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Motivation
• Coprocessor Virtualization

• Use Case: Intel Xeon Phi

• Currently, it is not possible for many VMs to share a single Xeon Phi

• Full coprocessor virtualization involves complex implementation details

• Current "alternatives":
– Direct device assignment to a single VM (via PCIe passthrough)
– TCP/IP through Xeon Phi virtual network device

Xeon Phi Modes of Execution
i) Native Mode: applications are executed in a coprocessor-only way

ii) Offload Mode: the coprocessor can be used by the host as an accelerator by offload-
ing certain workloads

iii) Symmetric Mode: allows both the host CPUs and the coprocessors to be involved in
the execution of MPI processes in a symmetric way

Symmetric Mode
SCIF: Symmetric Communication Interface

• Transport layer between Host and Xeon Phi card(s)
• Directly exposes the DMA capabilities of Xeon Phi
• Uniform API across PCIe
• Socket-like API
• Provides both one-way and two-way communication semantics
• Many MPI implementations currently support SCIF transport

Virtio-SCIF
• Main Idea: virtualizing a generic transport between host and coprocessor devices

• Targeting cloud environments hosting HPC applications

• Proof of concept:
– Virtualizing SCIF transport layer providing VMs with Xeon Phi capabilities
– Virtual device implementation using Virtio specification
– VMs can execute MPI over SCIF transparently with lower latency

• Vision:
– Unify different coprocessors/accelerators transports
– Provide coprocessor sharing to VMs by cloud providers
– VMs can benefit and accelerate data-parallel applications
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– Intel provides an implementation of a virtual ethernet
device in its software stack

– VMs can execute MPI over TCP/IP
– Involves unnecessary TCP/IP traversal both in the VM

as well as in the host

Proposed I/O Path

  Xeon Phi
Hardware

Kernel

SCIF driver

Host

User

MIC driver

User

virtio-scif

libscif

scif btl

Qemu
virtio-scif

Hardware

VM MPI app

Kernel

– Communication with SCIF semantics
– No application (source or binary) modification needed
– Avoids costly TCP/IP processing
– Low-latency, high-throughput communication
– Better scalability across multiple VMs sharing the same

coprocessor card
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