
Robust and Adaptive Multi-Engine Analytics
using IReS

Nikolaos Papailiou1, Katerina Doka1, Victor Giannakouris1, Vassilis
Papaioannou1, Dimitrios Tsoumakos2, and Nectarios Koziris1

1 Computing Systems Laboratory, National Technical University of Athens, Greece
2 Ionian University, Greece

Abstract. The complexity of Big Data analytics has long outreached
the capabilities of current platforms, which fail to efficiently cope with
the data and task heterogeneity of modern workflows due to their adhe-
sion to a single data and/or compute model. As a remedy, we demon-
strate IReS, the Intelligent Resource Scheduler for complex analytics
workflows executed over multi-engine environments. IReS is able to op-
timize a workflow with respect to a user-defined policy by (a) allocating
distinct parts of it to the most advantageous execution and/or storage
engine among the available ones and (b) deciding on the exact amount of
resources provisioned. Moreover, IReS can efficiently adapt to the cur-
rent cluster/engine conditions and recover from failures by effectively
monitoring the workflow execution in real-time. During the demo, the
attendees will be able to create, optimize and execute workflows that
match real use cases over multiple compute and data engines, imposing
their preferred optimization objectives. Moreover, the audience will have
the chance to confirm the resilience and adaptability of the platform in
cases of failing nodes, unavailable engines and surges in load.

Key words: Multi-Engine Optimization, Cost Modeling, Big Data, An-
alytics Workflows, Fault Tolerance

1 Introduction

Big data analytics have become a key basis of business competition, underpin-
ning new trends on market analysis, productivity growth, innovation and con-
sumer surplus [6]. The need for near-real-time, data-driven analytics has given
rise to diverse execution engines and data stores that target specific data and
computation types (e.g., [1, 3, 5, 2, 4]). However, in this highly complex and con-
stantly changing landscape, analytic workflows may include (a) multiple data
types (e.g., relational, key-value, graph, etc.) generated from different sources
and stored on different engines [9] and (b) diverse operators, ranging from sim-
ple Select-Project-Join (SPJ) and data movement to complex NLP-, graph- or
custom business-related operations. Finally, analysts need to execute such work-
flows under varying constraints and policies (e.g., optimize performance or cost,
require different fault-tolerance degrees, etc.). There currently exists no single
engine that can optimize for this complexity, thus multi-engine analytics have
been proposed as a promising solution [12].



2 Authors Suppressed Due to Excessive Length

To address multi-engine analytics workflow optimization, we have designed
and implemented the Intelligent Multi-Engine Resource Scheduler (IReS)[8], an
integrated, open source platform for optimizing, planning and executing complex
analytics workflows1. Its goal is to provide adaptive, cost-based and customizable
resource management of the diverse execution and storage engines available.
By incorporating a modeling framework that constantly evaluates the cost and
performance of data and computational resources, IReS is able to decide on the
most advantageous store, indexing and execution pattern. The core elements
upon which the platform bases its operation are:

– A profiling and modeling engine that benchmarks operator performance and
cost for different engine configurations. Operator performance metrics are col-
lected from actual executions of the operator, triggered explicitly or via au-
tomated profiling experiments. The trained models are stored and utilized for
the optimization of workflows.

– An extensible tree-based metadata framework that describes operators in ab-
stract and materialized forms, enabling the automatic matching of operators
that perform similar tasks. Workflows can be described in an abstract way,
leaving the task of finding all alternative execution paths to IReS.

– A decision-making process that selects the most prominent workflow execution
plan, consulting the cost and performance models of the various operators.

– An execution layer that enforces and monitors the selected multi-engine exe-
cution plan. Our executor is implemented on top of YARN [13], allowing for
fine grained resource allocation control and fault tolerance.

In this work, IReS has been enhanced with new features that advance the
functionality of the platform, adding adaptability, elasticity and fault tolerance.
The most prominent newly added features are:
Online model refinement: Upon execution of a workflow, the currently mon-
itored execution metrics provide feedback to the existing models in order to
refine them and capture possible changes in the underlying infrastructure (e.g.,
hardware upgrades) or temporal degradations (e.g., due to unbalanced use of
engines, collocation of competing tasks, surges in load etc.). Evaluations have
shown that this module provides adaptability in an effective manner, ameliorat-
ing the accuracy of the models after only a few runs.
Optimal resource provisioning: Apart from deciding on the specific imple-
mentation/engine of each workflow operator, the optimizer of IReS provisions
the correct amount of resources to execute the workflow conforming as much as
possible to the user-defined criteria. This operation relies on genetic algorithms
that supply resource-related parameters (e.g., #cores, memory) from the local
minima of the trained models.
Fault tolerance: This feature relies on the periodic execution of customizable
and parameterized health scripts that report on the status of cluster nodes and
check if all services (i.e., engines and datastores) needed for the execution of an
operator are up and running. This information is used to plan according to cur-

1 https://github.com/project-asap/IReS-Platform



Robust and Adaptive Multi-Engine Analytics using IReS 3

Fig. 1. IReS web application GUI. a)Operator models, b)Abstract Workflows,
c)Materialized Workflows

rently available engines and resources, detect failures during workflow execution
and re-plan the remaining part of it.

The resulting optimization is orthogonal to (and in fact enhanced by) any
optimization effort within a single engine. Unlike [11], IReS is a fully open-source
platform that targets both low (e.g., join, sort, etc.) as well as high level (e.g.,
machine learning, graph processing) operators. Recent works [10, 7] in the field
of multi-engine workflow execution focus more on the translation of scripts from
one engine to another, being thus tied to specific programming languages and
engines. Contrarily, our system is engine agnostic, treating operators as black
boxes. This allows for extensibility to new engines and easy addition of new
operators regardless of their implementation language.

2 Demonstration Description

Our system is controlled by a comprehensive web-based GUI that attendees can
utilize. The basic interaction dimensions include input parametrization, operator
model visualization, execution plan inspection and execution output evaluation.
The GUI controls a cloud-based deployment of several runtime engines and data
stores over 16 virtual machines of an Openstack cluster hosted in our lab. The
users will have the opportunity to test IReS either using one of the predefined
workflows, driven by real business use cases, or assembling their own, using
operators from the ASAP operator library. A diverse set of operations of varying
complexity and execution parameters is covered, including basic SQL queries
(selections, projections, joins), ML algorithms (classification and clustering) as
well as custom business-related tasks. Our demonstration of IReS will showcase
the following functionalities.

Modeling of operators: To achieve extensibility, each operator is profiled
and modeled as a black box with an input space consisting of parameters that
affect its performance, e.g., amount of resources, dataset size, configuration pa-
rameters etc., and an output space containing all performance/cost metrics that
need to be approximated, e.g., execution time, memory consumption, etc. The
attendees will be able to visualize the various trained models and experience
how they are refined in real-time, by actual workflow executions (Figure 1).

Workflow materialization and optimization: The input of IReS is an
abstractly described workflow, visualized as a graph consisting of operator and
data nodes (Figure 1b). IReS is charged with the intelligent exploration of all the



4 Authors Suppressed Due to Excessive Length

available execution plans and the discovery of the optimal one according to the
user defined optimization objectives. The supported choices include minimizing
cost, execution time or a function of them. After selecting the abstract workflow
and its input parameters, the user is able preview the materialized plan and
inspect the platform’s choices for each of the operators and intermediate results,
along with an estimation of the execution cost and performance (Figure 1c). At
this stage, the user will be able to validate the strategy to be followed.

Resource allocation: Apart from the selection of the optimal plan, IReS
specifies the amount of resources needed for the various operators. The users
will be able to inspect the provisioned resources for different operators and op-
timization policies.

Multi-engine workflow execution: IReS enforces the execution of the
optimal plan through YARN, utilizing container based resources and orchestrat-
ing the execution of the workflow, i.e., the DAG of operators, each of which
may run on a different engine. Users will have the chance to attend the whole
execution process, from the allocation of the right amount of resources to the
materialization of the final results.

Fault tolerance: Our system constantly monitors the health of the con-
nected engines as well as the execution status of the workflow. This allows us
to provide workflow-level fault tolerant execution. The attendees will be able to
confirm that when an engine fails during a workflow execution, IReS automati-
cally re-plans the rest of it and executes the best available alternative.

References

1. Apache Hadoop. http://hadoop.apache.org/.
2. Apache HBase. http://hbase.apache.org/.
3. Apache Spark. https://spark.apache.org/.
4. monetdb. https://www.monetdb.org/.
5. Stratosphere Project. http://stratosphere.eu/.
6. 84% Of Enterprises See Big Data Analytics Changing Their Industries’ Competi-

tive Landscapes In The Next Year . Forbes Magazine, 2014.
7. D. Agrawal et al. Rheem: Enabling multi-platform task execution. 2016.
8. K. Doka, N. Papailiou, D. Tsoumakos, C. Mantas, and N. Koziris. Ires: Intelligent,

multi-engine resource scheduler for big data analytics workflows. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, pages
1451–1456. ACM, 2015.

9. M. Ferguson. Architecting a big data platform for analytics. A Whitepaper Prepared
for IBM, 2012.

10. I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor, A. Clement, and S. Hand.
Musketeer: all for one, one for all in data processing systems. In Proceedings of the
Tenth European Conference on Computer Systems, page 2. ACM, 2015.

11. A. Simitsis, K. Wilkinson, U. Dayal, and M. Hsu. HFMS: Managing the Lifecycle
and Complexity of Hybrid Analytic Data Flows. In ICDE. IEEE, 2013.

12. D. Tsoumakos and C. Mantas. The Case for Multi-Engine Data Analytics. In
Euro-Par 2013: Parallel Processing Workshops. Springer, 2014.

13. V. K. Vavilapalli et al. Apache hadoop yarn: Yet another resource negotiator.
In Proceedings of the 4th annual Symposium on Cloud Computing, page 5. ACM,
2013.


