
CELAR: Automated Application Elasticity Platform

Ioannis Giannakopoulos∗, Nikolaos Papailiou∗, Christos Mantas∗, Ioannis Konstantinou∗,
Dimitrios Tsoumakos† and Nectarios Koziris∗

∗National Technical University of Athens, School of ECE
{ggian,npapa,cmantas,ikons,nkoziris}@cslab.ece.ntua.gr

†Department of Informatics, Ionian University, Corfu, Greece
dtsouma@ionio.gr

Abstract—One of the main promises of the cloud computing
paradigm is the ability to scale resources on-demand. This
feature characterizes the cloud era, where the overhead of early
expenditure for infrastructure is eliminated. Innovative services
are thus able to enter the market quicker and adopt faster
to new challenges and user demand. One of the main aspects
of this on-demand nature is the concept of elasticity, i.e., the
ability of autonomously provision and de-provision resources by
reacting to changes in the incoming load. An elastic service
is able to operate with an optimal cost by expanding and
contracting its used resources at runtime and according to
demand. This does not only minimizes running cost, but also
avoids disruptive outages due to spikes in service usage. While
the various layers comprising a cloud service can be scaled, this
does not happen in a unified manner. The vision of CELAR is to
provide a fully integrated software stack that manages resource
allocation for cloud applications in an autonomous, efficient and
generic manner. In order to achieve that, CELAR incorporates
novel methodologies for describing cloud applications, monitoring
the use of various resources, evaluating cost, taking informed
decisions and interacting with the underlying cloud infrastruc-
ture. Our goal is two-fold. On the one hand is developing the
methodologies for achieving multi-grained, automatic elasticity
control on both application and infrastructure level. On the other
hand is developing the open-source tools that implement those
methods in an integrated manner. Hereby we present an overview
of the CELAR platform, explaining its architectural components
and some basic workflows that show how they interact in order
to achieve the core functionalities.

Keywords—elasticity; application deployment; decision making

I. INTRODUCTION

Cloud computing embodies the vision of handling com-
puting resources as a utility service [1]. This ”pay-as-you-go”
model represents a major step in the IT industry that is moving
away from privately owned and managed infrastructure. The
business model of IT companies is swifted towards creating
more innovative applications, capable of tackling the chal-
lenges of large scale in the Big Data era [2]. A Cloud Service
developer is offered access to a shared pool of configurable
computing resources that can be utilized on-demand [3]. This
tackles the challenge of creating the computing infrastructure
hosting a service, when one enters the market, and maintaining
it afterwards. For new and innovative applications the tradi-
tional model of investing for a privately owned infrastructure
is inefficient. This is not only because of the related acquisition
cost, but also because of the time and effort needed to actually
handle such an infrastructure.

On the contrary, the opportunity is presented to save cost
and utilize no more than the sufficient amount of resources

required to meet the application goals, by leveraging the on-
demand nature of the resources supplied in the Cloud. One
can avoid overspending for a service that does not meet the
expected user engagement as well as being unable to handle
a service that gets popular quickly. In order to help alleviate
those problems, Cloud Infrastructure (IaaS) Providers offer :
• Virtually infinite computing resources being available when
needed. Cloud users (i.e hosted applications) need not pre-
dict the maximum amount of needed resources beforehand.
They can allocate new resources on-the-fly.
• The possibility of short term allocation of computing
resources, in an hour-level granularity. Cloud users taking
advantage of this short term allocation can make fine grain
adjustments to the resources they are using, thus achieving
a cost efficiency over time.
• A wide variety of resource types and capacities. Be it,
processing, storage, network or other, the offered units are
virtualized. As a result, the client has the ability to choose
the exact size of resource required for any given task, further
increasing cost efficiency.

Those features are the building blocks for applications, in order
to be “elastic” in their use of cloud resources.

According to the cloud computing definition [3], being
elastic means being able to autonomously adapt to workload
changes and manage the available resources so that they match
the current demand as closely as possible. Achieving this
property is crucial in not only cost optimization by not over-
provisioning resources, but also in avoiding service outages,
when demand peaks, by not under-provisioning. Such cases [4]
can prove to be very disruptive and costly for a client-facing
service. Most cloud services are built on a layered architecture
where on the bottom layer lies a distributed database system
like Cassandra [5] and/or a file system modeled after GFS [6]
(most notably, HDFS [7]). Other layers may include a web
server cluster, and data processing frameworks like Hadoop
[7]. Each one of those components can scale on demand.
Research [8] suggests that achieving automation in scaling
even the most complex of the building blocks of a Cloud
Application -namely NoSQL databases- is feasible. However
there is no available middleware that integrates automated cost-
aware control with multi-layer resource provisioning. Towards
this direction, the CELAR vision is the following:

• Research and develop the methodologies needed to achieve
an autonomic, multi-grained, multi-layered resource man-
agement platform.
• Develop a complete, open-source software stack that effi-
ciently implements elastic control of cloud applications in
order to achieve user-set goals.

2014 IEEE International Conference on Big Data

978-1-4799-5666-1/14/$31.00 ©2014 IEEE 23

For this, CELAR incorporates various subsystems handling
different parts of the application workflow. CELAR monitors
the usage or resources and the performance of the applica-
tion’s components. It can take informed, precise decisions and
orchestrate them both in the infrastructure and the application
level. It can also profile the application beforehand in order to
observe its behavior under various scenarios. The project also
includes a novel Application Management Platform handling
the tasks of describing the cloud service on a high level,
submitting it for deployment and informing the user of its
current and historic state.

In this work we present CELAR’s modular architecture,
we briefly describe its components and we outline some basic
workflows that depict their interaction with the application and
underlying infrastructure.

II. SYSTEM ARCHITECTURE

In Figure 1 we provide the architecture of CELAR. The
system is deployed within an IaaS cloud provider, into a
dedicated virtual machine (VM) and its major components are
depicted in the figure: the CELAR Server and the CELAR
Application Orchestrator.

Information Tool UI

Application
VM

Monitoring
Agent

Application
VM

Monitoring
Agent

Monitoring Server

Decision Module
CELAR

Orchestrator

Provisioner
Orchestrator

C
lo

u
d

 P
ro

vi
d

er

CELAR Application Orchestrator (Application A)

Application A

Application
VM

Monitoring
Agent

CELAR Client
c-Eclipse Platform

Application
Description Tool

Monitoring Tool UI

Application Submission Tool

CELAR
DataBaseProvisioner Server

CELAR Manager

CELAR Server

Fig. 1. CELAR System Architecture

The CELAR Server acts as an endpoint between the
platform and other services. Specifically, the services executed
on the CELAR Server enable users to interact with the platform
through a REST API, issue new application descriptions,
deploy applications and obtain statistics regarding their ap-
plications. The CELAR Manager operates as the endpoint;
the Provisioner Server on the other hand is responsible for
the deployment and the enforcement of the resizing actions
to an application instance. The CELAR DataBase is the main
repository of the system: a highly available database in which
all the deployment related information is stored. There exists a
unique CELAR Server instance within a cloud provider: every

time a user describes and deploys a new application, one needs
to issue the request to the appropriate CELAR Server instance
(physically located inside the cloud they want to deploy their
application to) and manage their deployment through it.

Every time a new application is deployed, CELAR creates
a new VM in which all the core modules of the platform,
responsible for the provisioning and the orchestration of the
application, are executed. In Figure 1 this VM is referred to
as the CELAR Application Orchestrator. The modules located
into the CELAR Application Orchestrator are the following:
• The CELAR Orchestrator along with the Provisioner Or-
chestrator, which are responsible for the enforcement of
the resizing actions, both in resource (i.e., allocate/de-
allocate resources) and in application level (i.e., execute the
necessary scripts so that the application utilizes the newly
allocated resources).
• The Decision Module, which is responsible to evaluate the
current status of the application and take elastic decisions
in order to improve its performance with respect to a user
defined policy.
• The Monitoring Server, which is responsible to report
application metrics. This is achieved using agents injected
inside the application VMs during their initialization. The
agents report the metrics for each VM separately and the
Monitoring Server then aggregates the metrics and forwards
them to the Decision Module.

Each component exports its functionality to the rest of the
modules through a REST API; This enables the platform to
properly function with different subsystems, as long as they
respect this API. For example, a user might prefer a specific
monitoring system to monitor their application or a specific
cloud deployment tool. By default, CELAR uses SlipStream
[9] for the application orchestration, JCatasopia [10] as a
monitoring system and rSybl [11] as the decision making
module. All of the above are open source projects, under the
Apache License, and they are freely distributed through github.

Finally, to enable the users to describe and deploy appli-
cations with CELAR, c-Eclipse [12], a plugin to the popular
Eclipse IDE has been used. The users describe their application
with c-Eclipse, using the TOSCA [13] specification language
and manage their deployments. For further deployment moni-
toring and statistics, the Information System module provides
real-time information on the performed resizing actions, histor-
ical data representing former states of the application and other
high-level statistics such as deployment costs, performance
data, etc.

III. SYSTEM WORKFLOWS

In this Section, we present the functionality of the CELAR
platform by describing the major workflows that are involved
throughout the lifetime of a managed cloud application.

A. Application Description

The first step for a user to utilize the CELAR platform is
the description of her cloud application. During this phase, the
user interacts with c-Eclipse [12], a user friendly, informative
eclipse plugin that serves as a front-end GUI for CELAR.
Cloud application portability is of great importance in the
realm of cloud infrastructure provisioning. Therefore, c-Eclipse

24

and the CELAR platform utilize the open, non-proprietary
OASIS TOSCA specification [13] for describing the resource
provisioning, deployment and re-contextualization of cloud
applications. This ensures the portability of application de-
scriptions across different IaaS platforms and application de-
ployment tools. In addition, CELAR enables the user to specify
application level elasticity actions that can be used to modify
resources as well as elasticity policies that need to be enforced
throughout the deployment lifetime.

B. Application Profiling

To automatically decide on the best deployment configura-
tion, a system needs to obtain knowledge about the behavior
over different resource provisioning and load scenarios. This
knowledge can be generated both from on-line learning, during
deployment and resizing, as well as from offline profiling
that automatically deploys and monitors the application using
different deployment and load configurations. The offline pro-
filing process can help the Decision Module have a steeper
learning curve and avoid initial errors (and thus financial
costs) in scaling decisions. Profiling is an optional functionality
provided by the CELAR platform that can be executed before
a new deployment. During profiling, a number of different
configurations are selected, deployed and monitored in order
to identify the relationship between a specific configuration
and the application’s behaviour. All monitoring metrics are
measured and evaluated in order for CELAR to generate a
knowledge base that can be used to facilitate the Decision
making process. The main challenge for the Profiling module
is to intelligently choose the set of profiled configurations.
Each deployment has a respective cost both in time and money
in order to be sufficiently profiled. Therefore, the Profiler
attempts to tackle the problem of generating the most accurate
profile using a user specified budget.

C. Elastic Application Deployment

After the user application is described and optionally
profiled it can be deployed using one of the available IaaS
platforms that are connected with the CELAR platform. The
user can issue a deployment request using the c-Eclipse GUI.
The request is sent to the CELAR Server accompanied by an
initial resource configuration along with elasticity policies that
need to be enforced by the Decision Module throughout the
deployment lifetime. Elasticity policies are expressed using the
user defined metrics and can express complex rules that de-
pend on high level application metrics like cost, performance,
availability e.t.c..

As previously stated, when the CELAR Server receives
a request for a new deployment, it allocates a new CELAR
Orchestrator VM that hosts all the CELAR related components
and is responsible for the deployment, orchestration, moni-
toring and elastic scaling. When the application is deployed
monitoring metrics are gathered by our Monitoring system and
are utilized by the Decision module in order to decide on the
elasticity actions required. Elasticity actions are enforced by
the CELAR and the Provisioner orchestrators. The effect of
resizing actions on monitoring metrics is stored in the CELAR
Database and is used by the Decision Module in order for
CELAR to achieve a fine tuned elasticity control. The user
can monitor her application using our Information System web

interface that graphically depicts monitoring metrics, config-
uration changes and decisions taken. Using the Information
System interface the user can also compare deployments in
different cloud providers and decide on the most beneficial
according to her requirements.

IV. CONCLUSION

In this paper we presented CELAR, a platform able to
automatically scale applications deployed over a cloud infras-
tructure. CELAR includes tools for describing a cloud service,
deploying it on an IaaS provider, profiling it, monitoring its
performance, scaling its resources and informing the user of
its progress. CELAR will allow Cloud developers to build
services that can be efficient and achieve high performance
by elastically managing the use of available resources.

V. ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission in terms of the CELAR 317790 FP7 project (FP7-ICT-
2011-8). Nikolaos Papailiou has received funding from IKY
fellowships of excellence for postgraduate studies in Greece -
SIEMENS program.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A View of Cloud
Computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[2] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. H. Byers, “Big Data: The Next Frontier for Innovation, Competition,
and Productivity,” 2011.

[3] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
2011.

[4] “Amazon gets b́lack eyef́rom cloud outage,”
http://www.computerworld.com/article/2507903/cloud-
computing/amazon-gets–black-eye–from-cloud-outage.html.

[5] A. Lakshman and P. Malik, “Cassandra: a Decentralized Structured
Storage System,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in ACM SIGOPS Operating Systems Review, vol. 37, no. 5. ACM,
2003, pp. 29–43.

[7] D. Borthakur, “The Hadoop Distributed File System: Architecture and
Design,” Hadoop Project Website, vol. 11, p. 21, 2007.

[8] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and
N. Koziris, “Automated, Elastic Resource Provisioning for NoSQL
Clusters Using Tiramola,” in Cluster, Cloud and Grid Computing
(CCGrid), 2013 13th IEEE/ACM International Symposium on. IEEE,
2013, pp. 34–41.

[9] “SixSq. SlipStream,” http://sixsq.com/products/slipstream.html.
[10] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “JCatascopia: Monitoring

Elastically Adaptive Applications in the Cloud,” in 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2014.

[11] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar, “Multi-level
Elasticity Control of Cloud Services,” in Service-Oriented Computing,
ser. Lecture Notes in Computer Science, S. Basu, C. Pautasso, L. Zhang,
and X. Fu, Eds., 2013, vol. 8274.

[12] C. Sofokleous, N. Loulloudes, D. Trihinas, G. Pallis, and M. D.
Dikaiakos, “c-Eclipse: An Open-Source Management Framework for
Cloud Applications,” in Euro-Par 2014 Parallel Processing. Springer
International Publishing, 2014, pp. 38–49.

[13] “OASIS: TOSCA Version 1.0.” https://www.oasis-
open.org/committees/tosca/.

25

