Minimizing Completion Time for Loop Tiling
with Computation and Communication Overlapping

Georgios Goumas, Aristidis Sotiropoulos and Nectarios Koziris

National Technical University of Athens, Greece
Department of Electrical and Computer Engineering
Division of Computer Science

Computing Systems Lab

www.cslab.ece.ntua.gr
nkoziris@cslab.ece.ntua.gr

|PDPS 2001-San Francisco

Overview

Minimizing overall execution time of nested |loops on
multiprocessor architectures using message passing

How? . _
Loop Tiling for parallelism

+

Overlapping otherwise interleaved
communication and pure computation sub-phases

Is it possible?

s'w communication layer + hardware should assist

OVERALL SCHEDULE IS LIKE A PIPELINED DATAPATH!

|PDPS 2001-San Francisco 2

What istiling or supernodetransfor mation?

 Loop transformation

e Partitioning of iteration space J* into n-D parallelepiped
areas formed by n families of hyperplanes

e Each tile or supernode contains many iteration points
within its boundary area

= Tile is defined by a square matrix H, each row vector h,
perpendicular to a family of hyperplanes

= Dually, tile is defined by n column vectors p; which are its
sides, P=[pi]

It holds P = H1

|PDPS 2001-San Francisco 3

Multilevel Tiling:
Tiling at all levels of memory hierarchy!

v'to increase reuse of register files
v'to increase reuse of cache lines (tiling for locality)
v'To increase locality in Virtual Memory

and at the upper level:

v'Tiling to exploit parallelism !

|PDPS 2001-San Francisco 4

Why using tiling for parallelism?

- Increases Grain of Computation —
Reduces synchronization points (atomic tile execution)

- Reduces overall communication cost (increases
Intraprocessor communication)

TRY TO FULLY UTILIZE ALL PROCESSORS
(CPUs 1))

|PDPS 2001-San Francisco

Tiling Transformation

Tiles are atomic, identical, bounded and sweep the index space

[Zn® ZZn I’(j) g d_lju L,J
el eHJCH

eHj(identifies the coordinates of the tile thatj is mapped to

j- H '1é|_|j (| 9ivesthe coordinates of | within that tile relative to the
tile origin

|PDPS 2001-San Francisco 6

Example: A ssimple 2-D Tiling
for ;=0t05
P Al
forj,=0to5 ?% OL\IJ / 1
a(jb JZ) - a(J 1'1, Jz) + a(jl'l, jz'l); _g) %H

32 ={(jp J,) IOF j,, j, £5

|PDPS 2001-San Francisco

[S—
N

Example (cont.)
J? :{ul, i) |0£ jy, j, £5}

—~
o
N

hY

o—0—0—

hY

N

o009 -@-

hY

-

|PDPS 2001-San Francisco

Another Example:

6 | @) (@) (@) (@) .(O’l). (@] (1,1-) .l'
J H
(1!'1) (2!'1)

O 1 2 3 4 5 6 7 8 9Ii

|PDPS 2001-San Francisco

Tile Computation - Communication Cost

The number of iteration points contained in a supernode |5
expresses the tile computation cost.

The tile communication cost is proportional to the number of
Iteration pointsthat need to send data to neighboring tiles

|PDPS 2001-San Francisco 10

oL 1 & & &
MinimiseV . (H) = aaah.d
o det(H) 72 v ja
. 1
Qubject to V H)= =N
] comtH) deH)
HD3 0

& 1y & Oy &6 20
D=a _4P=& _aP.=é

g 25 © @ 51 0 & 4
Vcompl—VComloz 20
Vo= 27 V o= 19

|PDPS 2001-San Francisco

*\ooooo

Objectiveswhen Tiling for Parallelism

Most methods try to:

Given a computation tile volume, try to minimize the
communication needs

Re-shape Tiles = reduce communication

But, how about iteration space size and boundaries?
Objectiveisto minimize overall execution time

....thus we need efficient scheduling

|PDPS 2001-San Francisco 12

Scheduling of Tiles

If HD3 O tilesareatomic and preserve the lexicographic
execution ordering

How can we schedule tiles to exploit parallelism?

Use similar methods as scheduling loop iterations!
Solution: LINEAR TIME SCHEDULING of TILES

What about space scheduling?

Solution: CHAINS OF TILES TO SAME PROCESSOR

|PDPS 2001-San Francisco 13

L inear Schedule

+ -
t = ePJ tE,Wheret - min(Pi),iT J"
edlspP
EPj> +t, L’J
t =a
edlSpP

Which isthe optimal ? ?

For non-overlapping schedule: ? =11 1...1]

|PDPS 2001-San Francisco

14

For coarse grain tiles, all iteration dependencies are contained
within atile area.

Coarse grain ?
VERY FAST PROCESSORS
COMMUNICATION LATENCY

COMM TO COMP RATIO SHOULD BE MEANINGFUL

Supernode dependence set contains only unitary dependencies,

In other words, every tile communicates with its neighbors, one
at each dimension

For these unitary inter-tile dependence vectors:.
Optimal ? 1s[111...1] pops2001-San Francisco 15

?hetotal number P of time hyper planes depends on g:

Tilegrain.g = |H-1 =9

RS 2001-San Francisco 16

Each tile execution phase involves two sub-phases.

a) compute and

b) communicate results to others

How many such phases?
P(g), where P(g) the number of hyperplanes

total execution time: T = P(Q) (T ooyt Teomm), Where:

T.,mo—0t. the overall computation time for al iterations within atile

comp

T omm - the communication cost for sending data to neighboring tiles
Tcomm:Tstartup+Ttransmit

|PDPS 2001-San Francisco 17

M apping along the maximal dimension jlS :

A Final tile will be

. S | | ! ! !
P ; ; § | executed at
' | | ' i / t=5+2 x 3+1=12

3 @ ‘ ------------ ‘ ------------ ‘ """"""" ‘ """""" ‘ “““““ time instance

\~ 1 |
~. | ;
St
N O \.\ ““““ L S — @ LA } P,
UL N <
AU A EN S U RN 1
' ' P N
e " T e |- P
1 <2 ~. 3 s 4 5 S
Optimal linear scheduleis given by ? =[1 2] Ja

Foratile j>(j;, 7). ts =2j, +j; +1

|PDPS 2001-San Francisco 18

Unit Execution Time i Unit Communication Time
GRIDS

GRIDS are task graphs with unitary dependencies ONLY'!
Optimal time schedule for UET-UCT GRIDS isfound to be:

Assume each supernode is atask.

Overlapping Tile Schedule islikeaUET-UCT GRID
scheduling problem!

The optimal time schedule for tile j°(j;>, j5 ..., j)isS:

28 S+ jS,wherekisthe"largest" dimension
=1
1tk
We map al tilesdong k dimension to the same processor

|PDPS 2001-San Francisco 19

M-apping along the non-maximal dimension j2S :

Final tile will be
s /A‘Pl — P, | | N executed at

j 2 ; | ; | | t = 2x5+3+1=14
\. ‘\ z time instance
I R R S EEE S
2 \C\ ----- Q ------ R Q- @ Q-
\| \| &
N | | i ;
D R e
PNV
NN N | |
o\ e e - o
— \\1A{ 2 3 4 5 J1

linear schedule now isgiven by ? =[2 1]. WORSE than before

|PDPS 2001-San Francisco 20

—~overlapping

NN e

communication 1 ST~_ 2

computatlon \)
2 sub-phases. communication + mputatlon
Communication in one time step \

Computation in the next
|PDPS 2001-San Francisco 21

+ S

Blocking (non-overlapping) case:

PR - | O
N\ ! |
N | |
N ; ;
\
A —— N — ———
N N
N, N
N !
N !
N
N\
N \ 2
computation \
communication + computation in each time step
|PDPS 2001-San Francisco

22

Non overlapping
case

Each timestep contains a
triplet of
recelve-compute-send
primitives
Or, equivalently:
Compute-communicate

There exists time where
every proc isonly sending
or recelving!

BAD processor
utilization!

v ey

s -8
A A
s -8
[|

. .

receiygidatapl) !

B E

1

s

a8 -8 -8

Ly

receive] ::umpute| send

- =- = - =

L3 L4 L5

L2

recejve

con 1I.I'II[{"‘

¥
send receive | compute | send

eive | compute | send | receive | compute | send
ceive mmpute[send |
1 Cﬂl‘l‘lpl_‘[[l? l ﬂﬂmm. ;_-(][[IIJ]][F COmim. I I.Z{.II]]E.IIIII:" COmim.
| ""mu]Eule comm. | compute COMMI.
. |i‘cn:rlpute commn, |
IPDPS 2001-San Francisco I 23

Various levels of computation to

communication overlapping:

Receiveldatak-2) Compute({datak-2) Send(datak-2)

Send|data,k-2)

Receive(data k)

Receive|data,k-1)

Compute(data k-1)

Sendidata k-1)

Compute{data k-1)

Send(data k-1)

Receive(data k+1)

Receiveldata.k)

Compute(data,k)

Send(data.k)

Send(data k=2)

Send(data k-1)

Compute(data k+1)

Send|data k)

Compute(data k) Send(datak) | Receiveldata k+2)
Receive(data k) Compute(data k+1)
Compute(datak-1) | Receive(datak+1)
Compute(data k] | Receive(data k+2)

—— Time passed with ideal Overlapping

-

|-

Time passed with Communication and Computation Overlapping

Time passed without Overlapping

|PDPS 2001-San Francisco

24

Overlapping case |

Each timestep is
(idedlly) either a
computeor a
send+receive
primitive

Every proc computes
itstile at k step and
recelves data to use
them at k+1 step, while
sends data produced a
K-1 step

B

P

k=1

oy
i
Pl
P y F. ’ §
' ¥ i i] L) ! # I
v £ 1 v ¢ ¥ §
‘ ! il I I i
;. i | i v
v) v P] £ J
o i
L i i i . '
’o v ¥ r g
gy 0 i Fdils | P
' [! ' F
' ! ¢) v | P |
|
i
1
|
|
|
|
o)

k

1 (] ¥
Tl‘ ¥
i ¥
|) y !
i i ¥ .-
i i
fioy=)

+1 k+2

comput
2 | send |re

ceive T™ send

cnrﬁi]ute

recei\._rl_?_)

e l lmfdﬂmp“tw

compute |

send

. cdﬁipute
| receive | send | receive
compute

| send

|

receive '~ send, | receive

receive

! com
| send

iiUfE

In Depth analysisof atime step

However, there exists non-avoidable startup latencies:

T.send T;:-:}mpute Treteive

(a} 'I;!arlup Ttransmil J_Treceive rﬂlﬂ:‘tun
Irin_Mp1_buffer | Ifill_kernel_buffer Tkin_kernet buffer | Trin MP1_buffer |
Tﬁli MPI buffer T::um ute Tﬁll_MP[_buf‘fer
MPI p
1 (send) | 2 3 (receive)
(b) A T[‘ﬂl_MPII}uffer Tl:nmpule _ | fill_MPluffer

Thus overall time T = P(g) max(A;+A,+A,, B,+B,+B;+B,)

|PDPS 2001-San Francisco 26

Communication Layer Internals

seemmmmmmse Processor 1 Processor 2 .-----—-----..
o N, MP]_*SEH_QI_'- MPI_*I‘E(;},{_‘-
""""" - O CO) a (| =
MPI (user) space “ 1 MPI buffers b MPI_buffers
Kernel (OS) space Y
&= kernel buffers Ll_] kernel buffers
) OO C:) ()
send . < receive

transfer through network media

Buffering + copying from user to kernel space
Sending through syscal + transmitting through media
Startup latency unavoidable (at the moment!)

But what about writing to NIC and transmitting?
(at least not the process job, but the kernel’s!

Steals CPU cycles anyway!)
|PDPS 2001-San Francisco 27

Experimental Results

Linux Cluster (16 nodes + Ethernet 100Mbps + MPICH)
Test app: single statement triple nested loop
with rectangular tiling
k dimension isthe largest one
Each tileisacubewith ij, ik and kj sides
Mapping along k dimension, so:

Every processor in the 1j plane (tile coordinates (i,)):

1. Receives from neighbors (i-1, j) and (i, j-1)
2. Computes
3. Sends to neighbors (i+1, j) and (i, j+1)

|PDPS 2001-San Francisco 28

Timing and Extra buffering for the overlapping case:

TIME
k-1 k k+1
receive(from_proc(i-1,j). k) receive(from_proc(i-1j), k+1) | receive(from_proc(i-1,j), k+2)

receive(from_proc(i,j-1), k) receive(from_proc(i,j-1). k+1) | receive(from_proc(i,j-1), k+2)

compute(proc(i,j), k-1) compute(proc(i,j), k) compute(proc(i,j), k+1)
send(to_proc(i+1,j), k-2) send(to_proc(i+1,j), k-1) send (to_proc(i+1,j), k)
send(to_proc(i,j+1), k-2) send(to_proc(i,j+1), k-1) send (to_proc(i,j+1), k)
yi |
- !
recelve(from_proc(i j-1). k+1) < Joamaes 7
.;_.r i

recelve(from_procli-1j), k+1) =~

kj 1 ;’_ ___—send(io_proc(i+1,j). k-1)

e

-

send(to_proc(lj+1), k-1)

receive(from processor, time to be used)
send(io processor, time produced)

IPDPS 2001-San Ifranci SCo 29

Blocking primitives

| Process
| blocked

Process running Process running

msg is copied msg is copied
to MPI buffer |to OS kernel buffe

send initiated = Trap to kernel, Return from trap

Time

|PDPS 2001-San Francisco

blocking case

For i =0 to max_i tile-1
Forj =0 to max_j tile-1
ProcB(i, j)

where ProcB(i, j) is:

for k = 0 to max_Kk tile-1
{
MPI_Recv (T(i-1, j), results (T(i-1,)), k);
MPI_Recv (T(i, j-1), results (T(i, J-1), k);
compute();
MPI_Send (T(i+1, j), results (T(i, j), k);
MPI_Send (T(i, j+1), results (T(i, j), k);
}

|PDPS 2001-San Francisco

31

Non-blocking primitives

‘ Process |
ol

blocked |
Process running Process running
L g, VST g S 50 W 50 W 6 S 0 B e Wﬂw\.f\f\w./-_/
msg is copied msg is copied
to MPI buffer |to OS kernel buffer
Y Y
send initiated Trap to kernel, Return from trap
Time j

|PDPS 2001-San Francisco 32

non-blocking case

Fori=0to max_i tile-1
For | = 0 to max_j_tile-1
ProcNB(i, j)

where ProcNB(i,) is:

for k = 0 to max_Kk tile-1
{
MPI_Isend (T(i+1, j), results (T(i, j), k-1).&s1);
MPI_Isend (T(i, j+1), results (T(i, j), k-1), &s2);
MPI_lrecv (T(i-1, j-1), results (T(i-1, j), k+1), &rl);
MPI_Irend (T(i, J-1), results (T(, j-1), k+1), &r2);
compute();
MPI_wait(s1); MPI_wait(s2);
MPI_wait(rl); MPI_wait(r2);
}

|PDPS 2001-San Francisco

AXBXC (1, J, k) iteration spaces

Use 16 processors. 4 processor ineachdim i, |

16 x16 x 16384, 16 x 16 x 32768, 32 x 32 x 4096

Tiles of size 4x4xV, 8x8xV, for variable V, thus variable g
M ethodoloqgy:

FINA V o perimentar Gexperimenta TOF Which Ty,
Calculate t. (computation for one iteration)
Calculate Tgy wp puirer €XPETMENtaly for Vg, oimenta
Which Is P(Qeyperimenta) (# Of hyperplanes)?

Find by formula Ty,ee USING P(Joperimental)

Compare T, ,and T, e

|PDPS 2001-San Francisco

min

16 16 16384
|

"blo_16x16x16384"
*nonblo_16x16x16384"

0.7

0.6 -—\

0.5 &
\‘ III .a-"f,’.-
= " yd
3 \
‘;; D..4 I~ i | L -
= "JI_L | H_,/ '
= 0.376637 i =
0.3 H =
3 s -
LU I
0.233923 - Tgner -1
'\\\H
0.2 “ min nonblocking time @ 444 -
0.1 | 1 1 1 1 1 |
= | [2 = = o | Lo
B = 3 = 2 = B s
T = Tile Aeight ™ o i =

16 16 32768

Time (sec)

1.8

1.6

1.4

1.2

0.9

0.8

0.694516

0.6

0.5

0.467927
0.4

A " blo_16x16x32768" —
"nonblo_16x16x32768"
I
I
| , .
B min blocking time & 800 = N
: Y) i
= min nonblocking time @ 538 -
1 1 1 | 1 1 1 1 I
E 8 8 8 8 8 8 8 8 8
s [[Ty] [Ly o uy = ey =
= — SMile Akight”" < T ¥ R

32 32 4096

Time (sec)

“blo. 32x32x4096" -

0.4 J\ |

0.324069
0.3

0.219059 |-

0.2 -

L

"nonblo_32x32x4096"

! min nonblocking time @ 164

1

2500

0.1

=

i

= =
= P!
“Tile Height™

2000

Table of Resaults

i

ii

iii

index zet size

.. 16 x 16 % 16384 16 x16 x 32768 32 %32 4096
(ixj=k)
W ontial 444 538 164
Eoptimal 7104 8608 10996
toptj.mal

overlapping 0.233923 sec 0.467929 sec 0.219059 sec
experimental
tan 1P buf 0.627 msec 0.745 mzec 0.37 msec
P(g) 53 76 41
tDptjmal

overlapping 0.24 sec 0.507 sec 0.25 sec
theoretical

difference

experimental vz, 2.5% 7% 12%
theoretical
toptj.mal
non-overlapping 0.376637 sec 0.694516 sec 0.324069 sec
experimental
improvement

overlapping vs.
non-overlapping

38%0

33%0

32%

|PDPS 2001-San Francisco

Can we find analytical expressions for Ai(g), B:(g)?

Too difficult

High level communication layer s seem to abstr act

Need lower latency layers?

zero-copy protocols +DMA

|PDPS 2001-San Francisco

39

Timestep Analysisusing kernel level DM A

TC ompiﬁe

r]&m a_setup Tﬁa"nginit_

,bqﬂ :*"" rl%h:)t;:king ""'*:
i '
'MQ Tcompute Tsend
= .
- I
‘‘‘‘‘ ' '-_—“““""““%—"‘-__"——"‘——‘—‘f"?—
rlalﬁal_setup Ttransimt
, - —
20 :
o I
* |
- |
(2 |
< |
]
i . I
o I-"I I
) [
= I
|

| r];onnblran::lx:in g ™

|PDPS 2001-San Francisco

Overlapping time

R = — “——8—>8._ B .
i v o v o schedule using
'\-\.__h - - - | ~
"-\-_____ 5 H“'\-\.___\ -\""-\-\._\._\.h HHH"'--._ “‘H-..___'-L R'\.H
L % 8 8 DMA
= ! ' - = . |
" : ; : = = -
. g = = = = B
-\.‘_‘- - 4
e o Ll J ?\ T\ ,\ T
5 - '\-\._\._\.h ""\._‘_ "'-\._H ! .
— — P s, i i« “‘x__x
. v R B ‘-‘-‘-l\ B
- - i o) i - o
""'\-\._\. ﬁh""‘-\-\._\‘ A 1 H-H-\"".,_ Hﬂ" H-'"\-._._ 5 -\"\-\.._.\-
i — = - T
. f =8 =8 - -*,h B
= 5 i it i TR
N ﬂ'm‘ i | T e TR
o Tk - _ ey _ - [H
TR e e a8 R
e EH"'H-\._L i - - 5 -
*-H,q__ah\ = = Rh‘a - "Hh
iy H-n_ H"H -~ H"H-H_L .
H-""'\-\. E:\;_._‘-Hi;«...—i’_.—ﬁhﬂ R . .H""'\-\.
Uty e S i {
4 4 = e '-.-j..l 2"---- 7 .-'II. : I-'lj 4 4 = 7
e et ok Sk kt2
P compute compute compute
e dma [transmit| | dma |transmit |
P TR compuie
- dma | gran st
compute compie.

Jteansmit |

dma [rransmit| Tdma [fransmit|
IPDPS 2001-San Francisco

41

Kerndg Levd initiation of DM A

Using DMA avoids the CPU OS cycle stealing when
copying from kernel space to NIC buffers

However:
When DMA is started from kerndl

*OS kernel checks the size of the user memory area segment

*OS kernel translates VM to contiguous phys (DMA needs phys mem
addresses)

*OS kernel writes args and size to DMA engine registers

THUS: Data are copied from user space to contiguous kernel space

mem by CPU
DMA startup latency (dueto OS ops) isincreasing in

comparison with transmission time
Solution: USER LEVEL NETWORKING LAYER

|PDPS 2001-San Francisco 42

Ongoing Wor k

We use SCI (Scalable Interconnection Network)
with DMA capabilities (Dolphin D330 cards)

Two threads of control per process

CPU does very little job, thus small startup
latencies (even with DMA engine startups)

Coarser tile grains than beforel

|PDPS 2001-San Francisco

User Level Networking
AM, FM, U-NET and BIP then VIA = standard

Messages are sent directly from user space without OS
Intervention

User level communication endpoints

How about starting DMA from user level?

|PDPS 2001-San Francisco

Evolution to DMA

oIt would be nice if we could write from user level directly to
contiguous physical memory!

mmap “RAM device”

We save CPU from the copy to contiguous memory areas.

|t would be nice if we could initiate DMA from user level!

Support from OS and device

We save CPU from memory to device copy.

|PDPS 2001-San Francisco

MPI with Ethernet

simple send

PMA |.]|"* *

e
-

h.h’
S
- A

i

example:

send N x 1024 bytes
k= 1024/4

from user to kernel(i.e 1024 bytes)
CPUdelay=Nx +

k x from kernel to NIC(i.e 4 bytes)

|PDPS 2001-San Francisco

MPI with Ethernet
DMA send

physical memory

FMA

rEr
;i!l‘
Iy

DMA;III'

'JI'J'

example:
send N x 1024 bytes

from user to kernel (Nx 1024 bytes)_
CPU delay = +

startup DM A engine

SCI with
Shared Memory Send

neighboring node’s memory

— e imported N —

VMA Sapill g segment o
AA exported
segment

example: CPU delay=k x Efmm mem to device(i.e 4 bytes):|

send N x 1024 bytes
k=Nx 1024/4

|PDPS 2001-San Francisco 48

Our approach
SCI with DMA send

neighboring node’s memory

vMa | | i
f segment
%/ (contiguous memory)
PMA " » V,// L
mory mapped
M device"
CPU D
engin
example:
send N x 1024 bytes CPU delay = DMA setup

|PDPS 2001-San Francisco 49

