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ABSTRACT
Modern cloud infrastructures based on virtual hardware pro-
vide new opportunities and challenges for developers and
system administrators alike. Most notable is the promise of
resource elasticity, whereby the infrastructure can increase
or decrease in size based on demand. Utilizing elastic re-
sources, applications can provide better quality of service
and reduce cost by only paying for the required amount of re-
sources. In this work, we extensively study the performance
of some popular NoSQL databases over an elastic cloud in-
frastructure. NoSQL databases focus on analytical process-
ing of large scale datasets, offering increased scalability over
commodity hardware. We then proceed to describe TIRA-
MOLA, a cloud-enabled framework for automatic provision-
ing of elastic resources on any NoSQL platform. Our sys-
tem administers cluster resources (VMs) according to user-
or application-specified constraints through an expandable
monitoring and command-issuing module. Users can easily
modify resizing policies, based on application-specific met-
rics and thus fully utilize the elasticity of the underlying
infrastructure. As a realistic use-case, we apply this frame-
work on top of a fully distributed RDF store backed by an
elastic NoSQL database. Letting TIRAMOLA manage the
number of committed resources results in automated cluster
resize actions and throughput maximization, while applica-
tion experts need only provide simple elasticity rules.

1. INTRODUCTION
Cloud Computing has been receiving an increasing amount

of attention from both the industry and academia. On-
demand and pay-as-you-go access to computational and stor-
age resources that reside in distant data centers is a very
attractive business model, especially for small to medium-
sized enterprises (SMEs) and start-ups that require straight-
forward access to scalable hardware and software infrastruc-
tures without the administrative costs. This model drives
the proliferation of cloud platforms that provide infrastruc-
ture as a service (IaaS) such as Amazon’s elastic compute
cloud (EC2) or its open-source alternatives such as Euca-
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lyptus and OpenStack. The use of cloud APIs allows ad-
ministrators to resize virtual infrastructures, in terms of the
number of virtual machines, the number of virtual cores,
memory and storage space etc. so as to satisfy their appli-
cations’ needs.

The computational and storage requirements of applica-
tions such as web analytics, business intelligence and so-
cial networking over tera- (or even peta-) byte datasets have
pushed on premise infrastructures to their limits and drive
the adoption of the Infrastructure as a Service (IaaS) paradigm
over the Cloud[26].

These needs have led to the development of horizontally
scalable, distributed non-relational data stores, called No-
SQL databases. Google’s Bigtable [12] and its open-source
implementation HBase [5], Amazon’s Dynamo [15], Face-
book’s Cassandra [24], and LinkedIn’s Voldemort [7] are a
representative set of such systems. NoSQL systems exhibit
the ability to store and index arbitrarily big data sets while
enabling a large amount of concurrent user requests.

Data generated through the integration and interlinking of
diverse Web sources exhibit such features. These datasets
are stored and queried using the RDF [8] framework and
the SPARQL [32] language respectively in several Semantic
Web applications. The ultimate goal is to utilize and com-
bine these datastores in order to extract knowledge through
Linked Data processing. It is clear that this extraction can
be achieved by utilizing scalable data management tech-
niques and infrastructures. A number of horizontally scal-
able RDF data-stores (e.g., [11, 14, 20]) have been recently
introduced towards this direction.

NoSQL datastores’ ability to scale horizontally makes them
perfect candidates for cloud platforms that provide infras-
tructure as a service (IaaS) and applications based on them
will exploit their characteristics: Scalability in processing
big data is possible through elasticity and sharding. The
former refers to the ability to expand or contract dedicated
resources in order to meet the exact demand. The latter
refers to the horizontal partitioning over a shared-nothing
architecture that enables scalable load processing. It is ob-
vious that these two properties (henceforth referred to as
elasticity) are intertwined: as computing resources grow and
shrink, data partitioning must be done in such a way that no
loss occurs and the right amount of replication is conserved.

Many NoSQL systems (e.g., [5, 15, 24, 7, 9]) claim to
offer adaptive elasticity according to the number of partici-
pant commodity nodes. Nevertheless, the“throttling”is usu-
ally performed manually, making availability problems due
to unanticipated high loads not infrequent (e.g., the recent



Foursquare outage [19]). Adaptive frameworks are offered
by major cloud vendors as a service through their infrastruc-
ture: Amazon’s SimpleDB [2], Google’s AppEngine [4] and
Microsoft’s SQL Azure [10] are proprietary systems provided
through a simple REST interface offering (virtually) unlim-
ited processing power and storage. However, these services
run on dedicated servers (i.e., no elasticity from the vendor’s
point of view), their internal design and architecture is not
publicly documented, their cost is sometimes prohibitive and
their performance is questionable [23].

Recent works have provided interesting insights over the
performance and processing characteristics of various ana-
lytics platforms (e.g., [23, 30, 13]), without dealing with
elasticity in virtualized resources, which is the typical case
in cloud environments. The studies presented in [16, 27, 35]
deal with this feature but do not address NoSQL databases,
while [25] is file-system specific. Finally, proprietary frame-
works such as Amazon’s CloudWatch [1] or AzureWatch [3]
do not provide a rich set of metrics and require a lot of
manual labor to be applicable for NoSQL systems.

Thus, although both NoSQL and cloud infrastructures are
inherently elastic, there exist no detailed and extended stud-
ies to report how effective this is in practice, at least over
architecturally different engines. Our work aims to bridge
this gap between individual implementations and practice.
Besides the inherent elasticity constraints NoSQL engines
exhibit [21], our task is to deploy a distributed framework
that allows (in a customizable and automated manner) No-
SQL platforms to expand or contract their resources by using
a cloud management platform. In this work, we make the
following tangible contributions:

• We document the costs and gains after a cluster resize and
a data rebalance operation. Using both client and cluster-
based metrics, we register the performance gains when
increasing the size of the cluster under varying generic
workloads (with and without rebalancing operations).

• We present TIRAMOLA, an open-source prototype im-
plementation of our framework that performs distributed
monitoring at various granularities of a NoSQL platform
and automates the cluster resize process according to user-
defined policies.

• As a case study, we apply TIRAMOLA on a distributed
RDF datastore [29] which supports the storage and in-
dexing of RDF data along with the efficient resolution of
join queries. Through the application of a varying work-
load and the use of a simple policy, we demonstrate TI-
RAMOLA’s ability to perform correct cluster resize op-
erations as the cluster increases and decreases its size in
order to maximize the reported throughput.

The rest of the paper is organized as follows: Section 2
presents TIRAMOLA’s architecture; Section 3 outlines our
results; Section 4 presents related work and Section 5 con-
cludes our work by briefly highlighting our findings.

2. ARCHITECTURE
TIRAMOLA, our elasticity-testing framework is an open-

source project 1 with over 2K lines of Python code. Its
architecture is depicted in Figure 1. It consists of a num-
ber of configuration, management and monitoring modules
which interact with both the IaaS and PaaS layers of a
shared-nothing distributed application sitting on top of a

1http://tiramola.googlecode.com
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Figure 1: The TIRAMOLA NoSQL elasticity-testing
framework.

cloud platform. More specifically, it comprises of the higher-
level Command Issuing and Rebalancing modules which are
responsible for initiating cluster resize operations and en-
suring equal load distribution respectively. The lower level
components of TIRAMOLA are the Cloud Management, the
Cluster Coordinator and the Monitoring module. The Cloud
Management module interacts with the cloud vendor’s IaaS
level to adjust the cluster’s physical resources by releasing
or acquiring more virtual machines. The Cluster Coordina-
tor executes higher level add, remove and rebalance com-
mands according to the particular NoSQL system used on
the PaaS cloud level. Finally, the Monitoring module col-
lects fresh and up to date metrics both from the application
(PaaS) and the infrastructure (IaaS) layer. In the following
we describe in detail the aforementioned modules.

The Command Issuing module coordinates the entire re-
source adjustment process. It currently requests addition or
removal of a number of VMs using the Cloud Management
and the Cluster Coordinator modules. The user can define
a set of policies which can trigger different cluster resize
events. The policies are based on metrics retrieved by the
Monitoring module. Their complexity can vary from simple
threshold based policies (e.g., trigger node removals when
the cluster’s CPU usage is very low for a long time) to more
sophisticated application specific policies (e.g., trigger node
additions when there is a sudden increase in the mean query
response time). Currently, this module requests addition or
removal of a number of VMs using the Cloud Management
and Cluster Coordinator modules.

TIRAMOLA’s Monitoring module is designed and de-
ployed in order to gather both generic IaaS related and spe-
cific PaaS related metrics. Currently, it receives data from
Ganglia [28], a scalable distributed system monitoring tool
that allows the user to remotely collect live or historical IaaS
statistics (such as CPU load averages, network, memory or
disk space utilization) through its XML API and present
them through its web front-end via real-time dynamic web
pages. Apart from general operating-system statistics, Gan-
glia may also gather PaaS related metrics such as the current
number of open client threads, number of served operations
per second, etc.

The Rebalancing module is activated after successful TI-



RAMOLA Cloud Issuing commands (i.e., a newly requested
VM has booted and received a valid IP). When this hap-
pens, the module executes a “global rebalance” operation, in
which client requests are spread equally among the cluster
nodes according to the specific NoSQL implementation.

TIRAMOLA’s Cloud management module interacts with
the cloud vendor using the well known euca-tools, an Ama-
zon EC2 compliant REST-based client library. The com-
mand issuing module interacts with this module when it
commands for a resize in the physical cluster resources, i.e.,
the number of running VMs. Our cloud management plat-
form is a private OpenStack [6] installation. The use of
euca-tools guarantees that our system can be deployed in
Amazon’s EC2 or in any EC2-compliant IaaS cloud. We
have created an Amazon Machine Image (AMI) that con-
tains pre-installed versions of the supported NoSQL systems
along with the Ganglia monitoring tool.

The Cluster coordinator module issues higher level PaaS
management commands after the requested infrastructure
has been successfully reserved and initialized by the Cloud
Management module. This coordination is done with the
remote execution of shell scripts and the injection of on-the-
fly created NoSQL specific configuration files to each VM.
Higher level “start cluster”, “add NoSQL node” and “remove
NoSQL node” commands are translated in a workflow of
primitive remote commands and configuration file transfers.
Our framework implementation executes health checks and
makes sure that each step has succeeded before moving to
the next.

The following scenario depicts TIRAMOLA’s module col-
laboration during a cluster resize: the Command Issuing
module identifies an overloaded situation by utilizing info
from the Monitoring module and requests an “add virtual
machine”command using the euca-tools API and waits until
it is started and has been assigned with an IP. After this,
the Cluster Coordinator creates the appropriate configura-
tion scripts on-the-fly, transfers them to the new VM, and
remotely starts the NoSQL service along with the Ganglia
tool. The Rebalancer module inserts the node to the cluster
and rebalances client requests among the server nodes. Al-
ternatively, when the decision dictates for node deletion, the
Cluster Coordinator is instructed to remove it from the clus-
ter calling the “terminate instance” command of the Cloud
Management. Data loss during node removal is avoided with
the use of NoSQL data replication. In this case, NoSQL
systems transparently replicate the removed data in order
to maintain the replication factor.

Our framework currently incorporates two popular No-
SQL systems that implement rebalancing operations: HBase
and Cassandra. Yet, the system is extensible enough to in-
clude more engines that support elastic operations by im-
plementing the system’s abstract primitives in the Cluster
Coordinator module and by including the system’s binaries
to the existing AMI virtual machine image. The precooked
virtual machine image is available for download from the
project’s web site.

3. EXPERIMENTAL RESULTS
Our experimental setup consists of an OpenStack private

cluster of 9 VM containers with one machine also serving
as the Cloud endpoint, scheduler, storage and networking
cluster controller. Each VM container has 2 6-core Intel
Xeon R©CPUs with Hyperthreading at 2.67GHz, 48 GB of
RAM (with disabled page swapping) and two 2TB disks

setup with RAID 0 for maximum disk I/O. Thus the cluster
can support a total of 108 small VMs.

Each of our server VMs has a 4 virtual core processor
with 8GB of RAM and 300GB of storage space. It therefore
corresponds to a type medium Amazon VM. Cluster peers
store their data into their root file system, i.e., no external
Elastic Block Storage (EBS) is used. The versions of Hadoop
and Ganglia used are 1.0.1 and 3.1.2 respectively, both in
their default configuration.

Clients and workloads used: We utilize fixed HBase
(v. 0.20.6) and Cassandra (v. 0.7.0 beta) initial clus-
ter sizes of 8 nodes which are loaded with 20 million ob-
jects (i.e., 20GB of plain raw data, since each item takes
up 1KB) by utilizing the YCSB [13] load function. Other
standard benchmarks such as TPC-W focus mainly on re-
lational databases, and we have opted for analytical rather
than transactional database load, given the scope of NoSQL
databases. Every database is configured with a replication
factor of 3, which in the case of Cassandra and HBase re-
sults in a total database size of about 60GB and 90GB re-
spectively (HBase uses more metadata per record). Since
HBase and Cassandra are implemented in Java and they
were setup for production mode, a generous heap space of
6GB was supplied. For the most part, all database systems
were setup using their default settings, as presented in their
online manual pages. The only deviation from this rule is
Cassandra’s auto_bootstrap parameter, which was set to
false, as it effectively prevents adding more nodes to the
cluster ring than the number of already participating nodes.

The default workload for the YCSB tool is random uni-
form read, with varying λ, where λ is the number of active
threads of the YCSB tool. YCSB uses two parameters, the
number of threads per client and the target number of op-
erations per second they will try to achieve. Consequently,
λ defines the number of concurrent pending operations at
every time point. In our experiments, we pose a sufficient
number (2M to 10M) of simple get queries that collectively
cover a significant part of the dataset (10% to 50%).

YCSB comes with a set of workloads that simulate real-
world conditions. However we use 4 consistent workloads
(namely UNIFORM READ, ZIPFIAN READ, UNIFORM-
UPDATE and UNIFORM RMW) in order to better under-

stand the databases’ behaviour for different types of load.
These are simple (i.e., not composite) workloads, where all
operations are of the defined type, that is uniform random
reads, zipfian random reads, uniform random updates and
uniform random read-modify-writes respectively.

Our evaluation conforms to the following methodology:
First, we identify the cost and performance gain/loss cost
after cluster resize for various workloads and resize choices.
Then, given our findings, we present a prototype, fully au-
tomated system where the command issuing module mon-
itors the appropriate performance metrics and adaptively
adds/removes cluster resources in order to keep the cluster
within some user-defined limits. Finally, we present a pro-
totype system based on a SPARQL application backed by
HBase, and evaluate our elasticity-providing system’s imple-
mentation.

3.1 Cluster resize performance measurements
Data rebalancing costs: Our primary concern on the

costs and gains of a cluster resize operation relates to the
rebalancing of the database data. As data rebalancing is a
resource intensive procedure, we perform node additions and



Table 1: Completion time, total moved data, final
average query throughput and latency for a 8+8
node cluster resize operation in HBase and Cassan-
dra with and without data rebalancinghhhhhhhhhhhMetric

Cluster
HBase Cassandra

Reb No Reb No
Completion time (min) 98 5 665 5

Data moved (GB) 22.5 - 87.7 -
Througput (Kreqs/s) 154.5 129.6 18.3 14.9

Avg. Latency (s) 0.7 1.1 7.1 9.3

data migration only on an idle cluster, that is without apply-
ing extra client load. This is a valid scenario because data
rebalancing is normally scheduled during off-peak time peri-
ods. Moreover, in experiments conducted with extra client
workload during data rebalancing, both systems exhibited
erratic behaviour, and never achieved the throughput or la-
tency performance of the original cluster before the resize
operation. Even worse, DB clients received disconnects and
inconsistencies, resulting in a significant number of excep-
tions.

In Table 1 we present our results for a primary examina-
tion of the costs and gains of data rebalancing for HBase
and Cassandra. Beggining with an 8-node cluster in each
case, we insert 20M tuples. Following data insertion, we ex-
pand each cluster with 8 more nodes, let the systems stabi-
lize without performing data rebalancing and apply a UNI-
FORM READ workload with a λ = 180 Kreqs/sec load.
These results are presented in the “No” column for every
database. Afterwards, a manual data rebalancing operation
is performed in HBase (through the HDFS balancer2) and
Cassandra (through loadbalance commands3). Once DB
data are balanced, we apply a UNIFORM READ workload
with a λ = 180 Kreqs/s for HBase and Cassandra. The
results for this setup are depicted in the “Reb” column for
each database.

From Table 1, we can deduce that the data rebalancing
costs far outweigh its benefits for both HBase and Cassan-
dra. For HBase, a net gain of about 20% in throughput
(154.5 Kreqs/sec balanced vs 129.6 Kreqs/sec not balanced)
was achieved compared to a non-rebalanced 16 node cluster.
In Cassandra’s case, the results were better with a net gain
of 22% for the average throughput (18.3 Kreqs/sec vs 14.9
Kreqs/sec for a non balanced 16 node cluster). In terms
of latency, similar performance benefits were achieved (33%
and 23% for HBase and Cassandra respectively). The data
moved during data rebalancing for HBase are roughly 22
GB or 25% of the entire dataset. In Cassandra’s case, much
more data are moved (87.7 GB in total), which translates to
the whole dataset, as HDFS’s centralized balancer is more
advanced than Cassandra’s when deciding how many data
blocks to move to the new nodes, as it takes into account
replica locations to minimize transferred data. Such a be-
havior leaves the cluster unbalanced in terms of disk usage,
but it significantly reduces rebalancing time compared to
Cassandra. In Cassandra’s case a decentralized but more
naive and less efficient in terms of data movement approach
is used to balance the cluster, which divides the ID space of
a pre-existing node and assignes one part to a newly intro-
duced node.

2http://bit.ly/iCNsbF
3http://bit.ly/kEZZFI

As time costs for data rebalancing operations are large
(93 and 660 minutes in HBase and Cassandra respectively),
and since the benefits can be outweighed by adding more
nodes without data migration (which incurrs a fixed time
cost of 5 minutes for each DB as shown in our results), we
conclude the costs outweigh the gains when aiming for the
highest degree of elasticity. Therefore, subsequent tests were
run without performing data rebalancing operations.

Resizing gains: Our evaluation continues by identifying
the gains in performance when adding nodes under vary-
ing workloads without data rebalancing for HBase and Cas-
sandra. We study the behaviour exhibited by an 8-node
cluster under varying workloads after the addition of a vari-
able number of nodes. We utilize a YCSB-generated load
of λ = 180 Kreqs/sec, which is well over the maximum
load that both Cassandra and HBase can efficiently han-
dle deployed on an 8-node cluster. Two types of workloads
are used, UNIFORM READ and UNIFORM UPDATE (re-
ferred to as READ and UPDATE henceforth). For each
combination of workload and database, we perform an ad-
dition of 8 (i.e., double the size) and 16 (i.e., triple the size)
nodes. The cluster resize occurs at about t = 370 sec (shown
in Figures 2 and 3 as a vertical line). The client-side query
latency and throughput µ are measured as well as the total
aggregate cluster CPU usage reported by the Ganglia tool.

In Figure 2 we present our results for the HBase cluster.
Legends refer to the workload type along with the resizing
action (e.g., READ+8 represents a read workload with an 8-
node resize). As read operations are faster than writes, we
achieve comparable run times by adjusting the amount of
objects requested in each workload, i.e., 10M in READ and
4M in UPDATE. The first graph presents the mean query
latency. Adding nodes during READ loads (READ+8 and
READ+16) has a transient negative effect on query latency,
as HMaster reassigns regions to the new nodes when the
addition is performed. Although data is not moved, the re-
assignment poses an extra burden to the already overloaded
cluster. Clients cache region locations which however change
during cluster resizing. Consequently latency increases due
to client cache misses. This effect lasts for around 4-5 min-
utes when adding 8 nodes, and just a couple of minutes when
adding 16 nodes (with query latency less affected during the
latter transition). This is because more servers quickly join
the cluster, taking a large portion of the applied load. The
24 nodes in total can now handle the load. Consequently,
the transient period takes less time and clients are affected
less. In the update workloads, we notice an oscillation in
both cases: This happens because of the compaction and
caching mechanisms of HBase. Incoming data is cached in
memory (resulting in low update latencies) but when the
memory is full and a I/O flush occurs with a compaction,
the latency increases until the new blocks are written to the
file system.

The final graph reports the aggregate cluster CPU usage
as registered by the Ganglia tool. In the read workloads
we notice that the initial load of around 55% is reduced
to about 42% in both cases. Evidently, the newly arrived
nodes immediately start handling incoming queries and al-
leviate the initially overloaded cluster. The addition of 16
against 8 nodes does not result in a further decrease in the
average CPU, as the load is still large enough for all servers
to contribute. The extra 8 nodes make a difference in terms
of throughput, as shown in the second graph. Contrarily, a

http://bit.ly/iCNsbF
http://bit.ly/kEZZFI
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Figure 2: Query latency, query throughput and CPU usage per time for an HBase cluster of 8 nodes after
adding 8 and 16 more nodes for the UNIFORM READ and UNIFORM UPDATE workload with a query
rate of λ = 180 Kreqs/sec
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Figure 3: Query latency, query throughput and CPU usage per time for a Cassandra cluster of 8 nodes after
adding 8 and 16 more nodes for the UNIFORM READ and UNIFORM UPDATE workload with a query
rate of λ = 180 Kreqs/sec
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Figure 4: SPARQL querying architecture

drop in CPU usage is a good indication for adding servers
against the maximum load. In the update workloads, we
notice that in both experiments the initial CPU load con-
tinues to drop until run completion. This drop is due to the
slow writes that occur during updates: The server freezes
incoming requests until the updated regions are flushed to
the file system.

In Figure 3 we present the respective results for the Cas-
sandra cluster. In each test, clients request 2M each out of
the total 20M objects stored in the database. During the ex-
periment, clients are aware of the list of server addresses and
each request is directed to a random one. As Cassandra does
not have a mechanism to inform clients about new servers,
a custom script was developed to propagate these changes
back to the clients, whenever a cluster resize occurred. The
first graph presents query latency: In both READ cases, we
notice that the latency almost immediately drops from an
initial value of around 22 secs to 10 and 8 secs respectively.
New servers are assigned half of the data partitions of ex-
isting servers, they cache portions of their data and answer
queries on their behalf. The larger the resize, the bigger the
decrease in latency. The same hold for the update work-
loads: Adding more nodes reduces the query latency from

11 sec to around 7 in the UPDATE+8 case and to around 5
in the UPDATE+16 case. Again, we notice here that writes
are in general faster than reads, due to the weak consistency
model followed by Cassandra, where writes do not have to
be propagated to every replica holder for the operation to
succeed.

Query throughput µ shows a similar trend. Both in read
and update workloads we notice the almost linear effect of
adding new nodes. Read throughput is increased from an
initial value of 9 Kreqs/sec to 18 Kreqs/sec when 8 nodes are
added and to 22 Kreqs/sec when 16 nodes are added. Up-
date throughput is increased from around 15 Kreqs/sec to
29 Kreqs/sec in the +8 case, and to 35 Kreqs/sec in the +16
case. This behaviour is expected, since extra servers imme-
diately join the p2p ring and take portions of the applied
workload. Moreover, the asynchronous nature of eventual
consistency enables Cassandra to maintain a stable through-
put rate even in a write-heavy workload: Updates are suc-
cessful upon transmitting the object to a single server, which
replicates it later on in a lazy manner.

Finally, in the third graph of Figure 3 we present the vari-
ation of the total cluster’s CPU usage during time. In the
read case, we notice that adding 8 nodes slightly decreases
the initial CPU usage to around 60%, whereas adding 16 ex-
tra servers decreases the average CPU load to around 50%.
Same as HBase, the 50% load of the 24-node cluster shows
that the applied load is big enough for every server to con-
tribute, since new servers are not idle. The same hold for the
update workloads: 8 more nodes bring the load to around
80% and the addition of 16 nodes drops the load to around
70%. Update workloads are more computationally heavy
than simple reads, as in the update case there is an extra
disk access cost that is avoidable by caching fetched results.

In this kind of setting, we note how both NoSQL systems
take advantage of the addition of extra nodes. HBase per-



forms faster concurrent reads compared to Cassandra: In
the READ+16 case it can handle 160 Kreqs/sec with a la-
tency of about 2–3 secs and an aggregate CPU usage of 40%,
whereas Cassandra’s throughput is 40 Kreqs/sec, a latency
of around 8 secs and a higher CPU usage of 50%. On the
other hand, Cassandra is more efficient with object updates:
It maintains stable throughput and latency curves avoiding
oscillations that occur with HBase. Finally, we notice that
Cassandra does not exhibit a negative transient effect when
new nodes enter the ring. Its decentralized architecture al-
lows for a transparent cluster resize, whereas in HBase the
HMaster needs to coordinate the whole procedure.
3.2 Elasticity-provisioning prototype

In this section we present some initial results achieved us-
ing our framework to deploy a fully automatic cluster resize
system. Our goal is to demonstrate the effectiveness and
modularity of our design to allow for adaptive cluster resize
without any human involvement. We argue that Tiramola’s
elastic HBase implementation can be used by higher level
applications making them elastic and robust to load vari-
ances. To showcase Tiramola’s elasticity provisioning we
utilize it on a SPARQL querying application prototype [29]
that depends on HBase to access data.
3.2.1 SPARQL querying architecture

In this section we focus on achieving scalable and efficient
concurrent execution of selective SPARQL queries. Figure 4
depicts the functional overview of our RDF store prototype.
A number of HBase servers (Region servers) maintains the
triples indexed using 3 permutations (spo, osp, pos). More-
over, a number of query processing servers (Query executors)
receive user requests, run the task of collecting data from the
various Region servers, and locally perform the join task.
Queries can be formed in the well known SPARQL stan-
dard. Different query executor instances can process que-
ries independently and provide concurrent query through-
put. To coordinate the several executor instances we utilize
a zookeeper quorum. The zookeeper allows scalable and
fault tolerant synchronization between large number of ma-
chines. To handle large query throughput we implement a
distributed query queue using the zookeeper. Clients con-
nect to the zookeeper and send their queries to the queue.
On the other side, executors also connect to the zookeeper
and constantly check the queue for input queries. The query
execution servers reside in different nodes of the cluster and
can be added or removed at will. Therefore, our architecture
is elastic in both HBase and query execution layer, which
means that we can independently change both the number
of HBase and query execution servers.

There are two main factors that affect query throughput.
First, SPARQL query throughput highly relies on HBase’s
read throughput. Using a large number of query execution
servers can result in load that overcomes HBase’s max read
throughput. In that case executors will stall and HBase
will become the throughput’s bottleneck. Another factor
that limits the number of servers is the number of CPUs
available in each cluster’s node. If a node executes more
query server instances than its CPU capacity, server threads
will be stalled and their execution will be serialized.

In order to achieve full elasticity we must ensure that
adding more cluster nodes will result in increased query
throughput. Each node has 2 virtual CPU cores. To avoid
CPU over-utilization we launch 2 server instances on each
node, one for every virtual CPU available on the node. From

our HBase elasticity experiments we know that adding more
HBase region servers results in increased read throughput,
which will be able to withstand the increased amount of
query execution servers. Thus, we choose to add one more
HBase region server for every node in the cluster. Using two
query execution servers and one HBase region server on each
separate cluster’s VM, provides a fully scalable and elastic
SPARQL querying architecture.
3.2.2 Elastic SPARQL querying experiments

In order to provide a realistic, web-scale evaluation, we
utilize the LUBM dataset generator [17]. LUBM creates
RDF datasets with information taken from the academic
domain, enabling a variable number of generated triples by
controlling the number of university entities. A LUBM
dataset of 5 thousand universities that contains approxi-
mately 7 million triples (125GB of raw data) is loaded using
a MapReduce bulk import job that creates three distributed
HBase indices [29]. We test our system’s elasticity in con-
current query throughput with a load consisting of queries
with the form:
SELECT ?x
WHERE {?x rdf:type ub:GraduateStudent .
?x ub:takesCourse <...>}

This query retrieves all graduate students that take a cer-
tain course. It consists of 2 triple pattern queries that are
joined by a single variable. To generate random load we use
for each query a different randomly selected course and put
it in the second triple query pattern.

In order to demonstrate the elasticity properties of our
implementation, we utilize a long running sinusoidal load
using a multi-threaded client, that queries our application
using an average λ of 40 SPARQL queries per second, a
peak load of 70 queries per second and a period of 1 hour.
SPARQL queries are translated into multiple HBase index
accesses, which means that a load of 70 SPARQL queries
per second can result in a load of thousand HBase reads
per second. This simulates a very fast variable load, that is
common for most cloud applications.

We expect that our command-issuing module will auto-
nomously decide to add nodes as the load increases beyond
the server’s capability and then return to the original clus-
ter size once the extra load has faded. Using our knowledge
of the database’s operating limits, outlined in the previous
experiments, we have configured the command-issuing mod-
ule accordingly. The parameter to trigger node addition is
increasing CPU usage of over 60%, measured as an average
over all servers that compose the cluster. This measure takes
into account the extra processing required for our applica-
tion’s joins, and is therefore set higher than our previous No-
SQL examination would suggest is necessary. On the other
hand, to remove a node, our threshold is average CPU usage
of 50% or lower. To avoid oscillations as CPU usage could
vary greatly during normal operation, the command-issuing
module monitors a running average of CPU usage with a
time window of 5 minutes. Large variations that might oc-
cur during this period are considered transient and are taken
into account as an average, since the system would not have
time to act in this small time period.

In Figure 5 we present our experimental results for a man-
aged 8-node cluster. At the beginning of the experiment, the
high load forces the CPU usage to high levels and, given that
the load is extreme for the size of the cluster, the queue size
increases rapidly. With the addition of one node, the queue
size returns to normal, but given the minimal decrease in
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Figure 5: CPU, queue length, Input load (λ) and throughput (µ) for our elasticity prototype under sinusoidal
load changes.

cpu usage over the previous time period, the system adds
3 more nodes to the cluster. The increased throughput is
achieved and once the peak load has subsided, CPU usage
drops and the queue length approaches zero, so our frame-
work removes nodes from the cluster one by one, in order to
retain the cluster data which are stored in HBase. The ex-
periment then proceeds in a similar fashion, which validates
the behavior of the system under similar conditions.

Although node addition and removal incurs a cost thus
causing the cluster to perform erratically during the pro-
cedure, manifesting in the throughput and queue length
graphs, the gains are evident. First, the cluster uses the
minimum number of nodes required for good operation, in
our example 8 nodes for most of the time, with a maximum
of 12 needed for the brief high load periods, which translates
to reduced operational costs. Second, our approach guaran-
tees quality of service for users, even under heavy load, as
requests are answered in a timely manner and the service
cluster is always online.

4. RELATED WORK
A literature study about the challenges of scaling whole

applications in cloud environments is presented in [34], along
with an overview of state of the art efforts towards that
goal. In [16], the authors propose a service specification lan-
guage for cloud computing platforms that handles automatic
deployment and flexible scaling of services. Similarly, the
work in [27] designs a model implementing an elastic site re-
source manager that dynamically consolidates remote cloud
resources on demand based on predefined policies and a pro-
totype for extending Torque clusters. The works in [35, 31]
solve the problem of optimizing VM resources (CPU, mem-
ory, etc) to achieve maximum performance using relational
DBs. In comparison, we use the standard VM model that
large cloud providers currently offer. As a general observa-
tion, these works do not address NoSQL systems and their
performance under (dynamic) cluster resizes.

Herodotou et al [18] present the Elastizer, a system for au-
tomatic sizing of a MapReduce cluster according to workload
profiling. When the user defines the job’s profile through a
set of parameters, Elastizer determines the amount of clus-
ter resources by utilizing training sets of previous runs, in
order to optimize the job’s execution. Their approach can be
applied only to batch-oriented data analytics tasks, whereas

Tiramola can be applied to any application.
The work in [25] presents policies for elastically scaling the

Hadoop-based storage-tier of multi-tier Web services based
on automated control. Oppositely, we studied NoSQL sys-
tems that store structured data and are easier to manipu-
late in the application level. We converge in adopting the
same metric, CPU Utilization, and evaluating rebalancing
costs. The main difference is that this approach is HDFS-
specific since monitoring was integrated in HDFS nodes,
while data rebalance is mandatory for new nodes. However,
our framework uses an external monitoring tool, Ganglia,
that is generic for any NoSQL system and rebalancing need
not be forced, as it relates to the NoSQL system used.

A thorough analysis of various proprietary NoSQL-like
cloud services, namely Google’s AppEngine, Microsoft’s SQL
Azure and Amazon’s SimpleDB, is presented in [23]. The au-
thors test system aspects such as scalability, cost and per-
formance, using the TCP-W benchmark. All systems are
treated as“black boxes”, since no information about their de-
sign or implementation is assumed to be known. In contrast,
our system is fully aware of the different engines’ mecha-
nisms. Moreover, we utilize our measurements to present a
modular framework that can be used to realize automatic
cluster-resizing.

Cloudy [22] is a cloud-enabled framework which supports
auto-scaling features according to demand, providing sim-
ple key/value put/get primitives. Nevertheless, compared
to our system, it is not designed to support numerous No-
SQL databases. In NEFELI [33], cloud users inform the
cloud management framework with hints about the applica-
tion nature and the framework modifies its scheduling poli-
cies to improve application performance. The difference is
the need for a middleware to be installed inside the cloud
management layer, whereas our framework utilizes only the
cloud client tools, being completely agnostic about the in-
ternals of the cloud management platform, enabling it to be
installed over various platforms.

CloudWatch [1] is Amazon’s commercial product for mon-
itoring and managing cloud resources. CloudWatch offers a
set of metrics for every VM instance and a policy framework
to trigger balancing actions when some conditions are met.
Its metric support is limited, offering only hypervisor-related
information such as CPU usage and network traffic. Mem-
ory usage or application-specific metrics are not supported



out of the box, in contrast to Ganglia which, apart from its
own rich set of probes, has inherent support from many ap-
plications, including some NoSQL systems. CloudWatch, as
a general purpose tool, does not have inherent support for
NoSQL, thus the extra coding to reconfigure the application
cluster after a hardware resize is not avoided. Other frame-
works for commercial cloud platforms like AzureWatch [3]
feature similar characteristics, resulting in vendor lock-ins.

5. CONCLUSIONS
This work presents an extensive study that quantifies and

analyzes the costs and gains of various NoSQL cluster re-
size operations, utilizing two popular NoSQL implementa-
tions. To perform our study, we designed and implemented a
fully modular, cloud-enabled framework that allows efficient
resource monitoring and direct interaction with the cloud
vendor and the cluster manager. We have also evluated the
performance gains that a distributed application, utilizing
a NoSQL database backend, can achieve by exploiting the
elasticity offered by modern cloud infrastructures.

The ease of setup and the performance under elastic oper-
ations weigh on choosing a particular NoSQL. Both engines
we tested can be setup with relative ease. There are few con-
figuration files that need to be injected during launch and
most of the operational parameters can be adjusted by al-
tering the appropriate settings. There is no need to provide
new configuration files or commands during normal opera-
tion, especially during the rebalancing phases. Nevertheless,
their quite distinctive behavior and performance under dif-
ferent scenarios make the decision quite application-specific:
HBase is the fastest and scales with node additions (only
for reads though), while Cassandra performs fast writes and
scales also, without any transitional phase during node ad-
ditions. Both achieve small gains from a data rebalance,
provided they are under minimal load.

We believe that this work has demonstrated the feasibility
of our ultimate goal. Based on our findings, we offered a
prototype implementation of our automatic cluster resize
module, that matches the number of provisioned resources
against the total demand and the application expert’s rules
of required operation. We have also demonstrated the gains
of a SPARQL query server application, using HBase as an
RDF store, under variable query load and elastic operations.
Our open-source implementation can provide a good basis
on which numerous applications can test their adaptivity at
very-high scale.
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