
Virtio-SCIF: Enabling Xeon Phi capabilities on
Virtual Machines

Stefanos Gerangelos and Nectarios Koziris {sgerag,nkoziris}@cslab.ece.ntua.gr

Motivation
• Coprocessor Virtualization

• Use Case: Intel Xeon Phi

• Currently, it is not possible for many VMs to share a single Xeon Phi

• Full coprocessor virtualization involves complex implementation details

• Current "alternatives":
– Direct device assignment to a single VM (via PCIe passthrough)
– TCP/IP through Xeon Phi virtual network device

Xeon Phi Modes of Execution
i) Native Mode: applications are executed in a coprocessor-only way

ii) Offload Mode: the coprocessor can be used by the host as an accelerator by offload-
ing certain workloads

iii) Symmetric Mode: allows both the host CPUs and the coprocessors to be involved in
the execution of MPI processes in a symmetric way

Symmetric Mode
SCIF: Symmetric Communication Interface

• Transport layer between Host and Xeon Phi card(s)
• Directly exposes the DMA capabilities of Xeon Phi
• Uniform API across PCIe
• Socket-like API
• Provides both one-way and two-way communication semantics
• Many MPI implementations currently support SCIF transport

Virtio-SCIF
• Main Idea: virtualizing a generic transport between host and coprocessor devices

• Targeting cloud environments hosting HPC applications

• Proof of concept:
– Virtualizing SCIF transport layer providing VMs with Xeon Phi capabilities
– Virtual device implementation using Virtio specification
– VMs can execute MPI over SCIF transparently with lower latency

• Vision:
– Unify different coprocessors/accelerators transports
– Provide coprocessor sharing to VMs by cloud providers
– VMs can benefit and accelerate data-parallel applications

Current I/O Path

Hardware

Host

User

virtio-net

VM TCP/IP
Stack

TCP/IP btl

Qemu
virtio-net

Hardware

VM MPI app

Kernel

Software
Bridge

Virtual Ethernet
Device

Xeon Phi

Host TCP/IP
Stack

– Intel provides an implementation of a virtual ethernet
device in its software stack

– VMs can execute MPI over TCP/IP
– Involves unnecessary TCP/IP traversal both in the VM

as well as in the host

Proposed I/O Path

 Xeon Phi
Hardware

Kernel

SCIF driver

Host

User

MIC driver

User

virtio-scif

libscif

scif btl

Qemu
virtio-scif

Hardware

VM MPI app

Kernel

– Communication with SCIF semantics
– No application (source or binary) modification needed
– Avoids costly TCP/IP processing
– Low-latency, high-throughput communication
– Better scalability across multiple VMs sharing the same

coprocessor card

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. A. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 164- 177, New York, NY, USA, 2003. ACM.
[2] F. Bellard. Qemu, a fast and portable dynamic translator. In ATEC ’05 Proceedings of the annual conference on USENIX Annual Technical Conference, 2005.
[3] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. A GPGPU Transparent Virtualization Component for High Performance Computing Clouds. In Proceedings of the 16th International
Euro-Par Conference on Parallel Processing: Part I, 2010.
[4] Getting Kernel-Based Virtual Machine (KVM) to Work with Intel Xeon Phi Coprocessors. https://software.intel.com/en-us/articles/getting-kernel-based-virtual-machine-kvm-to-work-
with-intel-xeon-phi-coprocessors.
[5] M. Gottschlag, M. Hillenbrand, J. Kehne, J. Stoess, and F. Bellosa. LoGV: Low-Overhead GPGPU Virtualization. In Proceedings of the 4th International Workshop on Frontiers of Heterogeneous
Computing, Zhangjiajie, China, 2013
[6] Intel Xeon Phi Coprocessor System Software Developers Guide. https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-
guide.pdf.
[7] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev: first-class GPU resource management in the operating system. In Proceedings of the 2012 USENIX conference on Annual Technical
Conference (USENIX ATC’12), USENIX Association, Berkeley, CA, USA.
[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liquori. kvm: the linux virtual machine monitor. In Linux Symposium, pages 225-230, Ottawa, Ontario, Canada, 2007.
[9] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel. PTask: operating system abstractions to manage GPUs as compute devices. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (SOSP ’11), ACM, New York, NY, USA.
[10] R. Russel. virtio: Towards a de-facto standard for virtual i/o devices. In ACM SIGOPS Operating Systems, 2008.
[11] Y. Suzuki, S. Kato, H. Yamada, and K. Kono. GPUvm: why not virtualizing GPUs at the hypervisor?. In Proceedings of the 2014 USENIX conference on USENIX Annual Technical Conference
(USENIX ATC’14), USENIX Association, Berkeley, CA, USA.

