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ABSTRACT
Big data analytics tools are steadily gaining ground at be-
coming indispensable to businesses worldwide. The com-
plexity of the tasks they execute is ever increasing due to
the surge in data and task heterogeneity. Current analytics
platforms, while successful in harnessing multiple aspects
of this “data deluge”, bind their efficacy to a single data
and compute model and often depend on proprietary sys-
tems. However, no single execution engine is suitable for all
types of computation and no single data store is suitable for
all types of data. To this end, we demonstrate IReS, the
Intelligent Resource Scheduler for complex analytics work-
flows executed over multi-engine environments. Our system
models the cost and performance of the required tasks over
the available platforms. IReS is then able to match dis-
tinct workflow parts to the execution and/or storage engine
among the available ones in order to optimize with respect
to a user-defined policy. During the demo, the attendees
will be able to execute workflows that match real use cases
and parametrize the input datasets and optimization pol-
icy. The underlying platform supports multiple compute
and data engines, allowing the user to choose any subset
of them. Through the inspection of the produced plan, its
execution and the collection and presentation of numerous
cost and performance metrics, the audience will experience
first-hand how IReS takes advantage of heterogeneous run-
times and data stores and effectively models operator cost
and performance for actual and diverse workflows.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous
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1. INTRODUCTION
Big data analytics have become a necessity for the major-

ity of industries [17], taking the lead in risk assessment, busi-
ness process effectiveness, market analysis, etc. [23, 16]. En-
abling engineers, analytics experts and scientists alike to tap
the potential of vast amounts of business-critical data has
grown increasingly important. Such data analysis demands
a high degree of parallelism in both storage and computa-
tion: Modern datacenters host huge volumes of data, stored
over large numbers of nodes with multiple storage devices
and process them using thousands or millions of cores.

The demand for near-real-time, data-driven analytics has
given rise to diverse execution engines and data stores that
target specific data and computation types (e.g., [1, 4, 2, 13,
3, 10]). Many of these systems are now offered as a service
by IaaS providers, enabling a very wide deployment range.
There also exist approaches in the literature that manage to
optimize their performance (e.g., [20, 22]) by automatically
tuning a number of configuration parameters. Yet, these
schemes assume strictly single-engine environments (mainly
the Hadoop ecosystem), thus considering specific data for-
mats and query/analytics task types.

However, modern workflows have become increasingly long
and complex [19]. Specifically, workflows may include mul-
tiple data types (e.g., relational, key-value, graph, etc.) gen-
erated from different resources. What is more, they are
executed under varying constraints and policies (e.g., op-
timize performance or cost, require different fault-tolerance
degrees, etc.). Finally, workflow operators can be greatly di-
verse, from simple Select-Project-Join (SPJ) and data move-
ment to complex NLP-, graph- or custom business-related
operations. There currently exists no single platform that
can optimize for this complexity [27].

Sensing this trend, cloud software companies now offer
software distributions in pre-cooked VM images or as a ser-
vice. These distributions incorporate different processing
frameworks, data stores and libraries to alleviate the bur-
den of multiple installations and configurations (e.g., [5, 9,



8, 12]). Yet, such multi-engine environments lack a meta-
scheduler that could automatically match tasks to the right
engine(s) according to multiple criteria, deploy and run them
without manual intervention. A recent attempt along this
line [25, 26] focuses more on lower-level database operators,
emphasizing on their automatic translation from/to specific
engines via an XML-based language. Yet, this is a propri-
etary tool with limited applicability and extension possibil-
ities for the community.

To address multi-engine analytics workflow optimization
we present the Intelligent Multi-Engine Resource Scheduler
(IReS), an integrated, open source platform for managing,
executing and monitoring complex analytics workflows1. Its
goal is to provide adaptive, cost-based and customizable re-
source management of the diverse execution and storage en-
gines available. IReS incorporates a modelling framework
that constantly evaluates the cost, quality and performance
of data and computational resources in order to decide on
the most advantageous store, indexing and execution pat-
tern.

To that direction, our system handles existing open-source
execution models (e.g., Map-Reduce, Bulk Synchronous Par-
allel) as well as state-of-the-art centralized and distributed
storage engines (RDBMSs, NoSQL, distributed file-systems,
etc.) in order to have a broad applicability and increased
performance gains. IReS is able to optimize workflows con-
sisting of tasks that range from simple group-by, aggregation
or complex joins between different data sources to machine-
learning tasks and queries on graph data in combination
with relational data. In the current implementation, the
system bases its operation on the following elements:

• A profiling and modelling engine that benchmarks oper-
ator performance and cost for different engine configura-
tions. Outputs are collected via budget-constraint exe-
cuted benchmarks. The learned models are stored and
utilized for the planning phase of the workflow.

• A JSON-based metadata framework that describes oper-
ators in abstract and instantiated forms, enabling search
and matching of operators that perform a similar task in
the planning phase.

• A decision-making and enforcing process that chooses among
different equivalent workflow execution plans (i.e., on dif-
ferent engines, resulting in equivalent output) based on
cost and performance models and schedules the execution.

The resulting optimization is orthogonal to (and in fact
enhanced by) any optimization effort within a single engine.
Unlike [25, 26], IReS is a fully open-source platform that
targets both low (e.g., join, sort, etc.) as well as high level
(e.g., machine learning, graph processing) operators, treat-
ing them as black boxes. The generic profiling/modelling
method it relies upon allows for easy addition of new oper-
ators and engines.

Our demonstration of the IReS system will showcase its
ability to i)model operator performance according to dif-
ferent engines and their resources and ii)adaptively decide
on which operator version to run based on the optimiza-
tion policy and the available engines. The demonstration
platform will integrate Hadoop [1], Hama [2], Spark [4] and

1IReS is a central component of the ASAP (Adaptive, highly
Scalable Analytics Platform) EU-funded project. ASAP en-
visions a unified, open-source execution framework for scal-
able data analytics. http://www.asap-fp7.eu/
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Figure 1: Architecture of the IReS platform

PostgreSQL [11] with HDFS [7], HBase [3] and Elasticsearch
[6] and operate upon real-life and synthetic workflows cho-
sen to include diverse datasets and computation types. The
participants will have a rich interaction with IReS, control-
ling policy and input aspects, while being able to evaluate
the advantages of multi-engine optimization by inspecting
generated plans and output.

2. ARCHITECTURE
IReS focuses on highly efficient and user-customizable ex-

ecution of analytics tasks (or workflows). This is made
possible through the transparent modeling, monitoring and
scheduling that involves different execution engines and stor-
age technologies. Consequently, our system is able to exe-
cute all types of analytics workflows by adaptively choosing
to execute each sub-part of the workflow to a (possibly differ-
ent) deployed engine. The IReS platform assigns sub-tasks
to the most advantageous technology(-ies) available and en-
sures resource and dataflow scheduling in order to enhance
performance: If a single engine is used, enhancement will
be achieved through optimized resource allocation and elas-
ticity modeling (e.g., execute on more VMs, or on smaller
cluster with larger main memory, etc.); if multiple ones are
required, enhancements will relate both to single-engine op-
timization and to workflow management that decides what is
the best execution plan and data-flow (e.g., execute sub-task
1 first, intermediate results should be stored on a NoSQL en-
gine and then sub tasks 2 and 3 run in parallel and write
final results to HDFS files).

The central notion behind the IReS platform is to create
detailed models of the costs and performance characteris-
tics of various analytics operations over multiple execution
engines. These models are then used to match the user op-
timization policy with the available execution engines.

The architecture of the IReS platform is depicted in Fig-
ure 1. IReS comprises of three layers, the interface, the
optimizer and the executor layer.

The interface layer is responsible for communicating with
the application UI in order to receive the input that is neces-
sary for its operations. It consists of the job parser module,
which identifies execution artifacts such as operators, data,
their dependencies and accompanying metadata. Moreover,



Figure 2: Metadata description of the abstract join
operator

it validates the user-defined policy. All this information
must be robustly identified, structured in a dependency graph
and stored.

The optimizer layer is responsible for optimizing the ex-
ecution of an analytics workflow with respect to the policy
provided by the user. The core component of the optimizer
is the Decision Making module, which determines the op-
timal execution plan in real-time. This entails deciding on
where each subtask is to be run, under what amount of re-
sources provisioned, the plan for moving data to/from their
current locations and between runtimes (if more than one
is chosen) and defining the output destinations. Such a de-
cision must rely on the characteristics of the analytics task
in hand and the models of all possible engines. These mod-
els are produced by the Modeling module and stored in a
database called Model DB. The initial model of an engine
results from profiling and benchmarking operations in an
offline manner, through the Profiling module. This module
directly interacts with the pool of physical resources and the
monitoring layer in-between. While the workflow is being
executed, the initial models are refined in an online manner
by the Model refinement module, using monitoring informa-
tion of the actual run. Such monitoring information is kept
in the IReS DB and is utilized by the decision making mod-
ule as well, to enable real-time, dynamic adjustments of the
execution plan based on the most up-to-date knowledge.

The executor layer is the layer that enforces the opti-
mal plan over the physical infrastructure. It includes meth-
ods and tools that translate high level “start runtime un-
der x amount of resources”, “move data from site Y to Z”
type of commands to a workflow of primitives as understood
by the specific runtimes and storage engines. Moreover, it
is responsible for ensuring fault tolerance and robustness
through real-time monitoring.

In the following, we describe in more detail the role, func-
tionality and internals of the most important modules of the
platform.

Job Parsing Module: This module takes as input the
user-defined workflow, formulated in a dependency graph
format and expressed in a way that allows for various lev-
els of abstraction using a metadata framework. Moreover,
the module takes as input the user optimization parameters,
which could translate to performance, cost, availability, etc.

The main challenge of defining a workflow description
metadata framework is the fact that it requires to be ab-
stract at the user level. The user should be able to describe

the data and operators that comprise her workflow in a way
as abstract as she desires. The IReS planner and workflow
scheduler need to remove that abstraction, find all the al-
ternative ways of materializing the workflow and select the
most beneficial, according to the user-defined policy.

Our proposed metadata framework describes data and op-
erators. Data and operators can be either abstract or mate-
rialized. Abstract are the operators and datasets that are de-
scribed partially or in a high level by the user when compos-
ing her workflow whereas materialized are the actual oper-
ator implementations and existing datasets, either provided
by the user or residing in a repository.

Both data and operators need to be accompanied by a set
of metadata, i.e., properties that describe them and can be
used to match (a) abstract operators to materialized ones
and (b) data to operators. Such properties include input
data types and parameters of operators, location of data
objects or operator invocation scripts, data schemata, im-
plementation details, engines, etc. The metadata defined
for each object have a generic tree format (JSON). To avoid
restricting the user and allow for extensibility, the first lev-
els of the metadata tree are predefined, while users can add
their ad-hoc subtrees to define their custom data or opera-
tors. Moreover, some fields (mostly the ones related to the
operator and data requirements) are compulsory while the
rest (e.g., known cost models, statistics, etc.) are optional.
Materialized data and operators need to have all their com-
pulsory fields filled in with information. Abstract data and
operators do not adhere to this rule. Apart from having
empty fields, they can also support regular expressions (e.g.,
the * symbol under a field means that the abstract object
matches materialized ones with any value of that field).

Let us take a join operator on a single attribute as an ex-
ample. In its abstract form, the joinOP operator (see Figure
2) needs only define two input parameters, the condition un-
der which they are joined and an output parameter. Each of
the input parameters and the output are abstract data_info
objects with two attributes: “attr1” represents the field of
the join predicate while “attr2” represents the second avail-
able field in each data_info object. The op_specification

field of this operator specifies its operation, a single join al-
gorithm, and defines the join condition (in this case an inner
join). In short, the abstract join operator defines a format
that any join operator implementing the specific functional-
ity needs to follow.

The materialized operators include, on top of that, all in-
formation required in order to perform the operation on an
execution engine. In join_1 (see Figure 3.a), the opera-
tor executes the join over Hadoop; it thus includes Hadoop-
specific information about the input, output and the engine.
The inputs and output in this case have specific attribute
types and an engine specification (under engine) containing
the location of the data and information about their struc-
ture. The operator itself also has an engine specification
(engine_specification) indicating its execution location.
The example in Figure 3.b describes join_2, which joins
an HBase and a relational table and outputs the result to
HDFS. It runs as a local Java process.

To discover the actual implementations that comply with
the description of an abstract operator provided by the user,
we employ a tree matching algorithm to make sure that all
metadata constraints are met, i.e., all compulsory fields are
consistent. This is performed by the decision making mod-
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Figure 3: Metadata descriptions of the two materialized join operators

ule, described subsequently. In our example, both join_1

and join_2 match joinOP and are thus considered when
constructing the optimized execution plan.

Apart from the compulsory fields, which are necessary
for the matching of abstract to materialized operators, the
metadata descriptions of the materialized joins both contain
the optional optimization field, which holds additional in-
formation that assists in the optimization of the workflow.
In the case of join_1, a cost function is provided by the
developer of the operator while for join_2 the platform is
instructed to create one by profiling over specific metrics
(execution time and required RAM in our case).

Modelling Module: This module is responsible for con-
structing models on a per operator–engine combination ba-
sis. The relevant literature review [18, 28, 24] has revealed
that models already exist for a very limited number of op-
erators and engines and some of them entail knowledge of
the code to be executed. Contrarily, we treat materialized
operators as “black boxes”, assuming no prior knowledge of
their internals, and model them using profiling in an offline
mode, as well as machine learning over actual runs.

Profiling Module: The profiling module functions in
an operator-agnostic way, having no prior knowledge other
than the profiler input parameters. These parameters fall
into three categories:

• Data specific parameters: These parameters describe the
data to be used for the operator profiling, e.g., the type
of data and its size.

• Operator specific parameters: These parameters relate to
the algorithm of the operator, e.g., the number of output
clusters in k-means.

• Resource specific parameters: These parameters define
the resources to be tweaked during profiling, e.g., clus-
ter size, storage size, main memory, etc.

The output of each run is the profiled operator’s perfor-
mance and cost (e.g., completion time and I/O operations,
average memory and CPU consumption, etc) under each
combination of the input parameter values for specific user-
defined optimization metrics, such as cost in $ or I/O, la-
tency, throughput, etc. Both the input parameters as well
as the output metrics are given by the user/developer.

The aim of the profiling module is to create a surrogate
estimation model [21], including neural networks, SVM, in-
terpolation and curve fitting techniques, for each operator
running over a specific engine. To that end, we need to
sample the operator function by running automated exper-
iments for various values of each of the input parameters
and measure the outputs. To create the most accurate sur-
rogate within a budget of experiments, adaptive sampling
techniques are adopted to select the combinations of values
to be used as input of each run.

Decision Making Module: This module performs the
intelligent exploration of all the available execution plans
and the discovery of the optimal execution plan according to
the user-defined optimization objectives. Initially, it trans-
forms the abstract workflow representation, described as a
DAG graph, into a materialized workflow DAG graph that
contains all the alternative paths of materialized operators
that match the abstract workflow. To do so, for each ab-
stract operator, it searches the library of available material-
ized operators to find all matches. Our decision module is
using an efficient tree matching algorithm to avoid unneces-
sary comparisons and follow the hierarchical structure of the
tree-based metadata constrains. When all operator matches
are discovered, the decision making module intelligently con-
sults the input and output specifications of the materialized
operators and adds the required move/transform operators.
Those operators are needed in order to connect operators of
different engines and input/output configurations and gen-
erate the final materialized workflow DAG graph.

To find the optimal execution plan, our decision module
uses a dynamic programming planner that explores the ma-
terialized workflow DAG in order to find the plan that best
matches the user optimization policy. To estimate opera-
tor performance metrics, our planner consults the profiler
module that holds surrogate estimator models for each one
of the materialized operators. In our current implementa-
tion, our planner can be configured to optimize one metric
or a function of multiple performance metrics that the user
is interested in. We are currently investigating methods for
optimizing multiple dimensions of performance metrics, like
finding Pareto frontier execution plans.



In the course of the workflow execution, the real-time
monitoring information is fed back to the decision making
module in order to take into account current running condi-
tions and adapt accordingly. Moreover, our planner consid-
ers more than a single final plan to ensure that alternatives
will exist in case of failures or other unpredictable circum-
stances without having to run the whole decision making
process from scratch. These alternatives include the top-k
(instead of the best) plans according to the user’s optimiza-
tion preferences or a sample of the multi-dimensional space
covering different environments.

Enforcer Module: The enforcer module undertakes the
execution of the ensuing plan. First, the enforcer needs to
validate the plan by checking the availability of resources
and data, the load of the engines, etc. After ensuring that
everything is correct, it enforces the plan actions by trans-
lating the plan steps to standard, low-level API calls. Such
actions might entail code and/or data shipment if necessary.
In case of faults and failures occurring on-the-fly, an alter-
native plan will substitute the current.

3. DEMONSTRATION DESCRIPTION
Our system is controlled by a comprehensive web-based

GUI that attendees will utilize. The basic interaction di-
mensions include input parametrization, operator model vi-
sualization, execution plan inspection and execution output
evaluation. The GUI controls a cloud-based deployment of
several runtime engines and data stores over 16 virtual ma-
chines of an Openstack cluster hosted in our lab.

Workflows and Datasets: The users will have the op-
portunity to test the IReS platform either using one of four
predefined workflows or assembling their own, using opera-
tors from the ASAP operator library. A diverse set of op-
erations of varying complexity and execution parameters is
covered including basic SQL queries (selections, projections,
joins), ML algorithms (classification and clustering) as well
as NLP methods (named entity recognition).

Three of the predefined workflows represent real use cases
driven by business needs. These cover complex data ma-
nipulations in the areas of business analytics on telecommu-
nication data and web data analytics, provided by a large
telecommunications company and a well-known web archiv-
ing organization respectively. The input datasets for these
workflows consist of anonymized telecommunication traces
and web content data (WARC files). Subsets of those datasets
can be used for each of the available workflows. A short de-
scription for each workflow follows:
Web analytics - Clustering: The workflow starts by se-
lecting a subset of the initial web content indexed by Elas-
ticsearch. Feature-extraction (e.g., tf-idf) is performed on
these documents; the outputs are clustered using k-means
clustering (chosen among weka, mahout and MLlib running
centrally or over Hadoop or Spark respectively).
Web analytics - Named Entity Recognition: A subset
of the dataset (obtained via a query over Elasticsearch as
before) undergoes named entity extraction. The results are
joined with the YAGO external ontology database [15] to
find possible matches and output them.
Telco analytics - Peak Detection: The workflow in-
volves processing of anonymized CDR data (residing in an
RDBMS) via clustering along time and space in order to de-
tect peaks in load, according to a set of criteria. The results
of this phase enrich a database (relational or graph DB)

Figure 4: IReS web application GUI - Materialized
Operator models

Figure 5: IReS web application GUI - Abstract
Workflow

that contains peaks detected in previous runs. The dataset
of peaks is used to discover clusters of calls that occur with
or without regularity.
Synthetic workflow: A sample workflow that showcases a
simple join operation between two datasets residing in dif-
ferent stores, namely PostgreSQL and HBase, followed by a
sorting operation. For this workflow, we use synthetic data
produced by the popular TPC-H [14] benchmark generator.
User defined workflow: The users will have the opportu-
nity to construct custom workflows by utilizing the current
library of operators and datasets.

Interface: Through the platform’s front-end, users are
able to inspect available operators and datasets, construct
the workflow they want to execute or choose one of the
pre-defined ones, specify the input parameters, review the
proposed execution plan and monitor its progress and out-
put. Our proposed interface consists of 6 sections, namely:
Datasets, Abstract Operators, Materialized Operators, Ab-
stract Workflow, Materialized Workflow and Results.

In the Datasets tab, the user can browse through the avail-
able datasets and view their metadata. In the Abstract Op-
erator tab, the user can chose an existing abstract operator
and customize it by changing its accompanying metadata.
Among others, the user can specify the engine(s) on which
an operator will be run or the storage where the data will
be saved. The engines supported by IReS include JVM,



Figure 6: IReS web application GUI - Materialized
Workflow tab

Hadoop MapReduce [1], Spark [4], Hama [2] for processing
and HDFS [7], HBase [3], Elasticsearch [6], PostgreSQL [11]
and local file system for storage.

The Materialized Operator tab visualizes the materialized
operator models that have been created offline and are stored
in the Model DB. The user can plot the modelled metrics
(e.g., execution time) versus various parameters (e.g., num-
ber of nodes, dataset size, etc.) for a plethora of machine
learning models (Figure 4).

The Abstract Workflow tab gives the user the opportunity
to view the predefined workflows and choose one of them
or create one of her own by combining abstract operators
and datasets. Either way, the workflow is visualized in its
abstract form as a graph, consisting of operator and data
nodes (Figure 5). Moreover, the user can specify the policy
for which the platform will optimize the execution plan. The
supported choices include minimizing cost, execution time or
a function of them.

After selecting the abstract workflow and its input param-
eters, the user is able to move forward to the Materialized
Workflow tab (Figure 6). A preview of the materialized plan
is presented here and the user can inspect the platform’s
choices for each of the operators and the intermediate re-
sults, along with an estimation of the execution cost and
performance. At this stage, the user should be able to vali-
date the strategy that will be followed in order to optimize
for the chosen attributes. It is also possible to go back and
change the input parameters if the user wants to override
some of the system’s decisions.

The Results section offers a live preview of the execution
so far. For each finished workflow stage, a summary of its
execution aspects is presented, including execution time, re-
sources allocated to each operator, resources actually used,
operator throughput and I/O and network costs (if appli-
cable). The cost of each operation as calculated by its cost
model is also shown. For the execution steps that have not
yet been concluded, an approximation for the anticipated
performance and cost measures is presented, if possible via
previous knowledge of the operator.
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