
Efficient Inter-domain Network Communication in Virtualized

Environments Using Shared Memory

PhD candidate: Stefanos Gerangelos
Advisor: Associate Professor Nectarios Koziris

Computing Systems Laboratory,
National Technical University of Athens

{sgerag,nkoziris}@cslab.ece.ntua.gr

Introduction

With the advent of virtualization technology and its
propagation to the infrastracture of Cloud systems,
there is an emergent request for more effective means
of inter-domain communication between virtual ma-
chines. By characterizing a communication as inter-
domain, we are referring to the interaction between
two or more virtual machines located in the same
physical host.

In this work we propose a framework for inter-
domain network communication over Ethernet using
shared memory techniques eliminating the interven-
tion of the host component in the critical path. Our
approach is based on linux (as the guest and the host
operating system) and the kvm hypervisor [8].

Background and Related Work

The kvm hypervisor actually consists of a loadable
kernel module, which creates a virtual device (namely
/dev/kvm) and exports a number of ioctl commands
to this device. By issuing a KVM CREATE VM
ioctl system call to the kvm device, a new guest is
created, which from the host perspective is nothing
more than just a user process with its own virtual ad-
dress space. From the guest perspective this address
space is translated to what is called guest physical ad-
dress space and is being treated as ordinary physical
memory. Kvm takes advantage of the hardware virtu-
alization capabilities (currently Intel VT and AMD-
V extensions) in order to virtualize cpu and mmu
operations. When it comes to device virtualization
though, every I/O request is trapped by QEMU [2],
a user space emulator running on the host, and be-
ing emulated in order to access the respective device.
This emulated approach results in poor performance
in terms of network bandwidth. To overcome this
problem, Xen’s [1] approach was adopted by virtio
[9]. Virtio is a framework which is based in Xen’s
split-driver model and installs a frontend driver in the
guest operating system and a respective backend one

in the host. With this paravirtualized solution, the
virtio driver of the guest operating system is aware of
being in a virtualized world and communicates with
the relevant backend in this context. The backend
driver communicates into the user space of the hyper-
visor to facilitate I/O through QEMU. However, us-
ing this approach requires at least 2 context switches
(one for the TX side and one for the RX side), when
a VM sents a network packet to another one located
in the same physical machine.

Our approach is inspired by previous research on
inter-domain network communication. Most of this
research has been focused on implementations con-
cerning the Xen hypervisor [12, 11, 10, 5, 6, 7]. Di-
akhate et al. [3] have proposed a solution for kvm
using shared memory techniques by making changes
to user space and specifically to QEMU. Finally, Mo-
hebbi et al. [4] followed a quite similar approach to
ours, however, this solution requires changing user
applications in order for them to access the proposed
virtual device.

Architecture

Our proposed framework includes the allocation of
a shared memory space by the host, which it will
expose to each guest every time one is created. So,
when the kvm module is loaded, it allocates a number
of memory pages and creates a ring buffer, which is
the structure that every guest is going to use for its
inter-domain communication. This model requires
the implementation of a virtual network device for
the guest. This device is added to the routing table of
the guest with a respective rule concerning the inter-
domain subnet. The driver of this device is based on
the virtio [9] interface.

Eventually, a typical scenario of using our frame-
work follows: upon the installation of the shared ring
buffer by the kvm host, a guest (guest 1) is created.
The host maps the shared ring buffer (which starts
from a fixed memory address) to the address space
of guest 1. After that suppose that another guest

1

(guest 2) is created. The host maps the same mem-
ory in the address space of guest 2. The host fol-
lows the same procedure for every other guest that
creates, so at the end of the day every VM which
resides in this host and wants to communicate with
another VM in the same host must access the same
ring buffer. Thus, each guest has to listen for in-
coming traffic network in this buffer. Now, if guest
1 decides to send a network packet to guest 2, it has
to lock for write the ring buffer, place the respective
socket buffer (sk buff struct in linux kernel) and make
the appropriate changes to the respective ring buffer
pointer. Guest 2, which is watching the ring buffer,
checks the ip header of the sk buff, realizes that this
buffer is intended for itself and continues for process-
ing it after it has updated the relevant pointer in the
ring buffer. This data path is illustrated in Figure 1.

 kvm kvm

ring
buffer
ring

buffer

Application

...

TCP

IP

Ethernet

our driverour driver

Application

our driverour driver

Guest 1 Guest 2

...

TCP

IP

Ethernet

Figure 1: Proposed Framework’s Data Path

The communication of the VM with the “outside
world” is being done as usual using the default net-
work interface (e.g. eth0). Our optimized approach
eliminates the intervention of the host every time
each guest sends/receives a network packet to/from
the virtual device. The only time the host interferes,
is when it installs a mapping to the ring buffer for a
newly created guest, but this is outside of the crit-
ical path of the network communication. However,
this scheme has some limitations concerning the lock-
ing mechanisms and the available concurrency of the
system. Consider for example the case which several
VMs decide to send packets through our device. In
this case, the access to the ring buffer is expected to
become a non-negligible bottleneck.

Summary and Future Plans

Our framework allows VMs located in the same
physical host to communicate between them using
TCP/IP semantics in an efficient manner. It includes
minor modifications to the kvm hypervisor as well as
the addition of a driver in the guest side in order

to support our virtual network device. Our current
agenda consists of evaluating this prototype in or-
der to estimate our framework’s efficiency. In the fu-
ture, we plan to experiment further and add support
for low latency protocols (like Myrinet, InfiniBand),
which are highly used in the HPC world.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. A. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM sym-
posium on Operating systems principles, pages 164–
177, New York, NY, USA, 2003. ACM.

[2] F. Bellard. Qemu, a fast and portable dynamic
translator. In ATEC ’05 Proceedings of the annual
conference on USENIX Annual Technical Confer-
ence, 2005.

[3] F. Diakhate, M. Perache, R. Namyst, and H. Jour-
dren. Efficient shared memory message passing for
inter-vm communications. In 4th Workshop on Vir-
tualization in High-Performance Cloud Computing
(VHPC ’08), Euro-par 2008, 2008.

[4] O. K. Hamid Reza Mohebbi and M. Sharifi. Zivm:
A zero-copy inter-vm communication mechanism for
cloud computing. In Computer and Information Sci-
ence, pages 18–27, 2011.

[5] Z. Hongyong, G. Kuiyan, L. Yaqiong, S. Yuzhong,
and M. Dan. A highly efficient inter-domain com-
munication channel. In IEEE Ninth International
Conference on Computer and Information Technol-
ogy, 2009.

[6] Y. S. Hongyong Zang and K. Gu. Optimizing inter-
domain communication. In 15th International Con-
ference on Parallel and Distributed Systems, 2009.

[7] K. Kangho, K. Cheiyol, J. Sung-In, S. Hyun-Sup,
and K. Jin-Soo. Inter-domain socket communica-
tions supporting high performance and full binary
compatibility on xen. In ACM SIGPLAN/SIGOPS
international conference on Virtual execution envi-
ronments, 2008.

[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liquori. kvm: the linux virtual machine moni-
tor. In Linux Symposium, pages 225–230, Ottawa,
Ontario, Canada, 2007.

[9] R. Russel. virtio: Towards a de-facto standard for
virtual i/o devices. In ACM SIGOPS Operating Sys-
tems, 2008.

[10] M. J. K. Wei Huang and D. K. Panda. Efficient
one-copy mpi shared memory communication in vir-
tual machines. In IEEE International Conference on
Cluster Computing, 2008.

[11] Q. G. Wei Huang, Matthew J. Koop and D. K.
Panda. Virtual machine aware communication li-
braries for high performance computing. In IEEE
conference on Supercomputing, 2007.

[12] P. R. Xiaolan Zhang, Suzanne McIntosh and J. L.
Griffin. Xensocket: A high-throughput interdomain
transport for virtual machines. In International
Conference on Middleware, 2007.

2

