.

[6] L. A. Barroso, “Warehouse-scale computing: Entering the teenage
decade,” SIGARCH Comput. Archit. News, vol. 39, no. 3, Jun. 2011.

[7] L. A. Barroso and U. Hoelzle, The Datacenter As a Computer: An In-
troduction to the Design of Warehouse-Scale Machines, 1st ed. Morgan
and Claypool Publishers, 2009.

[8] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
up: Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-44. New
York, NY, USA: ACM, 2011, pp. 248–259.

[9] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’13. New York, NY, USA: ACM,
2013, pp. 77–88.

[10] C. Kachris, G. Gaydadjiev, H. N. Nguyen, D. S. Nikolopoulos, A. Bilas,
N. Morgan, C. Strydis, V. Spatadakis, D. Gardelis, R. Jimenez-Peris,
and A. Almeida, “The vineyard project: Versatile integrated accelerator-
based heterogeneous data centres,” in 2016 5th International Conference
on Modern Circuits and Systems Technologies (MOCAST), May 2016,
pp. 1–4.

[11] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A gpgpu transpar-
ent virtualization component for high performance computing clouds,” in
Proceedings of the 16th International Euro-Par Conference on Parallel
Processing: Part I, ser. EuroPar’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 379–391.

[12] M. Gottschlag, M. Hillenbrand, J. Kehne, J. Stoess, and F. Bellosa,
“Logv: Low-overhead gpgpu virtualization,” in 2013 IEEE 10th Inter-
national Conference on High Performance Computing and Communica-
tions 2013 IEEE International Conference on Embedded and Ubiquitous
Computing, Nov 2013, pp. 1721–1726.

[13] D. Vasilas, S. Gerangelos, and N. Koziris, “Vgvm: Efficient gpu capa-
bilities in virtual machines,” in 2016 International Conference on High
Performance Computing Simulation (HPCS), July 2016, pp. 637–644.

[14] Y. Suzuki, S. Kato, H. Yamada, and K. Kono, “Gpuvm: Why not
virtualizing gpus at the hypervisor?” in Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference, ser. USENIX
ATC’14. Berkeley, CA, USA: USENIX Association, 2014, pp. 109–
120.

[15] K. Tian, Y. Dong, and D. Cowperthwaite, “A full gpu virtualization
solution with mediated pass-through,” in Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Conference, ser.
USENIX ATC’14. Berkeley, CA, USA: USENIX Association, 2014,
pp. 121–132.

[16] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-class
gpu resource management in the operating system,” in Proceedings of
the 2012 USENIX Conference on Annual Technical Conference, ser.
USENIX ATC’12. Berkeley, CA, USA: USENIX Association, 2012,
pp. 37–37.

[17] L. Shi, H. Chen, J. Sun, and K. Li, “vcuda: Gpu-accelerated high-
performance computing in virtual machines,” IEEE Transactions on
Computers, vol. 61, no. 6, pp. 804–816, June 2012.

[18] A. J. Pea, C. Reao, F. Silla, R. Mayo, E. S. Quintana-Ort, and J. Duato,
“A complete and efficient cuda-sharing solution for {HPC} clusters,”
Parallel Computing, vol. 40, no. 10, pp. 574 – 588, 2014.

[19] A. Nanos, S. Gerangelos, I. Alifieraki, and N. Koziris, “V4vsockets:
Low-overhead intra-node communication in xen,” in Proceedings of the
5th International Workshop on Cloud Data and Platforms, ser. CloudDP
’15. New York, NY, USA: ACM, 2015, pp. 1:1–1:6.

[20] Amazon GPU Instances, http://aws.amazon.com/ec2/instance-types/.
[21] “Microsoft Azure,” https://azure.microsoft.com/en-us/.
[22] “Getting Kernel-Based Virtual Machine (KVM) to Work with Intel Xeon

Phi Coprocessors,” https://software.intel.com/en-us/articles/getting-
kernel-based-virtual-machine-kvm-to-work-with-intel-xeon-phi-
coprocessors.

[23] “Getting Xen working for Intel Xeon Phi Coprocessor,”
https://software.intel.com/en-us/articles/getting-xen-working-for-
intelr-xeon-phitm-coprocessor.

[24] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liquori, “kvm: the
linux virtual machine monitor,” in Linux Symposium, Ottawa, Ontario,
Canada, 2007, pp. 225–230.

[25] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference,
ser. ATEC ’05. Berkeley, CA, USA: USENIX Association, 2005, pp.
41–41.

[26] “Intel Manycore Platform Software Stack (Intel MPSS),”
https://software.intel.com/en-us/articles/intel-manycore-platform-
software-stack-mpss.

[27] R. Russell, “Virtio: Towards a de-facto standard for virtual i/o devices,”
SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 95–103, Jul. 2008.

[28] “Intel Software Product Samples and Tutorials,” https://software.intel.
com/en-us/product-code-samples?value=20825&value=20802.

[29] “Intel Math Kernel Library (Intel MKL),” https://software.intel.com/en-
us/intel-mkl.

[30] “Using the Intel Xeon Phi Compute Accelerator with ESX 6.0,” https:
//cto.vmware.com/using-intel-xeon-phi-esx-6-0.

[31] “Accelerated-Computing - ScaleMP,” http://www.scalemp.com/
solutions/accelerated-computing.

[32] Nvidia, “NVIDIA GRID Virtual GPU Technology,”
http://www.nvidia.com/object/grid-technology.html.

[33] M. Hubner, P. Figuli, R. Girardey, D. Soudris, K. Siozios, and J. Becker,
“A heterogeneous multicore system on chip with run-time reconfigurable
virtual fpga architecture,” in 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum, May
2011, pp. 143–149.

[34] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“FPGAs in the cloud: Booting virtualized hardware accelerators with
openstack,” in 2014 IEEE 22nd Annual International Symposium on
Field-Programmable Custom Computing Machines, May 2014, pp. 109–
116.

https://software.intel.com/en-us/articles/getting-kernel-based-virtual-machine-kvm-to-work-with-intel-xeon-phi-coprocessors
https://software.intel.com/en-us/articles/getting-kernel-based-virtual-machine-kvm-to-work-with-intel-xeon-phi-coprocessors
https://software.intel.com/en-us/articles/getting-kernel-based-virtual-machine-kvm-to-work-with-intel-xeon-phi-coprocessors
https://software.intel.com/en-us/articles/getting-xen-working-for-intelr-xeon-phitm-coprocessor
https://software.intel.com/en-us/articles/getting-xen-working-for-intelr-xeon-phitm-coprocessor
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/en-us/product-code-samples?value=20825&value=20802
https://software.intel.com/en-us/product-code-samples?value=20825&value=20802
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://cto.vmware.com/using-intel-xeon-phi-esx-6-0
https://cto.vmware.com/using-intel-xeon-phi-esx-6-0
http://www.scalemp.com/solutions/accelerated-computing
http://www.scalemp.com/solutions/accelerated-computing

