
An Efficient Algorithm for the Physical Mapping of Clustered Task Graphs onto
Multiprocessor Architectures

Nectarios Koziris Michael Romesis

Panayiotis Tsanakas George Papakonstantinou

National Technical University of Athens
Dept. of Electrical and Computer Engineering

Computer Science Division
Computing Systems Laboratory

Zografou Campus, Zografou 15773, Greece
e-mail: {nkoziris, mromes}@cslab.ece.ntua.gr

Abstract

The most important issue in sequential program
parallelisation is the efficient assignment of computations
into different processing elements. In the past, too many
approaches were devoted in efficient program
parallelization considering various models for the
parallel programs and the target architectures. The most
widely used parallelism description model is the task
graph model with precedence constraints. Nevertheless,
as far as physical mapping of tasks onto parallel
architectures is concerned, little research has given
practical results.  It is well known that the physical
mapping problem is NP-hard in the strong sense, thus
allowing only for heuristic approaches. Most researchers
or tool programmers use exhaustive algorithms, or the
classical method of simulated annealing. This paper
presents an alternative approach onto the mapping
problem. Given the graph of clustered tasks, and the
graph of the target distributed architecture, our heuristic
finds a mapping by first placing the highly communicative
tasks on adjacent nodes of the processor network. Once
these «backbone» tasks are mapped, there is no
backtracking, thus achieving low complexity. Therefore,
the remaining tasks are placed beginning from those
close to the «backbone» tasks. The paper concludes with
performance and comparison results which reveal the
method’s efficiency.

1. Introduction

In the last years the evolution in the fields of VLSI
technology and computer networking has given raise to the
utilization of distributed computing systems. Distributed

computers are attractive to many demanding applications
since they provide the user with modularity, scalability
and low cost decentralized processing power. Nevertheless
distributed computing has a sound drawback which
discourages application developers to use it. The existence
of many parallel processors is not fully exploited because
of the interprocessor communication overhead. The
degradation of optimal speedup when the number of
processors increases is caused by the excessive sometimes
amount of messages between non-neighboring cells.

Researchers have already focused on such low-
performance problems and proposed various
methodologies to the optimal parallelization of the given
programs. Experience has shown that an effective solution
to the general task graph scheduling problem onto a given
architecture is a multistep approach which includes the
task graph description of the problem, efficient scheduling
of the tasks onto a virtual fully connected parallel
machine, merging tasks into larger clusters and finally
assigning clusters into the physical processor topology.

As far as the task graph scheduling with precedence
constraints is concerned, the most widely used model is
the directed acyclic graph with edges and nodes having
various weights. Node weights represent computation time
for the corresponding tasks, while edge weights are
communication requirements between tasks. Each edge
direction gives a set of precedence constraints which
should be preserved. The general task graph scheduling
problem with communication delays is NP-COMPLETE
as presented in [9].  Sarkar [10], Gerasoulis and Yang [3]
presented good heuristics for solving the task graph
scheduling problem with arbitrary communication costs.

All previous researchers were supposing unbounded or
bounded number of processors with CLIQUE topology.



This hypothetical topology is far away from the realistic
case. Modern distributed memory parallel systems are
organized in different topologies, including hypercube,
mesh or ring architectures. There is a strong need for
efficient placement of clustered tasks into the real
processor network. The mapping of virtual into real
topologies is called the physical mapping problem or the
task allocation problem.

The task allocation problem can be optimally solved in
special cases such as two-processor distributed systems, or
linear array of any number of processors. If the target
architecture contains two processors, then the task
allocation problem is stated as a maximum flow minimum
cut problem [11] which can be polynomially solved using,
for example, the  Ford-Fulkerson algorithm. There also
exists a heuristic presented [7], which addresses the
general m-processor problem using the 2-way min cut
algorithm m times.

Most of the theoretical work on mappings considers
structured graphs like grids, hypercubes, trees, etc [8]. An
increasing number of applications demand methods
dealing with irregular graphs. The general mapping
problem is unfortunately NP-complete, thus allowing only
for efficient heuristics.

Our paper deals with the intractable problem of cluster
allocation onto parallel architectures, by proposing an
alternative approach to the above mentioned
methodologies. We model any target parallel architecture
by a non-directed graph with unitary edge weights only.
This representation retains the meaningful only details of
the target. Next, the graph of tasks is depicted as a non-
directed graph with various edge costs and node weights
resulting from clustering heuristics as the one proposed by
Gerasoulis in [3]. The task assignment procedure starts by
tracing the clusters which are most likely to be placed in
neighboring places, where the maximum number of links
is available. This step ends by placing these backbone
clusters into these places. For each of the backbone
clusters, the algorithm creates sets of neighboring clusters
which are candidate for placement into the adjacent cells
of every preassigned backbone cluster. The algorithm ends
when all clusters are assigned.

In the remainder of this paper the following are
presented and further elaborated: Section II reviews the
multistep approach of task graph scheduling with
precedence constraints using a specific topology
distributed architecture. Section III presents the proposed
graph model for the parallel architecture and the utilized
cost function for evaluating different physical mappings.
In section IV we outline the steps of the proposed
algorithm. Finally section V the proposed algorithm is
compared to other approaches in terms of efficiency and
the outperforming results are shown.

2. The Multistep Approach
 
The general scheduling problem of an arbitrary task

graph with communication delays onto a fixed size and
connection pattern distributed architecture is NP-
COMPLETE. El-Rewini et H. Ali in [1], [2] proved this
NP completeness by representing the problem of task
allocation onto distributed system with a split graph. The
task allocation is therefore equivalent to a weighted clique
graph partitioning which is NP-COMPLETE, thus proving
inherent intractability. In order to find efficient methods,
researchers have followed a multistep approach, where
each step addresses a limited instance of the general
problem. The successive steps are outlined as follows: task
clustering, cluster merging and physical mapping.

 
2.1. Task Clustering - Scheduling a task graph
with communication delays onto a
bounded/unbounded CLIQUE of processors.

 
First the task graph with computation/communication

costs and precedence constraints is scheduled onto a fully
connected network of processors. The classical CLIQUE
architecture is therefore used as a target having limited or
unlimited number of processors [4]. Researchers, in this
first step, propose algorithms which minimize the
maximum makespan, disregarding the actual processor’s
topology. Even when the makespan metric is to be
minimized, the scheduling problem remains NP-
COMPLETE in the majority of general cases.
Papadimitriou et Yannakakis in [9] have proved that the
classical scheduling problem of a task graph with arbitrary
communication and computation times is NP-
COMPLETE. They proposed a 2-optimal approximation
algorithm. In addition to this, Sarkar in [10], Gerasoulis in
[3] proposed faster heuristics with acceptable
performance. All these algorithms perform the same initial
step: Cluster the tasks into large nodes, so that the grain of
the parallelism is increased and the use of distributed
processors is minimizing the task graph makespan. The
resulting topology, by applying this initial step is a graph
of clusters. Inside every cluster there exist several tasks
which are time scheduled in the same processor and have
zero intracommunication overhead. As far as clusters
intercommunication is concerned, this is the summation
over all tasks intercommunication overhead for all
clusters. This organises the set of tasks into clusters with
the following property: Each cluster contains all tasks
which are to be executed on the same processor. This step
is called task clustering.



2.2. Cluster Merging into p physical clusters
 
In this step, the set of clustered tasks is mapped onto a

clique of bounded number of processors. Since the set of
clustered tasks is larger than the number of available
processors, this step assigns two or more clusters to the
same processor. Sarkar in [10] has proposed a scheduling
heuristic with O(|V|(|V|+|E|)) complexity, where |V| stands
for the number of nodes and |E| for the number of edges. A
lower complexity heuristic which is used in PYRROS [12]
is the work profiling method. It merges clusters which
have approximately the same arithmetic load.

2.3. Physical Mapping of p physical clusters onto
p network connected processors.

While so much effort has been done concerning the
first steps, the final step of cluster allocation onto the
physical processor topology has not given considerable
attention. Few researchers such as Bokhari have presented
some heuristics. Many scheduling tools which such as
OREGAMI or PYRROS or PARALLAX use heuristics or
approximation algorithms which are sometimes efficient.
For example Gerasoulis et Yang in Pyrros [12] use
Bokhari’s heuristic which is based onto simulated
annealing. This algorithm starts from an initial assignment,
then performs a series of pairwise interchanges by
reducing the cost function and stops after O(p3) steps.

In Oregami’s [6] MAPPER, a tool for task allocation
onto distributed architectures, a greedy heuristic is used,
called the NN-Embed. It currently supports only mesh and
hypercube processor networks thus limiting its potential
use. Even in the case of those two architectures, it uses a
rather simple method, by listing all edges in ascending
order of their weights and assigning them to the
processor’s network edges.

2.4. The NN-Embed Algorithm

Given a task graph, it first constructs a list of all the
edges in the graph, sorted by weight. The heuristic then
traverses this list in linear time and for each edge, assign
endpoints as follows:

• If both nodes have already been assigned, do
nothing

• If only one node has been assigned, then assign
the other node to the closest free processor

• If neither node has been assigned, randomly
choose a free processor and assign one node to it and
the other to its closest free neighbor.
The sorting step needs O(|E|log|E|) time, and the rest is

O(|E|). It is a fast heuristic, but it is limited to hypercube
and mesh topologies.

Obviously, it has poor performance in many cases
because it is based on single-edge adjacency, and it does
not take into account any set of adjacent nodes. In
Example 5, we apply both our method and the NN-Embed,
and the outperforming results of the proposed heuristic are
shown.

In PARALLAX [5], all task allocation heuristics
assume fully connected networks of processors. Only the
mapping heuristic considers arbitrary processor
interconnection topology. It uses a modified list
scheduling technique with priorities, by taking into
account the communication delays. The node’s priority in
the list is its level.

In [8], Monien and Sudborough reviewed results on
mapping specific task graphs into the most popular
parallel architectures.

3. Graph Models

Our problem considers two graphs: The graph of virtual
processors, or equivalently the graph of clustered tasks,
defined as Gc (Vc, Ec) and the graph of physical
processors, defined as Gp (Vp, Ep).

Definition 3.1: Consider two graphs and Gw (Vw, Ew)
where V is the set of nodes and E is the set of edges with
|Vw| = |Vp| , we define the following function Fm:Vw→Vp

as the physical mapping function :
∀ vw,vw’∈ Vw with (vw,vw’) ∈ Ew,

∃ (Fm(vw),Fm(vw
’))∈Ep

      Let us define some topological parameters for the
processor graph/network:

• Hop is the unit distance between any two
directly connected processors in the network

• Distance between two processor nodes u and v
is called the number of hops in the shortest path
connecting u and v. Distance is represented by
dist(u,v).

      The following formula defines the cost function used
to evaluate the different mappings:
      Cost Function for a mapping Fm:

CF(Fm) =
�Y �X � (
Z Z Z

∈
∑ dist(Fm(vw), Fm(uw) )xcomm(vw, uw)

where:
• dist( Fm(vw), Fm(uw) ) is the shortest path in the

processor graph between the 2 processors-nodes where
the tasks vw and uw are mapped.

• comm(vw, uw) is the total communication cost
between the tasks vw,uw

      The following properties characterize the efficiency of
a mapping from Gw to Gp:

Edge-dilation is the maximum distance in Gp an edge
of Gw has to be routed. Formally:



Edge-congestion is the maximum number of edges
from Gw routed via an arbitrary edge (or node) of Gp

In most theoretical works dealing with the physical
mapping problem, minimizing edge dilation and edge
congestion are the primary goals. Our objective is
therefore to find the mapping Fm which  minimizes CFm, or
formally:

Definition 3.2: A mapping Fm
opt with respect to Cost

Function CF() is called optimal if:
CF(Fm

opt) = min { CF(Fm) | Fm ∈ MAP},
where MAP is the set of all possible mappings

3.1. Example

Consider the Gc (Vc,Ec) with cij costs shown in figure 1,
and the processor graph Gp(Vp,Ep):

Figure 1. The Cluster Graph

Figure 2 : The target architecture

     Figure 3: CLIQUE architecture

Obviously there exist 4! alternative mappings which
can be found by exhaustive search. For example, consider
the following alternative mappings and evaluate the
corresponding cost function CFm():

Figure 4: Mapping F M1

CFM1= 2 + 4X2 + 6 + 3=19

Figure 5: Mapping F M2

                            CFM2= 4 + 2X2 + 3 + 6X2 = 21

Obviously, Fm1 is better than Fm2 in terms of total
completion time, since it imposes less communication
overhead than Fm2. The least communication is achieved
by mapping Fm3 shown below:

Figure 6: Optimal Mapping F M3

                          CFm3 = 2 + 4+ 6 +2x3 = 18

4. The Physical Mapping Algorithm (PMAP)

This heuristic tries to find the most communication
intensive task-nodes and map them and their neighbors
into neighboring processing nodes on the processor graph.
At the beginning, the processor graph is analyzed and, for
each node, the number of adjacent nodes is calculated.
Subsequently, the nodes of the task graph are sorted by
ascending order of their total communication weight and
number of neighbors. The heuristic then places the most
demanding task-nodes in terms of total communication
links and cost to the respective nodes of the processor
graph. Once these core task nodes are placed, there is no
backtracking. Next, the heuristic places the adjacent of the

a b

c d

a d

b c

1 2

3 4

a b

c d

4

632

GC

1 2

3 4

GP

c a

b d



core nodes to adjacent cells of the processor graph, by
making locally best-fit comparisons.

The algorithm performs the following steps:

4.1. First Phase:

1st step: Adjust the maximum number of neighbors in
the task-graph to the maximum number in the processor
graph, by removing the less communication cost edges for
each task-node.

2nd step: Sort the nodes of the processor graph by
ascending order of their neighboring links and the nodes in
the cluster graph Gc by the number of communication links
they need.

3rd step: Assign the most demanding task-node to the
best suitable node of the processor graph and his
neighboring nodes to the best suitable neighboring nodes
of the processor graph.

4.2. Second Phase:

4th  step: Place back the edges removed at the first step.
5th  step: From the processors not allocated yet find the

one who neighbors with the most processors already
assigned.

6th  step: Find a task that is distanced by at most i (at
the beginning i=1) from all the  tasks that are mapped to
the neighboring processors of the processor found on the
previous step. If found assign this task to the processor of
the 5th step.

7th  step: Repeat steps 5-6 until no more assignments
can be made. If there are more processors to be allocated,
increase i  by one and go back to the 5th step.

4.3. Details of the algorithm

1st Phase:
Adjust_neighbors(Gc);
Adj(v) = {u: (u,v) ∈Ec}
/* Placement of the most communication costful node */
find vc ∈Gc : rank(vc) = max rank(v)
find vp ∈Gp : rank(vp) = max rank(v)
Fm(vc) = vp;
/* Placement of neigbors to neigboring cells */
   while Adj(vp) ≠ ∅
         begin

 find vac : rank(vac) = max rank (va)
Adj(vc) = Adj(vc)-{v ac}

find vap : rank(vap) = max rank (vp)
Fm(vac) = vap

PROCS_ALLOC = PROCS_ALLOC ∪ {v ap}
PROCS_LEFT = PROCS_LEFT-{v ap}

               TASKS_LEFT = TASKS_LEFT-{v ac}
         end
2nd phase:
/* Placement of all other nodes */
Place_back_edges;
 i=1
while PROCS_LEFT ≠ ∅

begin    
         assigning=false
         for all u ∈ PROCS_LEFT
             begin
                find u ∈ |Adj(u)∩ PROCS_ALLOC|  = max

                                 NEIGH = { vi: Fm (vi) ∈ (Adj(u) ∩
                                                PROCS_ALLOC)}

  /*set of tasks which have already been
                                     assigned to neighboring procs*/

              Adj(1,vi)=Adj(vi)
               Adj(i,vi)=Adj(i-1, vi)∪
                                             {u:(u,w)∈EC,w∈Adj(i-1,vi)}
                               let CAND=∩Adj(i,vi)∩TASKS_LEFT
                           if CAND ≠ ∅

      begin
                                             find vcand : rank(vcand) = max rank (v),
                                             v∈ CAND
                                             Fm(u)=vcand

                                            PROCS_LEFT=PROCS_LEFT-{u};
                                           PROCS_ALLOC =
                                                     PROCS_ALLOC∪{u};
                                           TASKS_LEFT = TASK_LEFT-{v cand}
                                           assigning=true
                                         end

end /* of  for*/
if assigning=false then i=i+1
/* i increases when during the previous cycle there has been

no assignment */
end
Adjust_neighbors routine:
neigh_card=max |Adj(v)|, v ∈Gp

For each v  ∈Gc : |Adj(v)| > neigh_card
repeat

                       find u ∈ Adj(v): comm(v, u) = min comm(v, w) w∈
Adj(v)
                           Adj(v)=Adj(v)-u

until |Adj(v)| = neigh_card
end of for;

5. Example

Consider the Gc (Vc, Ec) with cij costs shown in figure
7, and the processor graph Gp(Vp,Ep) in figure 8:

Figure 7: The Cluster Graph for  Example

a

eb

1
2

3 2

1

4

4

3
2

2

5

d

g h

c f



5.2 Second Phase:

insert back edges : (d,h)=1,(d,e)=2
1st cycle i=1
u1=4, |Adj(4) ∩ PROCS_ALLOC|= 2
u2=6, |Adj(6) ∩ PROCS_ALLOC|= 2
u3=7, |Adj(7) ∩ PROCS_ALLOC|= 2
u4=8, |Adj(8) ∩ PROCS_ALLOC|= 0
Let u = 4:
NEIGH = {d,e}
 CAND=Adj(d)∩Adj(e)∩TASKS_LEFT=∅

Figure 8: The target architecture for
Example

5.1.First Phase

Since # of Neighbors of d > max Neigh we adjust the
task graph by deleting edges : (d,h) = 1,  (d, e) = 2.

Task # of Neighbors Total
comm.

ranking

a 2 3 7
b 3 9 3
c 1 4 8
d 3 10 2
e 2 6 4
f 3 11 1
g 2 5 6
h 2 4 5

     Table 1: Statsistics for the task graph

Vp=1,Vc=f
Fm(f)=1
Adj(f)={d,  e, h }
Fm(d)=2
Fm(e)=3
Fm(h)=5

Let u = 6:
 NEIGH={d,h}
CAND=Adj(d)∩Adj(h)∩TASKS_LEFT={g}
Fm(g)=6
2nd cycle i=1
u1=4, |Adj(4) ∩ PROCS_ALLOC|=2
u2=7, |Adj(7) ∩ PROCS_ALLOC|=2
u3=8, |Adj(8) ∩ PROCS_ALLOC|=1
Let u = 4:
NEIGH = {d,e}
 CAND =Adj(d)∩Adj(e)∩TASKS_LEFT=∅
Let u = 7:
NEIGH = {h,e}
CAND=Adj(h)∩Adj(e)∩TASKS_LEFT=∅
Let u = 8:
NEIGH={g}
CAND=Adj(g)∩TASKS_LEFT=∅
No assignment during this cycle:  i increases by one

3rd cycle i=2
u1=4, |Adj(4) ∩ PROCS_ALLOC|=2
u2=7, |Adj(7) ∩ PROCS_ALLOC|=2
u3=8, |Adj(8) ∩ PROCS_ALLOC|=1
Let u = 4:
NEIGH = {d,e}
CAND = Adj(2,d) ∩ Adj(2,e) ∩ TASKS_LEFT  =  {b,a}
Fm(b)=4

TASKS_LEFT={a,b,c,g}

Figure 9: Assignments after the 1 st phase

4th  cycle i=2
u1=7, |Adj(7) ∩ PROCS_ALLOC|=2
u2=8, |Adj(8) ∩ PROCS_ALLOC|=2
Let u = 7:
NEIGH = {h,e}
CAND=Adj(2,h)∩Adj(2,e)∩TASKS_LEFT = ∅
Let u = 8:
NEIGH= {b,g}

CAND=Adj(2,b)∩Adj(2,g)∩TASKS_LEFT = ∅
No assignment during this cycle:  i increases by one

5th cycle i=3
u1=7, |Adj(7)∩PROCS_ALLOC|=2
u2=8, |Adj(8)∩PROCS_ALLOC|=2

1f 2d

3e 4

5h 6

7 8

1 2

3 4

5 6

7 8



Let u = 7:
NEIGH={h, e}
CAND=Adj(3,h)∩Adj(3,e)∩TASKS_LEFT={a,c}
Fm(a)=7
Fm(c)=8

Figure 10: Assignments after the 2 nd phase
                  – PMAP result

5.3. NN-Embed algorithm

Sorting of Edges in descending order of their weight:

(e,f) 5 (a,b) 2
(c,b) 4 (d,e) 2
(d,f) 4 (g,h) 2
(b,d) 3 (h,f) 2
(g,d) 3

Table 2: Weight of edges

Assign (e,f) edge to an arbitrary edge, e.g: Fm(e)=1,
Fm(f)=5
Assign (c,b) edge to an arbitrary edge, e.g: Fm(c)=2,
Fm(b)=6
Assign (d,f) edge: Since f is already assigned, assign d to
the closest free neighbor: Fm(d)=7
All nodes of (b,d) are assigned.
Assign (g,d) edge: Since d is already assigned, assign g to
the closest free neighbor: Fm(g)=3
Assign (b,a) edge: Since b is already assigned, assign a to
the closest free neighbor: Fm(a)=8
All nodes of (e,d) are assigned.
Assign (g,h) edge: Since g is already assigned, assign h to
the closest free neighbor: Fm(h)=4
All nodes of (h,f) are assigned.

The following table compares the performance of the
algorithms for this example:

Algorithm Cost
NN_embed 39
PMAP 34
Optimal 33

6. Performance Results

We report our experiments on the PMAP algorithm.
For the sake of comparisons we have created a program
which, given the task and the processor graphs, generates
all possible mappings and calculates the total
communication time based on the metric of section III. We
have also created a random task graph generator with
various communication-edge weights and number of tasks-
nodes and a graph generator based on fixed topologies.
We have also applied the PMAP heuristic and the
NN_Embed heuristic on the same graph pairs. The results
obtained are shown in the table below. We can see that the
PMAP algorithm gives better results than the NN_Embed
algorithm, especially when the task and processor graphs
have fixed topologies. But even when the graphs have
been randomly created PMAP outperforms NN-Embed by
more than 10%.

Nodes Task topology Processor
topology

PMAP vs.
NN_Embed

optimal vs.
NN_Embed

5-10 Random Random 13% 26%

10-20 Random Random 12% -

20-40 Random Random 11% -

32 Ring Mesh(8x4) 29% -

32 Mesh(8x4) Ring 28% -

32 Mesh(8x4) Mesh(8x4) 39% -

32 Mesh(8x4) Hypercube 10% -

32 Hypercube Mesh(8x4) 21% -

10 Ring Mesh(5x2) 32% 42%

10 Ring Binary Tree 10% 20%

10 Mesh(5x2) Ring 14% 24%

10 Mesh(5x2) Mesh(5x2) 31% 42%

10 Binary Tree Ring 20% 30%

10 Binary Tree Mesh(5x2) 21% 33%

Table 3: Performance results

7. Related Work

There are not many systems which tackle with the
problem of task allocation on specific target architectures,
thus solving the physical mapping problem. PYRROS,
developed by Yang and Gerasoulis, uses the heuristic of
Bokhari which is based on simulation annealing. In
OREGAMI  [6] task allocation is performed in three steps:
contraction of the task graph to a smaller graph,
assignment of the contracted clusters of tasks to processors
and finally routing of messages through the
interconnection network to minimize contention. In
OREGAMI, there exist canned algorithms for typical

1f 2d

3e 4b

5h 6g

7a 8c



interconnection patterns concerning the target parallel
architectures, which have been developed a priori. If the
interconnection pattern is not in the above library, the NN-
Embed greedy heuristic is used.

PARALLAX [5], is another scheduling tool which
contains a task allocation heuristic assuming a specific
interconnection topology for the target architecture.

8. Conclusion

In this paper a new approach was presented for the
physical mapping of task graphs into parallel architectures
having arbitrary interconnection topologies. It is obvious
the general problem is intractable thus allowing only for
efficient heuristics. The proposed algorithm has a low
complexity and gives very good results for graphs with
equilibrated communication loads between adjacent tasks.
This new algorithm was implemented and tested, and the
outperforming results were reported. Future work includes
the introduction of additional criteria which would
increase the heuristic’s performance as far as non-
counterbalanced graphs are concerned.

9. Acknowledgements

This research was supported in part by the Greek
Secretariat of Research and Technology (GSRT) under a
PENED 99/308 Project.

References

[1] H. Ali et H. El-Rewini. Task Allocation in Distributed
Systems: A Split Graph Model. Journal of
Combinatorial Mathematics and Combinatorial
Computing, vol. 14, pp. 15-32, October 1993.

[2] H. El-Rewini, T. G. Lewis and H. Ali. Task Scheduling
in Parallel and Distributed Systems. Prentice Hall,
1994.

[3] A. Gerasoulis and T. Yang. On the Granularity and
Clustering  of Directed Acyclic Task Graphs. IEEE
Trans. Parallel Distrib. Syst., vol. 4, no. 6, pp. 686-
701, Jan. 1993.

[4] N. Koziris, G. Papakonstantinou and P. Tsanakas.
Optimal Time and Efficient Space Free Scheduling
for Nested Loops. The Computer Journal, vol. 39,
no 5, pp 439-448, 1996.

[5] T. Lewis and Hesham El-Rewini. Parallax:  A Tool for
Parallel Program Scheduling. IEEE Parallel &
Distributed Technology, vol. 1, no. 2, May 1993,
pp 62-72.

[6] V. Lo, S. Rajopadhye, S. Gupta, D. Keldsen, M.
Mohamed, B. Nitzberg, J. Telle and X. Zhong.
OREGAMI: Tools for Mapping Parallel
Computations to Parallel Architectures. Int’l

Journal of Parallel Programming, vol. 20, no. 3,
1991, pp. 237-270.

[7] V. Lo. Heuristic Algorithms for Task Assignment in
Distributed Systems. IEEE Trans. Comput., vol. C-
37, no. 11, pp. 1384-1397, Nov. 1988.

[8] B. Monien And H. Sudborough. Embedding one
Interconnection Network in Another.
Computational Graph Theory, Springer-Verlag,
Computing Supplement 7, pp 257-282, 1990.

[9] C. H. Papadimitriou and M. Yannakakis. Toward an
Architecture-Independent Analysis of Parallel
Algorithms. SIAM J. Comput., vol. 19, pp. 322-
328, 1990.

[10] V. Sarkar. Partitioning and Scheduling Parallel
Programs for Execution on Multiprocessors.
Cambridge, MA: MIT Press, 1989.

[11]  H. Stone. Multiprocessor Scheduling with the Aid of
Network Flow Algorithms. IEEE Trans. Soft.
Engin., vol. SE-3, no. 1,  pp. 85-93, Jul. 1977.

 [12] T. Yang and A. Gerasoulis. PYRROS: Static Task
Scheduling and Code Generation for Message
Passing Multiprocessors. Proc 6th Int’l Conf.
Supercomputing (ICS92), ACM Press, New York,
N. Y., 1992, pp. 428-437.


