
Efficient Inter-domain Network Communication in
Virtualized Environments Using Shared Memory

Stefanos Gerangelos and Nectarios Koziris {sgerag,nkoziris}@cslab.ece.ntua.gr

Motivation
• There is an emergent request for many Cloud

environments to achieve better network per-
formance between Virtual Machines running
in their infrastructure.

• Many deployments require more Virtual Ma-
chines than the available physical machines
in the cluster, turning the inter-domain com-
munication between VMs into a critical factor
in the overall system’s performance.

• By characterizing a communication as inter-
domain, we are referring to the interaction
between two or more virtual machines lo-
cated in the same physical host.

Contribution
We propose a framework for inter-domain
network communication over Ethernet using
shared memory techniques eliminating the in-
tervention of the host component in the critical
path.
Most of previous research has been focused on
implementation concerning the Xen hypervi-
sor. Our approach is based on the kvm hyper-
visor and linux (as the guest and the host op-
erating system). Our primary concern was to
produce a framework, which does not export a
new API to the application level, so the respec-
tive applications won’t have to be changed in
order to take advantage of the new I/O path.
With this in mind we ended up with a frame-
work, which includes minor modifications to
the kvm hypervisor as well as the addition of
a driver in the guest side in order to support
our new virtual network device.

Possible Drawbacks
• In a scenario where several VMs decide to

send packets through our device the access to
the ring buffer is expected to become a non-
negligible bottleneck.

• The system administrator of the guest must
be aware of the new interface and the respec-
tive routing table entry and should not try
to do anything fancy with the routing table,
which would be out of the predicted proce-
dure concerning the inter-domain communi-
cation.

Future Plans
• Evaluation of this framework.
• Add support for low latency protocols (like Myrinet, Infiniband), which are highly used in the HPC world.

Current I/O Path

Application

...

TCP

IP

Ethernet

virtio_netvirtio_net

Application

virtio_netvirtio_net

Guest 1 Guest 2

...

TCP

IP

Ethernet

backend driverbackend driver kvm

qemu instanceqemu instance
backend driverbackend driver

qemu instanceqemu instance

(b) (a)
emulation

emulation

(a)(b)

The current I/O path includes either:
(a) emulation of network I/O (grey arrow) with unmodified kernel, but poor performance or
(b) use of the split-driver model (using the virtio driver), which results in better performance. How-
ever, even following this approach, the intervention of the host remains high.

Proposed I/O Path

 kvm kvm

ring
buffer
ring

buffer

Application

...

TCP

IP

Ethernet

our driverour driver

Application

our driverour driver

Guest 1 Guest 2

...

TCP

IP

Ethernet

Our proposed framework includes the allocation of a shared memory space by the host, which will
be exposed to each guest every time one is created. So, when the kvm module is loaded, it allocates a
number of memory pages and creates a ring buffer, which is the structure that every guest is going
to use for its inter-domain communication. This model requires the implementation of a virtual
network device for the guest. This device is added to the routing table of the guest with a respective
rule concerning the inter-domain subnet. The driver of this device is based on the virtio interface.
A typical scenario of using our framework follows:
• Upon the installation of the shared ring buffer by the kvm host, a guest (guest 1) is created.
• The host maps the shared ring buffer to the address space of guest 1.
• After that suppose that another guest (guest 2) is created. The host maps the same memory in the

address space of guest 2.
• Now, if guest 1 decides to send a network packet to guest 2, it has to lock for write the ring

buffer, place the respective socket buffer (sk_buff struct in linux kernel) and make the appropriate
changes to the respective ring buffer pointer.

• Guest 2, which is watching the ring buffer, checks the ip header of the sk_buff, realizes that this
buffer is intended for itself and continues for processing it after it has updated the relevant pointer
in the ring buffer.

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. A. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 164- 177, New York, NY, USA, 2003. ACM.
[2] F. Bellard. Qemu, a fast and portable dynamic translator. In ATEC ’05 Proceedings of the annual conference on USENIX Annual Technical Conference, 2005.
[3] F. Diakhate, M. Perache, R. Namyst, and H. Jourdren. Efficient shared memory message passing for inter-vm communications. In 4th Workshop on Virtualization in High-Performance Cloud
Computing (VHPC ’08), Euro-par 2008, 2008.
[4] O. K. Hamid Reza Mohebbi and M. Sharifi. Zivm: A zero-copy inter-vm communication mechanism for cloud computing. In Computer and Information Science, pages 18-27, 2011.
[5] Z. Hongyong, G. Kuiyan, L. Yaqiong, S. Yuzhong, and M. Dan. A highly efficient inter-domain communication channel. In IEEE Ninth International Conference on Computer and
Information Technology, 2009.
[6] Y. S. Hongyong Zang and K. Gu. Optimizing inter- domain communication. In 15th International Conference on Parallel and Distributed Systems, 2009.
[7] K. Kangho, K. Cheiyol, J. Sung-In, S. Hyun-Sup, and K. Jin-Soo. Inter-domain socket communications supporting high performance and full binary compatibility on xen. In ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments, 2008.
[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liquori. kvm: the linux virtual machine monitor. In Linux Symposium, pages 225-230, Ottawa, Ontario, Canada, 2007.
[9] R. Russel. virtio: Towards a de-facto standard for virtual i/o devices. In ACM SIGOPS Operating Systems, 2008.
[10] M. J. K. Wei Huang and D. K. Panda. Efficient one-copy mpi shared memory communication in virtual machines. In IEEE International Conference on Cluster Computing, 2008.
[11] Q. G. Wei Huang, Matthew J. Koop and D. K. Panda. Virtual machine aware communication libraries for high performance computing. In IEEE conference on Supercomputing, 2007.
[12] P. R. Xiaolan Zhang, Suzanne McIntosh and J. L. gridn. Xensocket: A high-throughput interdomain transport for virtual machines. In International Conference on Middleware, 2007.

