VGVM: Efficient GPU Capabilities in Virtual Machines

Dimitrios Vasilas

Computing Systems Laboratory
National Technical University of Athens

dimvasQcslab.ece.ntua.gr

Abstract

Graphics Processing Units (GPUs) have become a powerful
platform, that can provide significant performance benefits to data
parallel applications. Graphic processors are being increasingly in-
troduced as accelerators in high performance computing (HPC)
systems due to the development of GPGPU (General-Purpose
Computation on GPUs). Furthermore, virtualization technologies
are gaining interest in these domains, due to their benefits on server
consolidation as well as the isolation and ease of management they
offer. There is thus a growing need to combine the benefits of both
fields by providing heterogeneous resources, particularly GPUs, in
virtual environments.

In this paper we address the challenge of integrating GPGPU
into virtualized environments. We propose VGVM, a mechanism
that enables the execution of GPU accelerated applications within
Virtual Machines (VMs). Our framework consists of two compo-
nents: a user level library and a paravirtualized driver, which en-
ables communication with the host’s GPU driver. To validate our
approach, we conduct experiments on a variety of GPU applica-
tions, focusing on the virtualization overhead and the scalability of
our framework.

1. Introduction

Nowadays, Graphics Processing Units (GPUs), driven by the
insatiable market demand for real-time, high-definition 3D graph-
ics, have evolved into general-purpose, high performance, many-
core processors capable of high computation throughput and
memory bandwidth. In addition to being efficient at manipulating
computer graphics and image processing, their highly parallel
structure makes them well-suited to address problems that can
be expressed as data-parallel computations with high arithmetic
intensity. As a result, GPUs are being introduced as accelerators
in order to achieve speed-ups in applications traditionally han-
dled by the central processing unit (CPU). This approach, known
as general purpose computation on GPUs (GPGPU), is being
increasingly adopted in HPC (High Performance Computing)
applications. Research has demonstrated that computationally in-
tensive applications from a wide range of scientific fields, such
as finance [1], chemical physics [2], weather broadcast [3], fluid
dynamics [4] etc. can leverage GPUs to obtain major gains in per-
formance. In addition to the scientific domain, GPUs are used in
software routers [5], encrypted networks [6] and database man-
agement systems [7] as well. One of the reasons general purpose
computing on GPUs has been well established is the introduction
of dedicated programming environments, compilers, and libraries
such as CUDA from Nvidia.

On the other hand, virtualization technology has an increasing
influence on how computational resources are used and managed.
The growth in hardware performance and the increased demand

Stefanos Gerangelos

Computing Systems Laboratory
National Technical University of Athens

sgerag@cslab.ece.ntua.gr

Nectarios Koziris

Computing Systems Laboratory
National Technical University of Athens

nkoziris@cslab.ece.ntua.gr

for service consolidation from business markets, leads virtualized
cloud environments to host an ever growing amount of computa-
tions. Virtual Machines (VMs) can improve resource utilization,
as several different customers may share a single computing node
with the illusion that they own the entire machine in an exclusive
way, while providing process isolation and ease of management.
Consequently, virtualization techniques are a promising effort to
run high performance software on a grid, as obtaining virtual-
ized cloud computational resources is an elastic, time and cost
efficient alternative to the traditional way of obtaining resources.
With the recent advances in both virtualization and GPU technol-
ogy, there is an ever-growing need to provide heterogeneous re-
sources, particularly GPUs, within the cloud environment in the
same scalable and on-demand way as traditional virtualized hard-
ware. Cloud providers are thus facing the challenge of integrat-
ing into their platforms. For example, Amazon Elastic Compute
Cloud (EC2) [8] provides GPU instances as computing resources,
but each client is assigned with an individual physical instance of
GPUs. Unfortunately, in the cloud context I/O virtualization suf-
fers from poor performance, due to the overhead incurred by in-
direct access to physical resources and the need to multiplex the
applications access to I/O resources. Virtualization and sharing
of GPU hardware face additional challenges due to the character-
istics of graphic processing units that do not enable preemptive
scheduling and time-sharing capabilities.

In this paper we propose, VGVM, an efficient approach to
expose GPGPU capabilities in virtual machines. We present the
design and implementation of a framework that enables applica-
tions executing in virtual environments, to accelerate their perfor-
mance exploiting GPU resources. By using our framework, multi-
ple VMs co-located in the same host computer can share physical
GPU resources. As a proof of concept we target the virtualiza-
tion of CUDA-enabled GPUs by enabling applications developed
using the CUDA platform to execute within VMs. VGVM em-
ploys paravirtualization techniques and uses a split driver model.
It consists of a user-level library, a frontend driver located at the
guest OS and a backend driver implemented at the hypervisor.
The framework’s architecture is shown in Figure 1.

In summary, the main contributions of our work are:

e We propose an efficient GPU virtualization framework that
enables GPGPU applications to execute within VMs, and im-
plements GPU resource sharing among co-located VMs.

e We maintain CUDA Runtime binary compatibility, so that ex-
isting applications can use our framework without any source
code modification.

e We categorize GPU accelerated applications based on their
computation and memory access profile and discuss which
types applications could benefit by using our framework.

Virtual CUDA Device

Hypervisor

Figure 1. The VGVM architecture

Our performance evaluation shows that VGVM achieves low
virtualization overhead, making GPU accelerated applications ex-
ecuting within VMs competitive to those executing in native en-
vironments with direct access to GPU resources.

The rest of this paper is organized as follows: We first in-
troduce some necessary background in Section 2. Section 3 de-
scribes the design and implementation of VGVM, while Section
4 presents a detailed performance evaluation. Then, in Section 5
we discuss how different types of GPGPU application can benefit
from using our framework. In Section 6 we discuss related work
and finally, in Section 7 we conclude and present directions for
future work.

2. Background
2.1 GPGU Programming Interfaces

CUDA (Compute Unified Device Architecture) [9] and OpenCL
(Open Computing Language) [10] are two widely used interfaces
offering general-purpose computing capabilities on GPUs. Both
present similar features but through different programming in-
terfaces. OpenCL, developed by the Khronos Group, is an open
standard for cross-platform, parallel programming on heteroge-
neous platforms consisting of central processing units (CPUs),
GPUs, digital signal processors (DSPs) and other types of pro-
cessors or hardware accelerators. CUDA is a parallel computing
platform introduced by Nvidia. It offers a proprietary API and set
of language extensions that can be used to perform computations
on CUDA-enabled GPUs.

CUDA offers two programming interfaces: (1) the Runtime
API and (2) the Driver API. The Runtime API is a high-level in-
terface that provides a set of routines and language extensions
and offers implicit initialization, context and module manage-
ment. The Driver API is a low-level interface that offers an ad-
ditional level of control by exposing lower level concepts such
as CUDA contexts, the analogue of host processes for the device,
and CUDA modules, the analogue of dynamically loaded libraries
for the device. However, using the Driver API requires more code
and effort to program and debug. Figure 2 shows CUDA software
stack. Most applications do not use the Driver API, as they do
not need the additional level of control, and use the Runtime API
instead in order to produce more concise code.

CUDA exposes its features through a runtime library as well
as a set of language extensions. These language extensions allow
programmers to define device functions (kernels), configure and
execute them on CUDA-enables GPUs. Extensions include func-
tion type qualifiers that specify whether a function executes on the

Application

!

CUDA Runtime API

! !

CUDA Driver API

!

CUDA Kernel Driver

Figure 2. CUDA Software Stack

host or the device and whether it can be called from the host or
the device, variable type qualifiers, that specify the memory loca-
tion of a variable on the device and build-in variables, that specify
dimensions and indices for the GPU’s multiple cores. Kernels are
configured and launched using the execution configuration exten-
sion, denoted with the <<<...>>> syntax. A function declared
as:

__global__ void Func(float*x parameter);
is called using:
Func<<< Dg, Db, Ns >>>(parameter);

where Dg specifies the dimension and size of the grid, Db the
dimension and size of each thread block and Ns the number of
bytes in shared memory that is allocated for this call.

Source files of CUDA applications contain both host and de-
vice code. More specifically, they contain language extensions
and device functions that need to be compiled with the NVCC com-
piler. NVCC separates device code from host code and compiles the
device code into an assembly form of CUDA instruction set ar-
chitecture (PTX code) or binary form (cubin objects). Host code
is modified by replacing the execution configuration extension
(<<<...>>>) with the necessary runtime function calls to load
and launch each compiled kernel from the PTX code or cubin
object. This procedure is illustrated in Figure 3. Device code is
loaded from cubin or PTX files either during initialization from
the runtime or explicitly using the Driver APIL

example_app.cu

__global__ void Func(float *parameter) nvee example_app.cubin
{

cudaConfigureCall()
Func<<<Dg, Db, Ns>>>(parameter); nvec | cudaSetupArgument()

7 cudalaunch()

Figure 3. Compilation Output

2.2 1/0O Virtualization

Paravirtualization is a common technology used to virtualize
I/0 devices. It enables low overhead I/O device virtualization pro-
viding efficient communication between host and guest. In this
approach virtual hardware is optimized for the virtualization layer
and exposes a software interface to the guest, which is similar
but not identical to that of the underlying hardware. It is imple-
mented by creating communication channels between hypervisor

Frontend

=

-
-

virtual !
. 1
interrupt

i

-
-
-
~
SS
~

Backend

Hypervisor

Figure 4. Data Transport Mechanism

and guest operating system. Paravirtualized frontend drivers post
I/O requests to backend drivers directly, with minimal overhead.
To address the issue of having a unified model for those paravir-
tualized drivers across different virtualization systems, virtio [11]
has been proposed. Virtio provides a standardized interface for
the development of virtualized devices, as well as a mechanism
to support guest-to-hypervisor communication.

Using the interface defined in virtio, guest drivers commu-
nicate with the hypervisor by pushing data buffers to a shared
queue. The guest posts request buffers, which are processed by
the backend to produce corresponding responses. Virtio defines
a virtual queue interface that can be used for guest-to-hypervisor
communication. Specifically, it implements a shared ring buffer
mechanism that enables guests to post buffers which host can con-
sume. Each shared ring has a callback function associated with it,
which is called when the hypervisor consumes the buffers. The
communication scheme is shown in Figure 4. Using the virtio
data transport interface, frontend drivers can enqueue buffers to
the shared ring and notify the hypervisor. They can then either
poll or wait to be notified when results become available through
a virtual interrupt. Frontend virtio drivers, including drivers for
network and block devices, have been added to the mainline
Linux kernel. Additionally, backend virtio drivers have been im-
plemented for the QEMU software. Those implementations use
a data transport channel and a control mechanism which we also
use in our approach.

3. Design and Implementation

In this section we describe VGVM’s architecture and ana-
lyze how virtualization and sharing of the GPU device is accom-
plished. We design VGVM using a paravirtualization approach
and employ API redirection in order to enable CUDA application
to execute within VMs. VGVM consists of three software mod-
ules: a user level library, a frontend driver located at the guest
OS and a backend that represents a virtual CUDA device. We
accomplish virtualization by intercepting library calls and redi-
recting their arguments to the frontend driver. They are afterwards
transfered to the backend through a communication channel and
executed on the host. Results are eventually returned to the guest.

GPU resource sharing is implemented by multiplexing execution
requests at the backend side. Future work includes implementing
a GPU resource management system that enables scheduling of
execution requests posted by multiple guests. Data and control
paths are depicted in Figure 5. Solid lines represent control path,
while dashed lines represent data path.

VGVM Library: CUDA applications access GPU resources
through routine calls as well as extensions to the C programming
language. Routine calls are implemented in libraries provided by
the CUDA SDK. Moreover, language extensions are replaced at
compile time by internal function calls, not exposed to the pro-
grammer. Using our framework, CUDA applications developed
with the Runtime API remain binary compatible since we expose
the same interface in our library. In order to implement Runtime
API routines in our library, we transfer routine arguments to the
backend, where the execution occurs, and receive the execution
results.

When a CUDA library call is made by an application (5a), we
intercept the arguments, pack them to an execution request among
with other required data, such as CUDA contexts, stored by the
library, and forward the request to the frontend driver through
an ioctl() system call (5b). When the system call returns, we
unpack the results and return them to the calling process. Fur-
thermore, we accomplish virtualization of the kernel launch syn-
tax (<<<...>>>) by implementing the internal routines which
replace the extension in our library. We intercept CUDA SDK
routine calls and override them with VGVM library routines us-
ing the LD_PRELOAD environment variable.

Frontend Driver: We design VGVM’s frontend driver as
the intermediate component which forwards execution requests
from guest to backend. We implement the frontend driver as a
kernel module loaded to the guest Linux kernel. When a library
routine makes an ioctl() call (5b), the frontend driver handles
it by performing appropriate memory allocations and copying the
intercepted arguments from user space to kernel space (5i). It

/ m
f Application |:| ——————— » data copy

: ass b
; \ I I > rzferené/e
| 5a | library call \ Si
i !
i Library l
_______________ _|_user
!| | kernel
1 5b | ioctl() ,
\ !
\ J
Frontend Driver I:I '-.'
virtual interrupt | 5e 5c | notify 5ii
] Virtual CUDA Device | | ¥ user
kernel
_l5d
I ™

Figure 5. Data and Control Path

then uses the data transport mechanism described in Section 2
to make a request to the VGVM virtual CUDA device (5¢). When
processing is complete, the frontend driver copies results back to
user space.

We implement two approaches for the mechanism which
awaits results from the virtual device, a polling based and an inter-
rupt based. In the former approach the driver repeatedly checks if
a buffer has been pushed to the shared ring buffer by the backend,
while in the latter one the process’ state is changed to interrupt-
ible sleep, until a virtual interrupt is received, indicating that a
buffer has been pushed to the shared ring. The interrupt handler
then pops the buffer from the ring and wakes up the process.
We perform evaluation of the aforementioned implementations
regarding their performance and CPU utilization.

We enable communication between frontend and backend uti-
lizing the previously described data transport mechanism. More
specifically, we issue execution requests to the virtual CUDA de-
vice by pushing buffers to the shared ring buffer and notifying
the backend. This communication mechanism introduces a limi-
tation. Each data buffer has to be allocated in a physically con-
tiguous way, which is not always feasible, especially in large data
transfers. This is a limiting issue in the case of data copies be-
tween host and device memory. We therefore develop a mecha-
nism which falls back to a scatter-gather technique with smaller
physically contiguous buffers, in case the required memory can-
not be allocated contiguously. The backend can then access each
piece of memory and reconstruct the original buffer.

Moreover, we implement GPU resource sharing among pro-
cesses executing concurrently in the same virtual machine. We
accomplish it by enabling co-executing processes to access the
shared ring buffer concurrently using a synchronization scheme.
Each process can independently push requests to the ring buffer
and wait for them to be processed.

Virtual CUDA Device: We design the backend part of VGVM
as a dispatcher which handles execution requests from multiple
co-located VMs. We implement the virtual CUDA device as a
QEMU PCI device. VGVM'’s backend component operates as a
request handler, receiving requests for routine execution as well
as the required arguments and executing them in the host environ-
ment. The backend can directly access buffers provided through
the data transport mechanism, without copying them. This is pos-
sible since the guest’s physical address space is accessible from
the QEMU process’ virtual address space through a translation
mechanism. When an execution request is received, we decode
it, retrieve required arguments and trigger execution on the GPU
(5d).

We eventually handle execution requests at the backend by ex-
ecuting appropriate CUDA Driver API routines. We choose the
approach of implementing the Runtime API using Driver API
routines, since the Driver API allows explicit context and module
management. Explicitly managing module loading and CUDA
context switching is required in order to implement GPU resource
sharing. We ensure isolation and protection among CUDA ap-
plications by switching the CUDA context associated with the
calling process to the current one before issuing routine execu-
tion, since each CUDA context has its own unique address space.
When execution is completed, we push buffers representing ex-
ecution results to the shared ring buffer and notify the guest by
triggering a virtual interrupt (5e).

In order to accomplish sharing of the physical device among
processes executing concurrently in co-located VMs, we imple-
ment a separate shared ring buffer between the virtual CUDA de-

vice and each VM. We treat each request interdependently and
multiplex execution requests from co- located virtual machines.
By multiplexing execution requests from CUDA application ex-
ecuting concurrently on multiple VMs we enable them to share
their access to GPU resources.

3.1 Runtime API Implementation Details

We implement virtualization of Runtime API routines by in-
tercepting library call arguments and forwarding them to the
backend for execution. Standard library routines’ implementa-
tion is fairly straightforward since there are respective Driver
API routines offering the same functionality. However, imple-
menting routine calls that replace the kernel launch extension
(<<<...>>>) requires more effort, since those routines are not
exposed to the programmer and CUDA is proprietary software
not providing source code. We therefore employ reverse engi-
neering techniques in order to accomplish virtualization of the
kernel launch extension. We perform library call tracing in order
to discover declaration of internal routines that implement kernel
launching. We implement those routines in our library exposing
the same interface so that we can intercept launch arguments and
forward them. Multiple routines are used to configure and launch
the kernel. In our implementation we gather the appropriate argu-
ments, store them in data structures, and forward them lazily on
the last call.

Moreover, before launching a kernel execution, we need to
load device code to the GPU from the appropriate CUDA ob-
ject file. However, the Driver API routine that implements module
loading requires the programmer to provide the object file name.
Additionally, Runtime API implicitly manages module loading,
not exposing the respective file names. We therefore develop a
mechanism which, at the beginning of CUDA application exe-
cution, searches for .cubin files and uses symbol extraction to
determine which kernels are defined in each object file. We store
the mapping between object files and kernels in a data structure
in our library and search for the corresponding file to load every
time a kernel is launched.

3.2 Isolation and Security

Our implementation ensures protection between applications
executing within a VM as well as between separate VMs. We
achieve isolation using the mechanism of CUDA contexts. CUDA
contexts are the equivalent of CPU processes. Each context has
each own unique address space and, as a result, GPU pointer val-
ues from different contexts reference different physical memory
locations. We associate a context with each application in order to
ensure isolation and protection from other applications executing
in the same as well as different VMs. Then, we set the current
context each time at the backend side based on the calling pro-
cess.

VGVM has been designed in such a way, that it can be en-
hanced with more advanced features as future extensions. For in-
stance, a scheduling mechanism could be added in order to ensure
fairness among separate VMs. Currently, in our prototype imple-
mentation requests are multiplexed on the host in a FIFO order.
This can be extended in a future work by introducing different
scheduling algorithms which can apply fairness and protect VMs
from other poorly configured or malicious VMs that try to hog
GPU resources.

3.3 Current Limitations

Although our framework provides transparent access to CUDA
devices, it introduces two functionality restrictions. Due to undoc-
umented internal library calls, currently only CUDA Toolkit 5.0

Input Size (KB) 8 16 32 64 128 | 256 | 512 1024 | 2048
Busy Wait Execution Time (ms) | 5.0 8.5 8.7 9.0 14.1 | 34.9 | 64.1 | 240.8 | 463.0
CPU Usage (%) 100 | 100 | 100 | 100 | 100 | 100 | 100 100 100
Sleep Execution Time (ms) | 13.8 | 14.2 | 14.8 | 15.0 | 15.3 | 35.2 | 64.1 | 241.1 | 462.7
CPU Usage (%) 10 12 10 10 9 9 10 6 7

Table 1. Comparison of Sleep and Busy Wait Implementations

is supported in the guest. CUDA toolkit 7.5 can be used at the
backend, where the actual execution occurs. Additionally, CUDA
object files, which are used to load device code, need to be avail-
able to the host at runtime. They can be either copied before the
execution or accessed through a shared file system.

4. Experimental Evaluation

All performance evaluations are conducted on a test system
consisting of two Intel Xeon X5650 CPUs (@2.66 GHz) with
48 GB of main memory. It is equipped with one Nvidia Tesla
M2050 GPU. The host system is running Ubuntu Linux 14.04
distribution with kernel 3.19.0 and Nvidia driver version 352.39.
The virtualization software used is QEMU-KVM 2.3. All virtual
machines are configured to use one VCPU and 1 GB RAM. The
guest OS is Debian 3.16.7 with kernel version 3.16.0.

In order to evaluate the performance of our prototype, we
use benchmarks from the official CUDA SDK 7.5 [12] as well
as the Rodinia benchmark suite [13]. We select benchmarks to
represent a wide range of GPGPU applications, and use varying
computational loads, data sizes, and different CUDA features.

We first use synthetic microbenchmarks to compare the two
implementations that the frontend uses to wait for results by
the backend. Furthermore, we perform breakdown analysis and
examine the overhead introduced by the VGVM software stack.
Subsequently, we use an application to evaluate the corresponding
performance using our framework compared to native execution.
Finally, we evaluate the scalability of VGVM as the number of
concurrently executing applications in co-located VMs increases.

12
T
08 [~

| |l Native
B Virtual

0.6 [~

Normalized Time

04 -

02

MM BS FWT LUD BP

Benchmark

Figure 6. Microbenchmark Performance

4.1 Sleep and Busy Wait Implementations

We first perform an evaluation of the two aforementioned
mechanism used by the frontend driver to wait for execution
results. We use a microbenchmark from CUDA samples, that
performs matrix multiplication which allows us to adjust the size
of input data. Matrix multiplication is an important operation
used in a variety of applications, such as financial and signal
processing applications. We compare total execution time as well
as CPU utilization for each method. We evaluate the two metrics

for a range of input data sizes. Results of this experiment are
depicted in Table 1.

Results show that for small input sizes the busy wait method
performs much better than the sleep method regarding to total ex-
ecution time. This is expected, since the overhead of triggering
a virtual interrupt and executing the interrupt handler is higher
compared to polling in a busy wait loop. However, as input size
increases the difference in performance becomes negligible. Ad-
ditionally, when the busy wait method is used, applications fully
utilize the CPU throughout their execution, creating unnecessary
load to the system. In the case of the sleep method, applications
have lower CPU utilization, since they release the CPU during
waiting time.

In order to benefit from advantages of both methods, we im-
plement a hybrid approach. For small input sizes we use the busy
wait method in order to achieve better performance. In this case,
CPU is fully utilized for a short period of time, since backend
execution does not usually last long for small input sizes. Con-
versely, for larger input sizes we use the sleep method in order to
achieve low CPU utilization as well as high performance.

4.2 Microbenchmark Performance

We conduct experiments with several benchmarks running in
a native environment compared to executing in virtual machines
with VGVM. We measure the execution time of all CUDA opera-
tions and do not include any computation performed on the CPU
as our framework introduces overhead only on CUDA operations.
The normalized execution times on the native and virtualized en-
vironment are presented in Figure 6. Experiment results show that
performance degradation of BlackScholes (BS), LU Decomposi-
tion (LUD) and Back Propagation (BB) (where we executed the
GPU kernel 1000 times) benchmarks executing in a VM is negli-
gible compared to the native execution. Their execution time in a
VM is 1.74%, 3.32% and 1.56% higher than native respectively.
The largest overhead in execution time is 9.23% for the fastWal-
shTransform (FWT) benchmark. This benchmark has a short ker-
nel launch time (only a third of the total GPU execution time) and
thus overhead from memory copy between host and device has
a higher impact on its performance, due to the aforementioned
copy between user and kernel space. This overhead can be al-
leviated by applying zero copy techniques such as memory pin-
ning, which can be implemented as future work. Moreover, we
observe a 4.40% improvement in CUDA execution time of the
matrix multiplication (MM) benchmark. This improvement can
be attributed to the conversion of Runtime API to Driver API at
the backend.

4.3 Breakdown Analysis

We analyze the overhead introduced by our virtualization
framework and perform breakdown analysis of individual CUDA
Runtime API routines, using the bandwidthTest benchmark pro-
vided by the CUDA samples. Results are shown in Figure 7. We
choose to perform measurements of cudaMemcpy routine, as it
introduces the largest virtualization overhead because of mem-
ory copy operations. We divide the execution of a routine into

100% -

80% -

Lib

Fend
Copy|
Bend
Exec

60% [~

EECEE

40% -

20% [-

Percentage of Routine Execution Time (%)

0%

1IKB 512KB IMB 2MB 4MB 8MB 16MB

Input Data Size

Figure 7. Breakdown Analysis

five phases (1ib, copy, fend, exec, bend) representing the dif-
ferent components of VGVM’s software stack as well as opera-
tions causing significant overhead. The first phase (1ib) includes
operations performed by the VGVM library except the ioct1()
system call that transfers control to the frontend driver. Copy rep-
resents the overhead introduced by copying memory from user
space to kernel space, while fend is the time consumed at the rest
of frontend driver’s operations. Finally, exec is the time of Driver
API routine execution at the backend and bend is the time spent
at the rest of the operations performed by the backend, such as
memory allocations, argument unpacking etc.

The figure indicates that the dominant factor of execution time
is Driver API routine execution at the backend. This phase takes
up to 69% of the total execution time for large memory copies.
Since this phase represents the actual execution on the GPU, the
rest of execution phases can be characterized as the virtualization
overhead caused by our framework. Results show that this over-
head remains consistent for memory copies larger than 1 MB at
27% of the total execution time on average. This favors applica-
tions in which execution time is dominated by computation on the
GPU rather than memory copying. The phase of memory copy be-
tween user and kernel space consumes 30% of the total execution
time on average and constitutes the major factor of virtualization
overhead. Applying zero copy mechanisms, as mentioned earlier,
could lower this overhead. Such techniques can be implemented
as future work.

Further measurements depict that the rest of library routines
introduce a constant overhead. CudaMalloc operation introduces
an overhead of 24 us, cudaFree overhead is 26 us and ker-
nel launch overhead is 45 us. Relative applications’ performance
overhead is reduced as input data size increases, since this con-
stant overhead becomes a smaller portion of the total execution
time as time of execution on the GPU increases.

4.4 Application Performance

We evaluate the robustness and efficiency of VGVM when
used by a higher level application. We use GPU MrBayes [14],
a bio-informatics application which uses DNA data to infer phy-
logeny. The application implements the Bayesian method to infer
phylogeny, using Metropolis coupled Markov chain Monte Carlo
(MC)? on CUDA and uses real-world DNA data as input (1.1

Native | Virtual
Total (s) | 60.93 67.02
Cuda (s) | 50.37 56.64

Table 2. MrBayes Application Performance

MB input size). We measure the total time of execution as well
as the execution time of CUDA operations. Table 2 depicts ex-
periment results for execution on native and virtual environment
using VGVM. As in previous experiments, Cuda represents only
the CUDA related functions calls, while Total represents the to-
tal time of execution including both CPU and GPU processing.
Results show that our framework adds 12.4% overhead on the to-
tal execution time and 10% ovehread on CUDA operations time.

9,000 [<=
8,000 [- oo
U000 [
6.000 [~~~ -
S.000 [.- |0 Native

4000 [Froe s

Execution Time (ms)

3000 oo
2,000 |-

1,000

Number of GPU Contexts/VMs

Figure 8. Scaling Measurements

4.5 Performance at Scale

We evaluate the overhead VGVM introduces at multiple con-
currently executing GPU contexts by conducting experiments in
two setups: (1) we issue multiple processes on the native system
executing the same application (native) and (2) we launch mul-
tiple VMs and execute one application per VM (virtual). We
measure application’s CUDA execution time for these settings
and evaluate the overhead introduced by VGVM, as the num-
ber of GPU contexts and VMs increases respectively. We use the
BlackScholes benchmark provided by the CUDA samples. Re-
sults are depicted in Figure 8.

We make two observations based on the results. One is that
native execution time increases linearly as the number of GPU
contexts increases. This is expected, since legacy GPUs enforce
serialization of GPU tasks from different contexts. We later dis-
cuss the effect of this GPU characteristic on different types of ap-
plications. However, recent Nvidia GPUs (e.g. Kepler [15]) im-
plement actual sharing of GPU resources between concurrently
executing CUDA jobs. Another observation is that performance
degradation of concurrently executing GPU applications in multi-
ple VMs is negligible compared to native. Operations performed
by VGVM software modules, such as copies between user and
kernel space, are executed in multiple VMs in parallel and do not
introduce additional overhead as the number of VMs increases.

5. Related Work

Various approaches to implement virtualization of graphic pro-
cessing hardware and address GPU resource sharing have been
proposed by the research community. In the meantime, cloud
providers, such as Amazon [8], Microsoft Azure [16] etc. [17]
are starting to offer GPU computing resources as a service. A
class of proposed solutions makes use of pass-through technol-
ogy in order to grant VMs direct access to host devices. This
approach can minimize the overhead of virtualization, as perfor-
mance measurements on the Xen platform indicate [18], but since
a pass-throughed GPU is exclusively managed by the guest OS,
it does not allow multiple VMs to share the same device. Nvidia
GRID [19] technology enables assignment of the physical GPU

to multiple VMs at the same time. Gdev [20] is able to virtualize
a physical GPU into multiple logical GPUs, which can then be
pass-throughed to VMs, thus enabling GPU resource sharing.

A full GPU virtualization solution that allows the native
graphics driver to execute in the guest system has been presented
by Tian et al. [21]. This approach is implemented on Intel Pro-
cessor Graphics GPU and evaluation is oriented on 2D and 3D
graphic applications. Suzuki et al. [22] propose an architecture
based on the Xen hypervisor that implements both full virtualiza-
tion and paravirtualization. This approach differs from VGVM,
as it virtualizes the GPU at a lower level and uses Gdev [23] as
the CUDA Runtime.

vCUDA [24] and rCuda [25, 26] both employ API call in-
terception and redirection, in order to allow applications exe-
cuted within VMs to transparently access Nvidia hardware. They
both use network protocols in order to implement communica-
tion mechanisms. Although network communication mechanisms
make these solutions VMMe-independent, they cause significant
overhead. rCUDA also features an optimized implementation of
the communication mechanism for InfiniBand interconnects, in
order to take advantage of the high speed fabric. Giunta et al. [27]
propose gVirtuS, a GPU virtualization service which focuses on
hypervisor independence relying on a communication component
independent from the communication channel. Comparison with
measurements in [27] reveals that VGVM introduces lower over-
head than this approach. This can be attributed to the execution
of Runtime API routines at the backend. GViM [28], uses a par-
avirtualization approach in order to virtualize and manage GPU
resources. It employs Xen- specific mechanisms, including shared
memory buffers, in order to implement the communication mech-
anism. This solution presents a higher overhead compared to our
framework, as the comparison between measurements in [28] and
ours depict. Gottschlag et al. [29] propose LoGYV, a solution that
implements GPGPU virtualization at a lower level, by leverag-
ing protection mechanisms present in modern GPUs. It virtual-
izes the API of the pscnv GPU driver and uses open-source soft-
ware in order to support the CUDA API. Moreover, this approach
does not ensure protection between individual applications within
VMs but only between VMs. In DS-CUDA [30] the authors
present a middleware with the goal to address major difficulties
in programming multi-node heterogeneous computers. The sys-
tem implements virtualization of a cluster of computers equipped
with GPUs so that they appear as if they were attached to a single
node, in order to simplify the programming of multi-GPU ap-
plications. In the context of sharing GPU resources among co-
located virtual machines Nanos et al. propose V4VSockets [31],
a framework for efficient, low-overhead intra-node communica-
tion in the Xen hypervisor. They show that rCUDA can be de-
ployed over V4Vsockets to efficiently enable GPU resource shar-
ing among co-located VMs.

6. Discussion

Sharing physical hardware among multiple concurrently exe-
cuting OSes is a fundamental aspect of hardware virtualization.
VGVM enables sharing of GPU resources by multiplexing re-
quests for routine execution at the hypervisor. However, multi-
plexing applications’ accesses on the GPU introduces additional
overhead and negatively impacts its performance. Moreover, ap-
plications with different execution patterns can be affected differ-
ently by sharing their access to the GPU.

GPU accelerated applications can be divided according to
their characteristics into different classes. One such class contains
applications that can be be characterized as batch jobs. These ap-

plications copy large amounts of data from host to device memory
and then issue intensive computations without further user inter-
action. Results are calculated and copied back to host memory
before execution is completed. Examples include HPC scientific
applications from fields such as bioinformatics [32] and material
science [33]. Multiplexing GPU accesses of concurrently execut-
ing applications of this class cause performance degradation, due
to the inability of legacy GPUs to offer actual resource sharing.
The critical performance metric is total execution time. However,
the main characteristic of such applications is that their execution
time is dominated by GPU resources utilization. Therefore mul-
tiplexing GPU accesses of multiple concurrently executing appli-
cations decreases performance of all applications, since execution
requests from different CUDA contexts are serialized on the GPU.
This is an inherent characteristic of legacy GPUs’ architecture.
Thus, performance degradation of each individual application is
negligible in case applications are submitted to run sequentially,
for instance on a resource scheduling system (e.g. Torque). How-
ever, even this class of applications is expected to behave better
on modern GPUs.

On the other hand, a different class involves long-running in-
teractive applications which typically begin by copying required
data to the device, outside of the critical execution path, and then
repeatedly receive smaller amounts of data as input which trig-
ger computations. Examples of applications following this exe-
cution pattern include Big Data applications that perform queries
on large data sets [34]. Applications of this class sometimes have
low latency characteristics and even real-time requirements. The
critical performance factor of this class is the response time when
input is received. Their execution includes alternations between
idle periods user input is awaited, and computation periods when
requested results are being calculated. This execution pattern is
well fitted for device sharing among concurrently executing ap-
plications. Multiplexing their accesses to the GPU is feasible as
idle periods of some applications can overlap with computation
periods of others.

It is thus evident that the effect of sharing GPU resources can
be different according to the application’s execution pattern. A
GPU resource management system could distinguish between the
previously described application classes and schedule their ac-
cesses to GPU resources accordingly. Future work in VGVM in-
volves applying profiling techniques in order to categorize ap-
plications and using different scheduling algorithms to multiplex
accesses to the GPU. These techniques will also be evaluated on
modern GPUs, which provide more advanced sharing features
among concurrent tasks.

7. Conclusion

In this work we propose, VGVM, a framework for low over-
head GPU resource virtualization and sharing among co-located
VMs. Our implementation employs API redirection through a
split driver approach, in order to allow GPGPU applications to
access the physical hardware. VGVM is open-source software
available online at https://github.com/dimvass/VGVM. Eval-
uation of our prototype shows that VGVM achieves near native
performance for medium and large data sizes. Moreover, multi-
ple applications executing concurrently in co-located VMs can
efficiently share the host GPU.

We design VGVM in a way that enables scheduling mecha-
nisms to be easily added to the current version. We plan to imple-
ment execution request scheduling in order to achieve quality of
service between VMs as well individual applications, in a future
work. An extension to VGVM’s backend can implement GPU

https://github.com/dimvass/VGVM

resource management and ensure fairness by identifying appli-
cations’ GPU execution profile and appropriately schedule their
access to the GPU. To this end, the mechanism could detect and
slow down VMs with high demands on GPU resources. Finally,
future endeavors also include evaluating our framework on recent
Nvidia GPU with enhanced features regarding resource sharing.

References

[1] Abhijeet Gaikwad and Ioane Muni Toke. Gpu based sparse grid tech-
nique for solving multidimensional options pricing pdes. In Proceed-
ings of the 2Nd Workshop on High Performance Computational Fi-
nance, WHPCF ’09, pages 6:1-6:9, New York, NY, USA, 2009. ACM.

D.P. Playne and K.A. Hawick. Data Parallel Three-Dimensional Cahn-
Hilliard Field Equation Simulation on GPUs with CUDA. In Proc.
2009 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA09), pages 104-110, Las vegas,
USA, 13-16 July 2009. WorldComp.

J. Michalakes and M. Vachharajani. Gpu acceleration of numerical
weather prediction. In Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, pages 1-7, April
2008.

Everett H. Phillips, Yao Zhang, Roger L. Davis, and John D. Owens.
Rapid aerodynamic performance prediction on a cluster of graphics
processing units. In Proceedings of the 47th AIAA Aerospace Sciences
Meeting, number ATAA 2009-565, jan 2009.

Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packet-
shader: A gpu-accelerated software router. In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM 10, pages 195-206, New
York, NY, USA, 2010. ACM.

Keon Jang, Sangjin Han, Seungyeop Han, Sue Moon, and Kyoungsoo
Park. Sslshader: cheap ssl acceleration with commodity processors. In
In Proceedings of the 8th USENIX conference on Networked systems
and implementation, NSDI11. USENIX Association, 2011.
Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju,
Qiong Luo, and Pedro Sander. Relational joins on graphics processors.
In Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD °08, pages 511-524, New York,
NY, USA, 2008. ACM.

[8] Amazon GPU Instances. http://aws.amazon.com/ec2/instance-types/.

[9] CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-
programming-guide/.

[2

—

[3

=

[4

=

[5

=

[6

=

[7

—

[10] J.E. Stone, D. Gohara, and Guochun Shi. Opencl: A parallel program-
ming standard for heterogeneous computing systems. Computing in
Science Engineering, 12(3):66-73, May 2010.

[11] Rusty Russell. Virtio: Towards a de-facto standard for virtual i/o
devices. SIGOPS Oper. Syst. Rev., 42(5):95-103, July 2008.

[12] NVIDIA. NVIDIA CUDA SDK code samples.
http://developer.download.nvidia.com/compute/cuda/5_0/rel-update-
1/installers/cuda_5.0.35_linux_64_ubuntul1.10-1.run.

[13] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-
Ha Lee, and K. Skadron. Rodinia: A benchmark suite for heteroge-
neous computing. In Workload Characterization, 2009. IISWC 2009.
IEEE International Symposium on, pages 44-54, Oct 2009.

[14] Jie Bao, Hongju Xia, Jianfu Zhou, Xiaoguang Liu, and Gang Wang.
Efficient implementation of mrbayes on multi-gpu. Molecular Biology
and Evolution, 30(6):1471-1479, 2013.

[15] Nvidia. Nvidias Next Generation CUDA Compute Architecture Ke-
pler GK110. https://www.nvidia.com/content/PDF/kepler/NVIDIA-
Kepler-GK110-Architecture-Whitepaper.pdf.

[16] Microsoft Azure. https://azure.microsoft.com/en-us/.

[17] NVIDIA. GPU Cloud Computing. http://www.nvidia.com/object/gpu-
cloud-computing-services.html.

[18] AJ. Younge, J.P. Walters, S. Crago, and G.C. Fox. Evaluating gpu
passthrough in xen for high performance cloud computing. In Parallel
Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE
International, pages 852-859, May 2014.

[19] Nvidia. NVIDIA GRID Virtual GPU Technology.
http://www.nvidia.com/object/grid-technology.html.

[20] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt.
Gdev: First-class gpu resource management in the operating system.
In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, USENIX ATC’12, pages 37-37, Berkeley, CA, USA,
2012. USENIX Association.

[21] Kun Tian, Yaozu Dong, and David Cowperthwaite. A full gpu virtual-
ization solution with mediated pass-through. In 2014 USENIX Annual
Technical Conference (USENIX ATC 14), pages 121-132, Philadel-
phia, PA, June 2014. USENIX Association.

[22] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono.
Gpuvm: Why not virtualizing gpus at the hypervisor? In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages 109-120,
Philadelphia, PA, June 2014. USENIX Association.

[23] S. Kato. Gdev CUDA Runtime. https://github.com/shinpei0208/gdev.

[24] Lin Shi, Hao Chen, and Jianhua Sun. vcuda: Gpu accelerated high
performance computing in virtual machines. In Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on,
pages 1-11, May 2009.

[25] Antonio J. Pea, Carlos Reao, Federico Silla, Rafael Mayo, Enrique S.
Quintana-Ort, and Jos Duato. A complete and efficient cuda-sharing
solution for {HPC} clusters. Parallel Computing, 40(10):574 — 588,
2014.

[26] J. Duato, A.J. Pena, F. Silla, J.C. Fernandez, R. Mayo, and E.S.
Quintana-Orti. Enabling cuda acceleration within virtual machines
using rcuda. In High Performance Computing (HiPC), 2011 18th
International Conference on, pages 1-10, Dec 2011.

[27] Giulio Giunta, Raffacle Montella, Giuseppe Agrillo, and Giuseppe
Coviello. A gpgpu transparent virtualization component for high
performance computing clouds. In Proceedings of the 16th Inter-
national Euro-Par Conference on Parallel Processing: Part I, Eu-
roPar’ 10, pages 379-391, Berlin, Heidelberg, 2010. Springer-Verlag.

[28] Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan
Kharche, Niraj Tolia, Vanish Talwar, and Parthasarathy Ranganathan.
Gvim: Gpu-accelerated virtual machines. In Proceedings of the 3rd
ACM Workshop on System-level Virtualization for High Performance
Computing, HPCVirt *09, pages 17-24, New York, NY, USA, 2009.
ACM.

[29] M. Gottschlag, M. Hillenbrand, J. Kehne, J. Stoess, and F. Bellosa.
Logv: Low-overhead gpgpu virtualization. In High Performance Com-
puting and Communications & 2013 IEEE International Conference
on Embedded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE
10th International Conference on, pages 1721-1726, 2013.

[30] A. Kawai, K. Yasuoka, K. Yoshikawa, and T. Narumi. Distributed-
shared cuda: Virtualization of large-scale gpu systems for programma-
bility and reliability. In FUTURE COMPUTING 2012, The Fourth
International Conference on Future Computational Technologies and
Applications, page 712, 2012.

[31] Anastassios Nanos, Stefanos Gerangelos, Ioanna Alifieraki, and Nec-
tarios Koziris. V4vsockets: Low-overhead intra-node communication
in xen. In Proceedings of the 5th International Workshop on Cloud
Data and Platforms, CloudDP 15, pages 1:1-1:6, New York, NY,
USA, 2015. ACM.

[32] Petr Klus, Simon Lam, Dag Lyberg, Ming Sin Cheung, Graham Pul-
lan, Ian McFarlane, Giles SH Yeo, and Brian YH Lam. Barracuda - a
fast short read sequence aligner using graphics processing units. BMC
Research Notes, 5(1):1-7, 2012.

[33] Stefan Maintz, Bernhard Eck, and Richard Dronskowski. Speed-
ing up plane-wave electronic-structure calculations using graphics-
processing units. Computer Physics Communications, 182(7):1421
—1427,2011.

[34] GPUdb. GPUdb The first GPU accelerated In-Memory Distributed
database. http://www.gpudb.com/.

