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Overview

Minimizing overall execution time of nested loops on 
multiprocessor architectures using message passing

How?
Loop Tiling for parallelism

+
Overlapping otherwise interleaved
communication and pure computation sub-phases

OVERALL SCHEDULE IS LIKE  A  PIPELINED DATAPATH!

Is it possible?

s/w communication layer + hardware should assist
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• Loop transformation

• Partitioning of iteration space Jn into n-D parallelepiped  
areas formed by n families of hyperplanes

• Each tile or supernode contains many iteration points 
within its boundary area

• Tile is defined by a square matrix H, each row vector hi
perpendicular to a family of hyperplanes 

• Dually, tile is defined by n column vectors pi which are its 
sides, P=[pi]

It holds P = H-1

What is tiling or supernode transformation?
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üto increase reuse of register files
üto increase reuse of cache lines (tiling for locality)
üTo increase locality in Virtual Memory

and at the upper level:

üTiling to exploit parallelism !

Multilevel Tiling:
Tiling at all levels of memory hierarchy!
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Why using tiling for parallelism?

• Increases Grain of Computation –

Reduces synchronization points (atomic tile execution)

• Reduces overall communication cost (increases      
intraprocessor communication) 

TRY TO FULLY UTILIZE ALL PROCESSORS 

(CPUs !!!)
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identifies the coordinates of the tile that j is mapped to
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tile origin
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Tiling Transformation
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for  j1 = 0 to 5
for j2 = 0 to 5

a(j1, j2) = a(j1-1, j2) + a(j1-1, j2-1 );
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Example: A simple 2-D Tiling



IPDPS 2001-San Francisco 8

j1

j2 { }5,0|),( 2121
2 ≤≤= jjjjJ

 








∈







=== 2

22
1

12
1

,| Jj
j
j

HjjjJ SSS













∈







==∈= −− SSSS

S

S
SnS Jjjj

j
j

jHjZjHJTOS ),(,
2
2

|),( 21
2

111

1 2 3 4 50

1

2

3

4

5

( )
( )






=
















01
21

4
3

r

(1,2)

(1,1)

(1,0)

(2,2)(0,2)

(2,1)

(2,0)

Example (cont.)



IPDPS 2001-San Francisco 9









−

−
=

31
24

10
1

H









=

41
23

P



















=
















3
2
0
2

5
8

r

i

j

p1

p2

h1

h2

(0,0)

(1,1)

(0,1) (1,1)

(2,0)

(1,-1) (2,-1)

0     1     2     3     4     5     6     7     8     9 

1

2

3

4

5

6

7
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The number of iteration points contained in a supernode jS 

expresses the tile computation cost.

The tile communication cost is proportional to the number of 
iteration points that need to send data to neighboring tiles

Tile Computation - Communication Cost
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Objectives when Tiling for Parallelism

Most methods try to:

Given a computation tile volume, try to minimize the 
communication needs

Re-shape  Tiles  =  reduce communication

But, how about iteration space size and boundaries?

Objective is to minimize overall execution time

….thus we need efficient scheduling
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Scheduling of Tiles

If              , tiles are atomic and preserve the lexicographic 
execution ordering 

0≥HD

How can we schedule tiles to exploit parallelism?

Use similar methods as scheduling loop iterations!

Solution: LINEAR TIME SCHEDULING of TILES

What about space scheduling?

Solution: CHAINS OF TILES TO SAME PROCESSOR
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Linear Schedule
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Which is the optimal ?  ?

For non-overlapping schedule: ?  = [1 1 1...1]
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For coarse grain tiles, all iteration dependencies are contained
within a tile area.

Coarse grain ?  

VERY FAST PROCESSORS

COMMUNICATION LATENCY

COMM TO COMP RATIO SHOULD BE MEANINGFUL

Supernode dependence set contains only unitary dependencies,

In other words, every tile communicates with its neighbors, one 
at each dimension

Optimal ?  is [1 1 1…1]
For these unitary inter-tile dependence vectors:
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total execution time: T = P(g) (Tcomp+Tcomm), where:

Tcomp=gtc the overall computation time for all iterations within a tile

Tcomm : the communication cost for sending data to neighboring tiles

Each tile execution phase involves two sub-phases:

a) compute and 

b) communicate results to others

How many such phases?          

P(g), where P(g) the number of hyperplanes

Tcomm=Tstartup+Ttransmit
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Mapping along the maximal dimension       :

1 2 3 4 5

P1

P21

2

3

Optimal linear schedule is given by ?  = [1 2]

Final tile will be 
executed at

t = 5+2 x 3+1=12
time instance
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Unit Execution Time ñ Unit Communication Time 
GRIDS

GRIDS are task graphs with unitary dependencies ONLY!

Optimal time schedule for UET-UCT GRIDS is found to be:

Assume each supernode is a task. 

Overlapping Tile Schedule is like a UET-UCT GRID 
scheduling problem!
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:

1 2 3 4 5

P1 P2

1

2

3

linear schedule now is given by ?  = [2 1].  WORSE than before

Sj2

Sj1

Sj2

Final tile will be 
executed at

t = 2x5+3+1=14
time instance

Mapping along the non-maximal dimension         : 
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1 2

P1

P21

Sj2

2 sub-phases: communication + computation

Communication in one time step

Computation in the next

communication
computation

overlapping
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1 2
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1

Sj2

communication + computation in each time step

computation

Blocking (non-overlapping) case:
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Each timestep contains a 
triplet of 
receive-compute-send
primitives

Or, equivalently:

Compute-communicate

There exists time where 
every proc is only sending 
or receiving!

BAD processor 
utilization!

Non overlapping 
case
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Various levels of computation to 
communication overlapping:
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Overlapping case

Each timestep is 
(ideally) either a 
compute or a 
send+receive
primitive

Every proc computes 
its tile at k step and 
receives data to use 
them at k+1 step, while 
sends data produced a 
k-1 step 
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Thus overall time T = P’(g) max(A1+A2+A3, B1+B2+B3+B4)

In Depth analysis of  a time step

However, there exists non-avoidable startup latencies:
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Communication Layer Internals

Buffering + copying from user to kernel space

Sending through syscal + transmitting through media

Startup latency unavoidable (at the moment!)

But what about writing to NIC and transmitting? 
(at least not the process job, but the kernel’s! 

Steals CPU cycles anyway!)
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Experimental Results

• Linux Cluster (16 nodes + Ethernet 100Mbps + MPICH)

• Test app: single statement triple nested loop 

with rectangular tiling

• k dimension is the largest one

• Each tile is a cube with ij, ik and kj sides

• Mapping along k dimension, so:

Every processor in the ij plane (tile coordinates (i,j):
1. Receives from neighbors (i-1, j) and (i,  j-1)
2. Computes
3. Sends to neighbors (i+1, j) and (i,  j+1)
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Timing and Extra  buffering for the overlapping case:
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Blocking primitives
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blocking case

For i = 0 to max_i_tile-1
For j = 0 to max_j_tile-1

ProcB(i, j)
where ProcB(i, j) is:

for k = 0 to max_k_tile-1
{
MPI_Recv (T(i-1, j), results (T(i-1,j), k);
MPI_Recv (T(i, j-1), results (T(i, j-1), k);
compute();
MPI_Send (T(i+1, j), results (T(i, j), k);
MPI_Send (T(i, j+1), results (T(i, j), k);
}
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Non-blocking primitives
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non-blocking case

For i = 0 to max_i_tile-1
For j = 0 to max_j_tile-1

ProcNB(i, j)
where ProcNB(i, j) is:

for k = 0 to max_k_tile-1
{
MPI_Isend (T(i+1, j), results (T(i, j), k-1).&s1);
MPI_Isend (T(i, j+1), results (T(i, j), k-1), &s2);
MPI_Irecv (T(i-1, j-1), results (T(i-1, j), k+1), &r1);
MPI_Irend (T(i, j-1), results (T(i, j-1), k+1), &r2);
compute();
MPI_wait(s1); MPI_wait(s2);
MPI_wait(r1); MPI_wait(r2);
}
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AxBxC (i, j, k) iteration spaces

Use 16 processors: 4 processor in each dim i, j

16 x16 x 16384, 16 x 16 x 32768, 32 x 32 x 4096

Tiles of size 4x4xV, 8x8xV, for variable V, thus variable g

Methodology:

Find Vexperimental, gexperimental for which Tmin

Calculate tc (computation for one iteration)

Calculate Tfill_MPI_buffer experimentally for Vexperimental

Which is P(gexperimental) (# of hyperplanes)?

Find by formula Ttheoret using P(gexperimental)

Compare Tmin and Ttheoret
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16_16_16384
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16_16_32768



IPDPS 2001-San Francisco 37

32_32_4096
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Table of Results
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Can we find analytical expressions for Ai(g), Bi(g)?

Too difficult

Need lower latency layers?

High level communication layers seem to abstract

zero-copy protocols +DMA
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Timestep Analysis using kernel level DMA
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Overlapping time 
schedule using 

DMA
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Using DMA avoids the CPU OS cycle stealing when 
copying from kernel space to NIC buffers

However:
When DMA is started from kernel

•OS kernel checks the size of the user memory area segment

•OS kernel translates VM to contiguous phys (DMA needs phys mem
addresses)

•OS kernel writes args and size to DMA engine registers

DMA startup latency (due to OS ops)  is increasing in 
comparison with transmission time

Solution: USER LEVEL NETWORKING LAYER

THUS: Data are copied from user space to contiguous kernel space
mem by CPU

Kernel Level initiation of DMA
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Ongoing Work

• We use SCI (Scalable Interconnection Network) 
with DMA capabilities (Dolphin D330 cards)

• Two threads of control per process
• CPU does very little job, thus small startup 

latencies (even with DMA engine startups)
• Coarser tile grains than before!
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User Level Networking
AM, FM, U-NET and BIP  then VIA = standard

Messages are sent directly from user space without OS 
intervention 

User level communication endpoints

How about starting DMA from user level?
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•It would be nice if we could write from user level directly to
contiguous physical memory!

mmap “RAM device”

We save CPU from the copy to contiguous memory areas.

•It would be nice if we could initiate DMA from user level!

Support from OS and device

We save CPU from memory to device copy.

Evolution to DMA
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MPI with Ethernet simple send
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MPI with Ethernet DMA send
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SCI with Shared memory Send
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Our approach SCI with DMA 
send


