
IPDPS 2001-San Francisco

Georgios Goumas, Aristidis Sotiropoulos and Nectarios Koziris

National Technical University of Athens, Greece
Department of Electrical and Computer Engineering

Division of Computer Science

Computing Systems Lab

www.cslab.ece.ntua.gr
nkoziris@cslab.ece.ntua.gr

Minimizing Completion Time for Loop Tiling
with Computation and Communication Overlapping

IPDPS 2001-San Francisco 2

Overview

Minimizing overall execution time of nested loops on
multiprocessor architectures using message passing

How?
Loop Tiling for parallelism

+
Overlapping otherwise interleaved
communication and pure computation sub-phases

OVERALL SCHEDULE IS LIKE A PIPELINED DATAPATH!

Is it possible?

s/w communication layer + hardware should assist

IPDPS 2001-San Francisco 3

• Loop transformation

• Partitioning of iteration space Jn into n-D parallelepiped
areas formed by n families of hyperplanes

• Each tile or supernode contains many iteration points
within its boundary area

• Tile is defined by a square matrix H, each row vector hi
perpendicular to a family of hyperplanes

• Dually, tile is defined by n column vectors pi which are its
sides, P=[pi]

It holds P = H-1

What is tiling or supernode transformation?

IPDPS 2001-San Francisco 4

üto increase reuse of register files
üto increase reuse of cache lines (tiling for locality)
üTo increase locality in Virtual Memory

and at the upper level:

üTiling to exploit parallelism !

Multilevel Tiling:
Tiling at all levels of memory hierarchy!

IPDPS 2001-San Francisco 5

Why using tiling for parallelism?

• Increases Grain of Computation –

Reduces synchronization points (atomic tile execution)

• Reduces overall communication cost (increases
intraprocessor communication)

TRY TO FULLY UTILIZE ALL PROCESSORS

(CPUs !!!)

IPDPS 2001-San Francisco 6

 
 






−

=→ − HjHj
Hj

jrZZr nn
1

2)(,:

Tiles are atomic, identical, bounded and sweep the index space

identifies the coordinates of the tile that j is mapped to

gives the coordinates of j within that tile relative to the
tile origin

 Hj

 HjHj 1−−

Tiling Transformation

IPDPS 2001-San Francisco 7









=









=

20

02

0

0

2
1

2
1

P

H

p1 p2

h1

h2

p1

p2

h1
h2

{ }5,0|),(2121
2 ≤≤= jjjjJ

for j1 = 0 to 5
for j2 = 0 to 5

a(j1, j2) = a(j1-1, j2) + a(j1-1, j2-1);

j1

j2

Example: A simple 2-D Tiling

IPDPS 2001-San Francisco 8

j1

j2 { }5,0|),(2121
2 ≤≤= jjjjJ

 








∈







=== 2

22
1

12
1

,| Jj
j
j

HjjjJ SSS













∈







==∈= −− SSSS

S

S
SnS Jjjj

j
j

jHjZjHJTOS),(,
2
2

|),(21
2

111

1 2 3 4 50

1

2

3

4

5

()
()






=
















01
21

4
3

r

(1,2)

(1,1)

(1,0)

(2,2)(0,2)

(2,1)

(2,0)

Example (cont.)

IPDPS 2001-San Francisco 9









−

−
=

31
24

10
1

H









=

41
23

P



















=
















3
2
0
2

5
8

r

i

j

p1

p2

h1

h2

(0,0)

(1,1)

(0,1) (1,1)

(2,0)

(1,-1) (2,-1)

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

Another Example:

IPDPS 2001-San Francisco 10

The number of iteration points contained in a supernode jS

expresses the tile computation cost.

The tile communication cost is proportional to the number of
iteration points that need to send data to neighboring tiles

Tile Computation - Communication Cost

IPDPS 2001-San Francisco 11

0

)det(
1

)(

)det(
1

)(
1

,,
11

≥

==

= ∑∑∑
===

HD

H
HVtoSubject

dh
H

HVMinimise

comp

m

j
jkki

n

k

n

i
comm

ν

(1)

(2)

19,27

20

42
26

,
50
04

,
21
13

21

21

21

==

==









=








=








=

commcomm

compcomp

VV

VV

PPD

IPDPS 2001-San Francisco 12

Objectives when Tiling for Parallelism

Most methods try to:

Given a computation tile volume, try to minimize the
communication needs

Re-shape Tiles = reduce communication

But, how about iteration space size and boundaries?

Objective is to minimize overall execution time

….thus we need efficient scheduling

IPDPS 2001-San Francisco 13

Scheduling of Tiles

If , tiles are atomic and preserve the lexicographic
execution ordering

0≥HD

How can we schedule tiles to exploit parallelism?

Use similar methods as scheduling loop iterations!

Solution: LINEAR TIME SCHEDULING of TILES

What about space scheduling?

Solution: CHAINS OF TILES TO SAME PROCESSOR

IPDPS 2001-San Francisco 14

Linear Schedule

() n
j Jiiwheret

disp
tj

t ∈Π−=







Π

+Π
= ,min, 0

0









Π
+Π

=
disp

tj
t

S

jS
0

Which is the optimal ? ?

For non-overlapping schedule: ? = [1 1 1...1]

IPDPS 2001-San Francisco 15

For coarse grain tiles, all iteration dependencies are contained
within a tile area.

Coarse grain ?

VERY FAST PROCESSORS

COMMUNICATION LATENCY

COMM TO COMP RATIO SHOULD BE MEANINGFUL

Supernode dependence set contains only unitary dependencies,

In other words, every tile communicates with its neighbors, one
at each dimension

Optimal ? is [1 1 1…1]
For these unitary inter-tile dependence vectors:

IPDPS 2001-San Francisco 16

j1

j2

Sj2

Sj1

? he total number P of time hyperplanes depends on g:

j1

j2









=

2
1

2
1

0

0
H

Tile grain: g = |H-1| = 4

Sj2








=

3
1

3
1

'

0
0

H

Sj1

Tile grain: g’ = |H’-1| = 9

IPDPS 2001-San Francisco 17

total execution time: T = P(g) (Tcomp+Tcomm), where:

Tcomp=gtc the overall computation time for all iterations within a tile

Tcomm : the communication cost for sending data to neighboring tiles

Each tile execution phase involves two sub-phases:

a) compute and

b) communicate results to others

How many such phases?

P(g), where P(g) the number of hyperplanes

Tcomm=Tstartup+Ttransmit

IPDPS 2001-San Francisco 18

Mapping along the maximal dimension :

1 2 3 4 5

P1

P21

2

3

Optimal linear schedule is given by ? = [1 2]

Final tile will be
executed at

t = 5+2 x 3+1=12
time instance

12),,(tileaFor 1221 ++= SS
j

SSS jjtjjj S

Sj1

Sj1

Sj2

IPDPS 2001-San Francisco 19

Unit Execution Time ñ Unit Communication Time
GRIDS

GRIDS are task graphs with unitary dependencies ONLY!

Optimal time schedule for UET-UCT GRIDS is found to be:

Assume each supernode is a task.

Overlapping Tile Schedule is like a UET-UCT GRID
scheduling problem!

processor same thetodimension along tilesall map We

dimension largest"" theis where,2

:is),...,,(for tile schedule timeoptimal The

1

21

k

kjj

jjjj

S
k

n

ki
i

S
i

S
n

SSS

+∑
≠
=

IPDPS 2001-San Francisco 20

:

1 2 3 4 5

P1 P2

1

2

3

linear schedule now is given by ? = [2 1]. WORSE than before

Sj2

Sj1

Sj2

Final tile will be
executed at

t = 2x5+3+1=14
time instance

Mapping along the non-maximal dimension :

IPDPS 2001-San Francisco 21

1 2

P1

P21

Sj2

2 sub-phases: communication + computation

Communication in one time step

Computation in the next

communication
computation

overlapping

IPDPS 2001-San Francisco 22

1 2

P1

P2

1

Sj2

communication + computation in each time step

computation

Blocking (non-overlapping) case:

IPDPS 2001-San Francisco 23

Each timestep contains a
triplet of
receive-compute-send
primitives

Or, equivalently:

Compute-communicate

There exists time where
every proc is only sending
or receiving!

BAD processor
utilization!

Non overlapping
case

IPDPS 2001-San Francisco 24

Various levels of computation to
communication overlapping:

IPDPS 2001-San Francisco 25

Overlapping case

Each timestep is
(ideally) either a
compute or a
send+receive
primitive

Every proc computes
its tile at k step and
receives data to use
them at k+1 step, while
sends data produced a
k-1 step

IPDPS 2001-San Francisco 26

Thus overall time T = P’(g) max(A1+A2+A3, B1+B2+B3+B4)

In Depth analysis of a time step

However, there exists non-avoidable startup latencies:

IPDPS 2001-San Francisco 27

Communication Layer Internals

Buffering + copying from user to kernel space

Sending through syscal + transmitting through media

Startup latency unavoidable (at the moment!)

But what about writing to NIC and transmitting?
(at least not the process job, but the kernel’s!

Steals CPU cycles anyway!)

IPDPS 2001-San Francisco 28

Experimental Results

• Linux Cluster (16 nodes + Ethernet 100Mbps + MPICH)

• Test app: single statement triple nested loop

with rectangular tiling

• k dimension is the largest one

• Each tile is a cube with ij, ik and kj sides

• Mapping along k dimension, so:

Every processor in the ij plane (tile coordinates (i,j):
1. Receives from neighbors (i-1, j) and (i, j-1)
2. Computes
3. Sends to neighbors (i+1, j) and (i, j+1)

IPDPS 2001-San Francisco 29

Timing and Extra buffering for the overlapping case:

IPDPS 2001-San Francisco 30

Blocking primitives

IPDPS 2001-San Francisco 31

blocking case

For i = 0 to max_i_tile-1
For j = 0 to max_j_tile-1

ProcB(i, j)
where ProcB(i, j) is:

for k = 0 to max_k_tile-1
{
MPI_Recv (T(i-1, j), results (T(i-1,j), k);
MPI_Recv (T(i, j-1), results (T(i, j-1), k);
compute();
MPI_Send (T(i+1, j), results (T(i, j), k);
MPI_Send (T(i, j+1), results (T(i, j), k);
}

IPDPS 2001-San Francisco 32

Non-blocking primitives

IPDPS 2001-San Francisco 33

non-blocking case

For i = 0 to max_i_tile-1
For j = 0 to max_j_tile-1

ProcNB(i, j)
where ProcNB(i, j) is:

for k = 0 to max_k_tile-1
{
MPI_Isend (T(i+1, j), results (T(i, j), k-1).&s1);
MPI_Isend (T(i, j+1), results (T(i, j), k-1), &s2);
MPI_Irecv (T(i-1, j-1), results (T(i-1, j), k+1), &r1);
MPI_Irend (T(i, j-1), results (T(i, j-1), k+1), &r2);
compute();
MPI_wait(s1); MPI_wait(s2);
MPI_wait(r1); MPI_wait(r2);
}

IPDPS 2001-San Francisco 34

AxBxC (i, j, k) iteration spaces

Use 16 processors: 4 processor in each dim i, j

16 x16 x 16384, 16 x 16 x 32768, 32 x 32 x 4096

Tiles of size 4x4xV, 8x8xV, for variable V, thus variable g

Methodology:

Find Vexperimental, gexperimental for which Tmin

Calculate tc (computation for one iteration)

Calculate Tfill_MPI_buffer experimentally for Vexperimental

Which is P(gexperimental) (# of hyperplanes)?

Find by formula Ttheoret using P(gexperimental)

Compare Tmin and Ttheoret

IPDPS 2001-San Francisco 35

16_16_16384

IPDPS 2001-San Francisco 36

16_16_32768

IPDPS 2001-San Francisco 37

32_32_4096

IPDPS 2001-San Francisco 38

Table of Results

IPDPS 2001-San Francisco 39

Can we find analytical expressions for Ai(g), Bi(g)?

Too difficult

Need lower latency layers?

High level communication layers seem to abstract

zero-copy protocols +DMA

IPDPS 2001-San Francisco 40

Timestep Analysis using kernel level DMA

IPDPS 2001-San Francisco 41

Overlapping time
schedule using

DMA

IPDPS 2001-San Francisco 42

Using DMA avoids the CPU OS cycle stealing when
copying from kernel space to NIC buffers

However:
When DMA is started from kernel

•OS kernel checks the size of the user memory area segment

•OS kernel translates VM to contiguous phys (DMA needs phys mem
addresses)

•OS kernel writes args and size to DMA engine registers

DMA startup latency (due to OS ops) is increasing in
comparison with transmission time

Solution: USER LEVEL NETWORKING LAYER

THUS: Data are copied from user space to contiguous kernel space
mem by CPU

Kernel Level initiation of DMA

IPDPS 2001-San Francisco 43

Ongoing Work

• We use SCI (Scalable Interconnection Network)
with DMA capabilities (Dolphin D330 cards)

• Two threads of control per process
• CPU does very little job, thus small startup

latencies (even with DMA engine startups)
• Coarser tile grains than before!

IPDPS 2001-San Francisco 44

User Level Networking
AM, FM, U-NET and BIP then VIA = standard

Messages are sent directly from user space without OS
intervention

User level communication endpoints

How about starting DMA from user level?

IPDPS 2001-San Francisco 45

•It would be nice if we could write from user level directly to
contiguous physical memory!

mmap “RAM device”

We save CPU from the copy to contiguous memory areas.

•It would be nice if we could initiate DMA from user level!

Support from OS and device

We save CPU from memory to device copy.

Evolution to DMA

IPDPS 2001-San Francisco 46

MPI with Ethernet simple send

IPDPS 2001-San Francisco 47

MPI with Ethernet DMA send

IPDPS 2001-San Francisco 48

SCI with Shared memory Send

IPDPS 2001-San Francisco 49

Our approach SCI with DMA
send

