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Motivation
• There is an emergent request for many Cloud

environments to achieve better network per-
formance between Virtual Machines running
in their infrastructure.

• Many deployments require more Virtual Ma-
chines than the available physical machines
in the cluster, turning the inter-domain com-
munication between VMs into a critical factor
in the overall system’s performance.

• By characterizing a communication as inter-
domain, we are referring to the interaction
between two or more virtual machines lo-
cated in the same physical host.

Contribution
We propose a framework for inter-domain
network communication over Ethernet using
shared memory techniques eliminating the in-
tervention of the host component in the critical
path.
Most of previous research has been focused on
implementation concerning the Xen hypervi-
sor. Our approach is based on the kvm hyper-
visor and linux (as the guest and the host op-
erating system). Our primary concern was to
produce a framework, which does not export a
new API to the application level, so the respec-
tive applications won’t have to be changed in
order to take advantage of the new I/O path.
With this in mind we ended up with a frame-
work, which includes minor modifications to
the kvm hypervisor as well as the addition of
a driver in the guest side in order to support
our new virtual network device.

Possible Drawbacks
• In a scenario where several VMs decide to

send packets through our device the access to
the ring buffer is expected to become a non-
negligible bottleneck.

• The system administrator of the guest must
be aware of the new interface and the respec-
tive routing table entry and should not try
to do anything fancy with the routing table,
which would be out of the predicted proce-
dure concerning the inter-domain communi-
cation.

Future Plans
• Evaluation of this framework.
• Add support for low latency protocols (like Myrinet, Infiniband), which are highly used in the HPC world.
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The current I/O path includes either:
(a) emulation of network I/O (grey arrow) with unmodified kernel, but poor performance or
(b) use of the split-driver model (using the virtio driver), which results in better performance. How-
ever, even following this approach, the intervention of the host remains high.
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Our proposed framework includes the allocation of a shared memory space by the host, which will
be exposed to each guest every time one is created. So, when the kvm module is loaded, it allocates a
number of memory pages and creates a ring buffer, which is the structure that every guest is going
to use for its inter-domain communication. This model requires the implementation of a virtual
network device for the guest. This device is added to the routing table of the guest with a respective
rule concerning the inter-domain subnet. The driver of this device is based on the virtio interface.
A typical scenario of using our framework follows:
• Upon the installation of the shared ring buffer by the kvm host, a guest (guest 1) is created.
• The host maps the shared ring buffer to the address space of guest 1.
• After that suppose that another guest (guest 2) is created. The host maps the same memory in the

address space of guest 2.
• Now, if guest 1 decides to send a network packet to guest 2, it has to lock for write the ring

buffer, place the respective socket buffer (sk_buff struct in linux kernel) and make the appropriate
changes to the respective ring buffer pointer.

• Guest 2, which is watching the ring buffer, checks the ip header of the sk_buff, realizes that this
buffer is intended for itself and continues for processing it after it has updated the relevant pointer
in the ring buffer.
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