
Virtio-SCIF: Enabling Xeon Phi capabilities on Virtual

Machines

PhD candidate: Stefanos Gerangelos
Advisor: Professor Nectarios Koziris
Computing Systems Laboratory,

National Technical University of Athens
{sgerag,nkoziris}@cslab.ece.ntua.gr

Introduction

In recent years heterogeneous systems equipped with
accelerators or coprocessors are gaining popularity
in the High-Performance Computing (HPC) commu-
nity. At the same time, cloud computing infrastruc-
tures provide flexibility, dedicated execution, and iso-
lation to a vast number of applications from diverse
domains. Bridging the gap between virtualization,
which is the key concept behind cloud-based deploy-
ments, and strict requirements of HPC applications
is always a challenging problem.

In this work we propose Virtio-SCIF: a virtualization
scheme for Intel Xeon Phi coprocessor systems. This
approach targets cloud environments hosting HPC
applications. Virtio-SCIF provides the offload capa-
bilities of a single Xeon Phi coprocessor to many vir-
tual machines residing in the same host system.

Background and Motivation

Intel Xeon Phi [10] coprocessor consists of an inte-
grated, large set of cores (Intel Many Integrated Core
(MIC) Architecture [3]) on a PCIe card. It provides
x86 application compatibility, while running a ver-
sion of Linux as a micro operating system. Xeon
Phi’s software stack includes a virtual network de-
vice driver, so as to provide the view of an indepen-
dent node in a heterogeneous cluster environment. It
also supports several popular programming models,
including MPI and OpenMP.

Xeon Phi offers the flexibility for application devel-
opers to use it in different modes: native, offload and
symmetric. In native mode a developer can build bi-
naries solely for Xeon Phi platform and execute them
in a coprocessor-only way. Alternatively, the copro-
cessor can be used as an accelerator by offloading
certain workloads, while the main flow of execution is
taking place on the host CPU. Finally, the symmetric
model of execution allows both the host CPUs and
the coprocessors to be involved in the execution of
MPI processes and the corresponding MPI commu-

nication.
Intel has developed SCIF (Symmetric Communica-
tion Interface), a generic communication channel be-
tween Xeon Phi coprocessors and host CPUs in a
heterogeneous computing environment. It provides
communication capabilities within a single platform
through a uniform sockets-like API for communi-
cating across PCIe system bus. SCIF exposes the
DMA capabilities of Xeon Phi coprocessor and can
also be used to map host or Xeon Phi memory into
the address space of a process running on either of
them. Many MPI implementations (Open MPI [8],
MPICH [6], MVAPICH [7], Intel MPI [4]) currently
support SCIF network communication by providing
the respective SCIF transport layer.
At the same time, extensive research over the last
decade has shown that acceptable I/O virtualiza-
tion performance can be achieved by utilizing spe-
cial techniques. Each kind of device or intercon-
nect being virtualized has its own characteristics and
imposes different virtualization semantics. To our
knowledge, the only currently available solution, in
order to provide access to a single Xeon Phi device
in a virtualized environment, is to use direct device
assignment through PCIe passthrough [2]. Follow-
ing this approach, however, results in exclusive ac-
cess to Xeon Phi by a single virtual machine. Thus,
PCIe passthrough offers near-native performance at
the cost of the inability to share a coprocessor to
many virtual machines.
In order to overcome this effect, we introduce Virtio-
SCIF, a paravirtualized approach for Xeon Phi’s
SCIF transport layer. By using Virtio-SCIF, a user
of a virtual machine can execute applications in na-
tive/offload mode and also launch MPI processes
both on host CPUs and Xeon Phi coprocessors in
symmetric mode, without the network stack over-
head. Currently, MPI communication between pro-
cesses running on Xeon Phi and processes running
on virtualized CPUs is accomplished by using MPI’s
TCP/IP transport layer. This has the inevitable ef-
fect of unnecessarily traversal of the TCP/IP net-

1



work stack both on guest virtual machine as well as
the host one, which has an impact on performance.
Virtio-SCIF eliminates this overhead by using SCIF
semantics and redirecting the respective calls to the
host, which forwards them to the physical Xeon Phi
device.

Virtio-SCIF Architecture

Virtio-SCIF can be utilized in KVM [5] virtualized
environments on physical nodes equipped with one
or more Intel Xeon Phi coprocessors. It consists of a
virtio [9] guest device driver and the respective device
implementation in QEMU [1] host userspace. Virtio-
SCIF provides transparency at the application and
library level. As a result existing Xeon Phi-aware
applications can be used without any source code or
binary modifications.

Virtio-SCIF proposed software architecture is de-
picted in Figure 1. The proposed changes in software
are represented with colored boxes, while the grey
boxes represent unmodified software components.

  Xeon Phi
Hardware

Kernel

SCIF driver

Host

User

MIC driver

User

virtio-scif

libscif

scif btl

Qemu
virtio-scif

Hardware

VM MPI app

Kernel

Figure 1: Virtio-SCIF Proposed Architecture

Figure 1 presents an example of an MPI application
running in a virtual machine. A symmetric model
of execution is supposed by using SCIF as MPI Byte
Transfer Layer (BTL), although Virtio-SCIF can be
used in native and offload context as well. In this
example an MPI process is launched inside the vir-
tual machine and another MPI process is launched on
Xeon Phi coprocessor (the latter is not shown in the
figure due to lack of space). For the initial spawn of
processes, TCP/IP can be used, since this procedure
is not in the critical path and it is not expected to
affect performance.

During their lifetime, MPI processes need to com-
municate by exchanging messages. SCIF BTL trans-
lates MPI communication calls to the relevant SCIF
calls with the use of libscif library. The library

performs system calls to a character device, namely
/dev/mic/scif. Virtio-scif driver (frontend) inter-
cepts these calls and forwards them to the respec-
tive QEMU virtual device (backend). It accomplish
this by writing requests to a virtqueue, which is the
communication data structure between frontend and
backend, and notifying QEMU. The notification han-
dler of QEMU reads these requests and delivers them
to the QEMU Virtio-SCIF component, which per-
forms the actual system calls on behalf of the request-
ing process. Finally, the results of these calls are sent
back to the process following the reverse path and
notifying guest side by injecting virtual interrupts.

Summary

Virtio-SCIF allows virtual machines to share the ca-
pabilities of Intel Xeon Phi coprocessors in hetero-
geneous cloud environments. It consists of a back-
end/frontend virtual device and offers application
transparency. Virtio-SCIF supports native, offload
and symmetric model of execution on Xeon Phi sys-
tems. It is expected to achieve optimized perfor-
mance compared to MPI applications communicating
over TCP/IP, due to the elimination of processing
overhead of network stack.

References

[1] F. Bellard. Qemu, a fast and portable dynamic
translator. In ATEC ’05 Proceedings of the annual
conference on USENIX Annual Technical Confer-
ence, 2005.

[2] Getting Kernel-Based Virtual Machine (KVM)
to Work with Intel Xeon Phi Coprocessors.
https://software.intel.com/en-us/articles/

getting-kernel-based-virtual-machine-kvm-

to-work-with-intel-xeon-phi-coprocessors.
[3] Intel Many Integrated Core (MIC) Architec-

ture. http://www.intel.com/content/www/

us/en/architecture-and-technology/many-

integrated-core/intel-many-integrated-core-

architecture.html.
[4] Intel MPI. https://software.intel.com/en-us/

intel-mpi-library.
[5] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and

A. Liquori. kvm: the linux virtual machine moni-
tor. In Linux Symposium, pages 225–230, Ottawa,
Ontario, Canada, 2007.

[6] MPICH. http://www.mpich.org.
[7] MVAPICH. http://mvapich.cse.ohio-state.edu.
[8] Open MPI. http://www.open-mpi.org.
[9] R. Russel. virtio: Towards a de-facto standard for

virtual i/o devices. In ACM SIGOPS Operating Sys-
tems, 2008.

[10] Intel Xeon Phi Coprocessor System Software
Developers Guide. https://software.intel.

com/sites/default/files/managed/09/07/xeon-

phi-coprocessor-system-software-developers-

guide.pdf.

2

https://software.intel.com/en-us/articles/getting-kernel-based-virtual-machine-kvm-to-work-with-intel-xeon-phi-coprocessors
https://software.intel.com/en-us/articles/getting-kernel-based-virtual-machine-kvm-to-work-with-intel-xeon-phi-coprocessors
https://software.intel.com/en-us/articles/getting-kernel-based-virtual-machine-kvm-to-work-with-intel-xeon-phi-coprocessors
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
https://software.intel.com/en-us/intel-mpi-library
https://software.intel.com/en-us/intel-mpi-library
http://www.mpich.org
http://mvapich.cse.ohio-state.edu
http://www.open-mpi.org
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf

