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Abstract—In this work we address the problem of predicting
the performance of a complex application deployed over
virtualized resources. Cloud computing has enabled numerous
companies to develop and deploy their applications over cloud
infrastructures for a wealth of reasons including (but not
limited to) decrease costs, avoid administrative effort, rapidly
allocate new resources, etc. Virtualization however, adds an
extra layer in the software stack, hardening the prediction
of the relation between the resources and the application
performance, which is a key factor for every industry. To
address this challenge we propose PANIC, a system which
obtains knowledge for the application by actually deploying
it over a cloud infrastructure and then, approximating the
performance of the application for the all possible deployment
configurations. The user of PANIC defines a set of resources
along with their respective ranges and then the system samples
the deployment space formed by all the combinations of the
resources, deploys the application in some representative points
and utilizes a wealth of approximation techniques to predict
the behavior of the application in the remainder space. The
experimental evaluation has indicated that a small portion
of the possible deployment configurations is enough to create
profiles with high accuracy for three real world applications.
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I. INTRODUCTION

Cloud Computing has brought forth a new computing
paradigm, in which virtualized resources can be allocated
and freed on demand. Cloud-based deployments offer multi-
ple advantages including (but not limited to) decreased costs,
less administrative burden, bigger flexibility, seemingly in-
finite resources to harness on a pay-as-you-go manner. As
a direct consequence, almost all every-day users are using
at least one cloud-based application, while the amount of
businesses that take advantage of the Cloud’s offerings are
ever increasing [1]. This trend is particularly observed in
modern compute and data intensive platforms (e.g., Hadoop,
NoSQL DBs [2]), which are now the basis of every analytics
application/job. As most of these engines are designed to
scale horizontally, deploying them over virtualized infras-
tructures seems like a natural fit.

Predicting application performance is a well-known re-
search and business problem ([3], [4], [5], [6]). Building
a reliable model of application behavior offers engineers

and analysts a wide range of advantages: Most importantly,
it allows for better resource allocation both at deployment
and during runtime. This translates to happier customers
(minimizing delays, downtimes, denial of service, etc) and
better cost management.

As applications become more complex, so does building
accurate models of their behavior. This issue is exacerbated
by the fact that many applications are now deployed over
cloud infrastructures. Applications now run over virtualized
resources that: 1) are highly heterogeneous between different
providers and inside a single provider; 2) are shared with an
unknown number of other applications; 3) have performance
that is abstracted from the underlying physical layer that
the user understands. As a consequence, performance varies
greatly among different providers, different deployments
or even different times of day. This is especially true for
resource-demanding platforms that require large amounts of
CPU and memory/disk I/O and scale horizontally at runtime.
These engines are heavily utilized nowadays for storing and
analyzing Big Data for almost any conceivable reason.

In this work, we present PANIC (Profiling Applications
In the Cloud), an application profiling system that focuses
on this important element: It models performance based
on the amount and type of virtualized resources allocated
to the application. The main goals of PANIC are: (i) to
provide a generic methodology, applicable for any kind
of cloud application deployed, (ii) to offer customizable
tradeoff between performance accuracy and profiling cost
and (iii) to be customizable, in the sense that a user can
choose from a pool of resources for which the profiling will
be executed.

The main idea of PANIC is to provide predictions for
the application performance by actually deploying the appli-
cation in representative resource combinations and approx-
imate the performance for the rest, non deployed combi-
nations. The system confronts the application performance,
which should be a countable quantity, as a high dimensional
function and it utilizes a set of approximation techniques
(from regression to machine learning classifiers) to identify
the behavior of the application. Since the possible combina-
tions of resources grows exponentially with the complexity
of the application, PANIC exploits sampling techniques in



order to pick representative configurations, deploy the appli-
cation according to them and, eventually, provide predictions
for all the possible configurations. Through our experimental
evaluation where we deploy three typical cloud applications,
we demonstrate that our system is capable of providing an
accurate application profile by deploying only 10% of the
possible deployment setups.

II. THE PROBLEM AND SOME ASSUMPTIONS

Let us assume a two-tier application, consisting of a web
server and a database server, deployed over an IaaS provider.
We also assume that we can predict the application load and
we can deploy each tier in the following possible setups:

Table I: Possible setups of a typical Web Application

Tier 1 - Web server RAM (MB) 512, 1024, 2048
Cores 1, 2, 4, 8, 16

Tier 2 - Database Server Storage (GB) 5, 10, 20, 30, 100

We assume that both the Web and Database Servers
will run in a single host each. The following question
arises: what performance will the application achieve for
different choices of the offered resources for each tier, for a
specific load? Answering this question leads to an accurate
performance profile of the application that, in turn, delineates
the application behavior in general.

In the general case, assume that we have an application
described by n dimensions. Each dimension is denoted
as di, i ∈ [1, n] and it can be related to exactly one
application Tier. The Cartesian product of the dimensions
forms the space of the possible setups (denoted as D):
D = d1× d2× ...× dn. The performance of the application
is a countable size indicating the ability of the application to
fulfill its objectives (e.g. achieved throughput, latency, etc.).
The performance space is denoted as P and it is a single
dimensional space (our work is easily extensible to support
multidimensional performance spaces). Hence, the profile
of the application (denoted as p) is defined as a function
p : D → P , indicating the achieved performance for each
acceptable deployment setup.

Since the function p is unknown and it cannot be estimated
for the entire input space, we address its estimation as a
typical function approximation problem. Specifically, we
want to estimate the function p̂ : D → P with respect
to keeping

∑
d∈D

|p̂(d)− p(d)| minimum. The approximation

process involves sampling D (let Ds represent the set of
sampled points) and calculating the values p(d)∀d ∈ Ds.
Ds, along with the respective values p(di), d ∈ Ds are
given as input to our approximation algorithms, which in
turn create the function p̂. We utilize a large number of ap-
proximation techniques, from regression to machine learning
and classification algorithms. Since the estimation of p(d)
entails the actual deployment of the application, it is obvious

that the needed time to estimate p̂ is dominated by |Ds|:
assuming that the deployment time is constant regardless
of the deployment setup, the number of deployments will
eventually determine the execution time. Furthermore, the
points that are going to be picked into Ds have a huge impact
on the accuracy of p̂.

III. OUR APPROACH

In Algorithm 1, the general methodology used for creating
a profile for a given application is provided. The algorithm
expects a valid application description A followed by an
input domain D, representing the possible setups the applica-
tion can be deployed into and a list of applicable models. The
profiling process occurs iteratively: while the termination
condition is not fulfilled, the domain space is sampled, a new
point p is picked and the application is deployed according
to p. The deployment produces a performance metric d
which is then used to train in an incremental manner all
the available models. The output of the process is the model
which achieves the highest accuracy, according to a user
specified metric.

Algorithm 1 Main profiling algorithm

Require: application A, input domain D, models M
Ensure: model m

1: while not termination condition do
2: p ← SAMPLE(D)
3: d ← DEPLOY(p)
4: for m ∈ M do
5: m.train incrementaly(p,d)
6: end for
7: end while
8: return best model(M )

The termination condition can vary. In many cases, it
can be a threshold of sampled points that, if reached, the
condition is true and the algorithm terminates. In other
cases, it can be related to the achieved accuracy: if the
trained model achieves to predict the objective function with
error lower than a user defined threshold, the termination
condition is reached. As we will present in the following
section, the nature of the termination condition directly
relates to the nature of the sampling algorithm.

A. Sampling

The sampling procedure occurs at the beginning of each
profiling loop. The sampler receives as input the domain
space D of the application, which is composed of all the
acceptable deployment points. If the termination condition
in Algorithm 1 is related to the number of sampled points,
then the sampler receives as input a positive number 0 <
s ≤ 1.0 indicating the maximum number of points that the
sampler should return, as a portion of the number of points
in D. Each point returned by the sampler will be used for



deployment, the application performance will be measured
and then an approximation model will be trained using the
acquired information.

There are many methodologies for sampling a multidi-
mensional space; We can categorize the methods we support
in the following categories: (i) Static sampling, where the
sampler needs no other information than the domain space
characteristics (dimensions and acceptable values) to pick
the next sample, (ii) Adaptive sampling, where the sampler
exploits the knowledge obtained by the deployment of
previously picked samples.

The static approach does not take into consideration
the application performance. Typical examples of static
sampling are the Random sampler, that returns random
points and the Uniform sampler which constructs a mul-
tidimensional grid in the input space D, and returns points
belonging to the grid. The adaptive approach, on the other
hand, exploits the knowledge obtained from each deploy-
ment/sample, enabling the sampler to return more samples
in regions of the domain space D where the performance ap-
pears to have fluctuations. Equivalently, an adaptive sampler
will favor areas of D that affect the application performance
more. In Algorithm 2 we provide the Greedy Adaptive
Sampling Algorithm.

Algorithm 2 Greedy Adaptive Sampling Algorithm

Require: input domain D, chosen samples L, number K
Ensure: sample s

1: if |L| < K then
2: s = borderPoint(D)
3: else
4: max = 0
5: for all t1 ∈ L do
6: for all t2 ∈ L do
7: a = find midpoint(t1, t2, D)
8: if |t1 − t2| > max and a 6∈ L then
9: max = |t1 − t2|

10: s = a
11: end if
12: end for
13: end for
14: end if
15: return s

The algorithm expects as input the domain space D, the
list of all the previously picked samples L and a positive
number K. At first the algorithm returns K points from
the border of the hyperplane defined by all points d ∈ D.
The border points are picked with the notion that if the
application is deployed using the highest and lowest avail-
able resources for each dimension (in combination, between
different dimensions), the objective function will most likely
present its highest and lowest values in the respective points.

Furthermore, the K border points are also equidistant in
order to avoid high gathering of points in a small region of
the input space. When the number of chosen points exceeds
K, the algorithm then utilizes the knowledge obtained from
the first samples. Specifically, the distances1 between all the
points are calculated and the midpoint between each couple
is estimated. The midpoint is defined as follows: assuming
2 points p1, p2 ∈ D, the midpoint pmed is the point whose
values for each dimension equal to the average values of
points p1, p2 to the respective dimensions. If such point does
not exist (e.g. such resource combination is not applicable),
the geometrically closest point is returned. The eventually
picked midpoint is the result of the most distant points, as
long as this point was not previously picked.

B. Approximation models

When a new sample is picked by the sampler and de-
ployed, the performance metric for the deployment is stored
and given as input to an approximation model. The training
set of the model consists of the chosen samples along
with their performance values. After the training process is
finished, the model will be able to approximate the objective
function for the entire space D.

There exist many methodologies for approximating an
unknown function. We can categorize them in two major
categories: regression based techniques and classification
techniques. Algorithms on the former category create an
analytical form of the objective function. The classification
techniques, on the other hand, do not create an analytical
function but rather classify the points of the domains space
in classes; These objects are treated in a similar manner,
indicating that the same properties stand for objects in the
same class.

In our approach, we utilize the approximation models
offered by WEKA[7], an open source data mining software
which implements a variety of machine learning algorithms.
WEKA provides a handful of approximation models in-
cluding, but not limited to: (i) Multilayer Perceptron, that
represents a typical neural network with many hidden layers
and neurons, (ii) Linear Regression (Least Median Squares),
that implements the methodology introduced at [8], (iii) RBF
Network, which trains a Radial Basis Function Network, as
presented at [9], (iv) Gaussian Process, that approximates
the objective function using gaussian distributions, etc.

The accuracy of each of the models is highly affected from
its configuration and the nature of the objective function.
For example, a linear hyperplane will be approximated faster
using a linear regression method; On the contrary a complex
surface which has spikes and valleys is more likely to be
approximated more accurately using a non linear approach.

1The points t1 and t2 represent points p1, p2 ∈ D along with their
respective performance values r1, r2, so t1 = (p1, r1) and t2 = (p2, r2).
The norm |t1 − t2| in this paper represents the difference |r1 − r2|, until
otherwise stated.



All the available models are trained in parallel by the system,
and the most accurate model is eventually picked.

C. System Architecture

Application Modeling Domain Sampler

Profiling Engine

Web UIPANIC

Deployment Tool Monitoring Tool

Cloud Provider

Figure 1: The architecture of PANIC

In Fig 1 we provide the architecture of the system. The
core component of our system is the profiling engine. It is
responsible for the synchronization between different tasks
and it orchestrates the different components to achieve the
common goal. Each time a new profiling loop is triggered,
new application models and a new domain sampler is
initialized (according to the user preferences). The sampler
will initially create requests for new deployments and the
Profiling Engine will forward the request to the Deployment
Tool (a tool written for the needs of PANIC). When the
execution of the application is terminated, the monitoring
tool collects the user specified performance metrics and for-
wards them to the Profiling Engine. The monitoring system
which is used by default is Ganglia[10]. The engine will then
retrain the previously initialized Application Models and an
accuracy estimation will occur. If the desired accuracy is
achieved, then the profiling process is terminated, else a new
profiling iteration occurs. The whole process is exported to
the user through a Web UI.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of PANIC, we have selected
a set of distributed analytics jobs/applications that are nat-
urally deployed over large scale virtualized resources. The
first benchmark application is TeraSort [11], a well-known
benchmark that sorts a set of key values. We test it with
datasets of 10M up to 50M key-values (1GB to 5GB of
data respectively) and run the TeraSort in Hadoop clusters
with different number of nodes and different number of
cores per node. The second application is a BSP-based
implementation of PageRank [12], a well known graph
algorithm implemented over the Apache Hama framework.
We utilize 50K to 100K node graphs, each of which has at
most 50 outgoing edges and execute PageRank over different
cluster sizes as above. Finally, the third application is a
BSP implementation of the Single Source Shortest Path
(SSSP) algorithm [13], implemented for the Apache Hama
framework. For SSSP, we create synthetic graphs consisting
of 50k up to 500k vertices and at most 50 edges per node.
For all the aforementioned algorithms, the performance
metric we seek to predict is execution time.

The domain space for each of the three applications is
composed of two dimensions related with the virtualized
resources and one dimension related to the application load
which, in our case, is intimately related to the size of the
input dataset. The dimensions along with their respective
values are provided in Table II. To evaluate the efficacy
of PANIC, all three applications have been deployed for
each possible combination. Consequently, the sampling al-
gorithms presented in the previous section were applied
and classifiers were trained, allowing us to measure the
prediction accuracy.

Table II: Resource Dimensions

Dimension Values
Nodes 2, 3, 4, 5, 6, 7, 8, 9, 10
Cores/node 1, 2, 4

Dataset size
Terasort (Millions of Key Values) 10, 20, 30, 40, 50
PageRank (Thousands of Nodes) 50, 60, 70, 80, 90, 100
SSSP (Thousands of Nodes) 50, 100, 200, 300, 400, 500

A. Raw performance
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Figure 2: Raw performance

The running times for all three benchmark applications
is given in Figure 2. We only provide the execution times
of each benchmark application for the single core VM
cases; The 2 and 4 cores cases are not provided due to
space constraints. In Figure 2a we provide the execution
time of the Terasort benchmark with regard to the size
of the cluster and the dataset size (measured in millions
of key-values). It is obvious that the execution time is
inversely proportional to the cluster size and proportional
to the dataset size. Furthermore, for large clusters we notice
that the execution time decreases less rapidly, because the
communication overheads affect more the overall execution
time.



The execution time for both PageRank and SSSP are
also shown in Figures 2b and 2c respectively. PageRank
has a similar behavior to the Terasort case. SSSP, on the
other hand, presents a slightly different behavior in terms
of scalability. Specifically, when more nodes are added to
the Hama cluster, the execution time remains unaffected
for smaller dataset sizes (e.g., 50k nodes), while for larger
datasets it decreases, but less rapidly than in the other cases.
This is due to the larger number of supersteps executed by
SSSP. Specifically, for our datasets, each SSSP job requires
about 25–30 Hama supersteps while PageRank requires
only a third of them. As a consequence, SSSP needs more
sequential steps thus more time for synchronization between
the BSP workers. Thus, due to this cost, the addition of more
workers does not greatly benefit SSSP.

B. Sampling rate

One of the greatest factors that affect the performance
of our system is the sampling rate. This is defined as the
ratio between the number of the chosen points and the total
number of acceptable deployments. Lower sampling rates
lead to fewer chosen points, offering the classifiers less
knowledge for the objective function (the performance of the
application). Via the coefficient of determination R2 [14] we
quantify the accuracy of the profiling methods. R2 declares
the degree in which a classifier fits the original data. It is

calculated as follows: R2 = 1 −

∑
i

(yi−fi)2∑
i

(yi−y)2
where yi are

the real performance values, fi are the predicted values and
y is the mean of the observed data. The closer R2 gets to
1.0, the better the performed approximation. We also utilize
the Mean Absolute Error [15] metric which is defined as:
MAE = 1

n

∑
i

|fi − yi|.
We applied the sampling methodologies presented in

Section III-A and trained all the available models of Section
III-B with the chosen points along with the respective
performance values for different sampling rates. In Figure
3 we provide the accuracy level of the best model for each
sampling rate for all three applications; In Figures 3a, 3c,
3e, R2 is depicted whereas the ones on the right (3b, 3d, 3f)
represent the MAE. The best model is defined as the model
that presents the highest coefficient of determination. The
respective deviation for each application did not overtake
10% of the values of MAE and we do not depict it on the
figures.

In our results, we notice that the most accurate models
present slightly different behavior for each one of the three
applications. In all of them, it is obvious that an increase in
the Sampling Rate leads to higher accuracy. This result is
expected, since higher sampling rate means that more points
are picked, thus the model will obtain more knowledge for
the objective function. However, in many cases this might
not be the case: The sampler may pick more points but if
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Figure 3: R2 and MAE for the benchmark applications

they are not representative ones, they may mislead the model
and eventually, this may cause lower accuracy. For example,
this is the case for Terasort, when increasing the sampling
rate from 0.125 to 0.15 for the Uniform sampler. More points
are chosen, but very few of them are picked in the regions
where the execution time is high, thus the model’s accuracy
degrades. Such cases are avoided by utilizing Adaptive
Sampling.

In conclusion, the provided models in cooperation with
the sampling methods enable the system to create an accu-
rate profile of the application even when the sampling rate
is less than 10% of the points of the domain space. In terms
of accuracy, we achieved R2 values higher than 0.8 for all
the benchmark applications, even when the sampling rate is
lower that 10%. Similarly, the accuracy of the trained models
increased rapidly in terms of MAE as well for increasing
sampling rates. Finally, the profiling process is quite fast:
Even when the Sampling Rate is 20%, the total time spent
in training is not more than 1.5 seconds. The input space
of our experiments consists of 135 discrete points for the
Terasort case and 162 points for the SSSP and Pagerank
cases. Sampling with 20% of these domains leads to 27 and
32 points respectively, thus the training time of our models is
less than 1.5 seconds when there exist 32 points for training.

V. RELATED WORK

Predicting the performance of applications running over
virtualized resources concerning the workload is vividly
researched in the literature. In [4], Kundu et al. proposed
an iterative model training technique for Neural Networks



with which the authors managed to predict the minimum
possible Virtual Machine (concerning its resources) which
would fulfill their objectives with respect to the SLAs. In an
extension of this work, at [3], also utilized Support Vector
Machines for the same objective. Their work achieved to
highly accurate predictions, however the authors did not
address the problem of sampling the input domain space,
as we do in this work. Furthermore, Iqbal et al. in [16],
propose a method with which, at first, identifies a workload
pattern and secondarily builds a model capable to predict the
application’s capacity (the number of requests it can serve
without violating given constraints). This work focuses on
web applications and the prediction happens with regres-
sion models; PANIC on the other hand, provides a wealth
of approximation techniques and the it also supports any
application able to deployed over a cloud infrastructure.

Similarly, Do et al. in [6] presented a profiling technique
which utilizes the Canonical Correlation Analysis, able to
identify the relationship between the allocated resources and
the application performance. This work targets to predict the
performance of a newly allocated Virtual Machine when it is
deployed in a specific host running other Virtual Machines.
Our work differentiates from this, since our target is to
provide an accurate application profile without having any
knowledge about the provider. Other works focus on predict-
ing specific application metrics based on I/O workload and
access patterns such as [17], [18] and [19]. Our approach
differentiates from them, as we propose a system where the
user can define application level metrics which indicate the
application performance.

VI. CONCLUSIONS

In this paper we addressed the problem of predicting
the performance of a complex application deployed over
virtualized resources. The goal of our work is to propose
a system which obtains knowledge about the application
by deploying it over a cloud infrastructure, in different
deployment setups and then approximating its performance
for all the possible setups. The application load, which is
a key factor to the performance, is addressed in the same
manner as the rest of the resources, contributing to a unified
view of all the components that affect the application. The
experimental evaluation indicated that such an approach can
lead to an accurate prediction of the performance by actually
deploying the application for only a very small portion of the
deployment space. Furthermore, by utilizing a large number
of approximation techniques, our system is able to quickly
recognize the behavior of the application by picking the most
suitable approximation model enabling the profiling process
to terminate faster.
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