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Abstract
In this paper we propose a fixed size one-dimensional VLSI
architecture for the parallel parsing of arbitrary context free
(CF) grammars, based on Earley’s algorithm. The algorithm is
transformed into an equivalent double nested loop with loop-
carried dependencies. We first map the algorithm into a 1-D
array with unbounded number of cells. The time complexity of
this architecture is O(n), which is optimal. We next propose the
partitioning into fixed number of off-the-shelf processing
elements. Two alternative partitioning strategies are presented,
considering restrictions, not only in the number of the cells, but
also in the inner structure of each cell. In the most restricted
case, the proposed architecture has time complexity O(n3/p*k),
where p is the number of available cells and the elements inside
each cell  are at most  k.

Index Terms --- Parallel parsing, Earley’s algorithm,
partitioning, systolic array, mapping.

1. INTRODUCTION

   Context-free grammars combine both the expressive
power and the simplicity in their analysis. They can
describe many features of natural languages and are
widely used in syntactic pattern recognition applications.
Many efficient parsing algorithms have been developed
for this specific class of grammars [1-7].
The most known algorithms in the literature are CYK and
Earley, which are dynamic programming procedures. Both
can be applied to a general CF grammar, but CYK requires
the grammar to be transformed in Chomsky normal form.
The time complexity of these algorithms is, in general,
O(n3), where n is the length of the input string. This time
complexity can be a significant overhead for a reasonably
large n. Consequently the efficient parallelization of these
algorithms is of particular importance to the above areas.
Most of the proposed parallel parsing algorithms are based
on CYK algorithm, thanks to it’s simpler form. The
problem of mapping the CYK algorithm into a VLSI

architecture with both unbounded and fixed number of
processors has been considered by Cheng & Fu in [8] and
Ibbara et al. in [9,10]. However the transformation of a
general CF grammar to an equivalent grammar in
Chomsky normal form, may drastically increase the size of
the grammar. Therefore a parallel recognizer of arbitrary
CF grammars, based on Earley’s algorithm is of great
importance. Chang & Fu proposed in [11] a 2-D array
architecture for the parallel implementation of Earley’s
algorithm with unbounded number of processors. Recently
Ra et al. proposed a parallel implementation of Earley’s
parsing algorithm into an array of processors [12].
However, their architecture operates asynchronously and
communication is based on message passing. For Earley’s
algorithm, asynchronous architectures are less efficient
than synchronous ones for two reasons: First, they present
a regular and repetitive data communication pattern; thus
startup message latency and transmission delays override
the net computation time. Second, even a very large
grammar can be encoded in a total of a few digital words
using a bit-vector representation [11].
On the other hand, the feasibility of the automatic
parallelization of some special classes of sequential
algorithms like nested DO (FOR) – loops has been
examined in [13-18]. The minimum execution parallel
time, as well as, upper and lower bounds for the number of
cells, needed to achieve that optimal time, were elaborated
for this special case, providing with optimal methods [13,
14, 15,19].
In this paper, we propose a synchronous VLSI architecture
for the implementation of Earley’s parsing algorithm,
based on a general method of parallelization of nested
loops [13]. This method makes an efficient mapping of the
loop iterations, using the less possible processing
elements. First, Earley’s algorithm is mapped into an one-
dimensional array, consisted of O(n) processing elements.
Each element has a number of main operators (which are



responsible for executing the steps of Earley’s algorithm)
instead of only one as in [11]. Specifically, the number of
basic elements inside the cell is an upper limit of the
length of the input string that can be recognized by the
architecture. Since the main operations in Earley’s
algorithm can be implemented in hardware with a few
registers and simple gates (XOR, OR, AND, e.t.a.) [6,11],
this is a realistic approach. This architecture can recognize
an input string of size n, in exactly n+1 time steps (thus
(O(n)). We then propose a partitioning strategy into fixed
number of cells, having O(n) operators inside each cell.
We finally consider the most restricted partitioning case
into a fixed number p of cells with a bounded number k of
operators inside each cell, having k*p≥n. In this case, we
cascade several cells with fixed number of operators, in
order to construct a virtual cell having the required number
of operators. This architecture has O(n3/p*k) time
complexity, which coincides to the previous partitioning
case, O(n2/p), if k=n, and to the mapping case, O(n), when
k=p=O(n).
The rest of the paper is organized as follows: In Section 2,
we briefly give the basic notations and definitions of the
CFG and Earley’s parsing algorithm. In Section 3, we
transform the Earley’s algorithm into an equivalent 2-D
nested loop. In Section 4, the optimal mapping of the
Earley’s algorithm into an one-dimensional VLSI array is
presented. Finally, in Section 5, we present two
partitioning cases, supporting both bounded and
unbounded number of components (operators) inside each
cell, together with illustrative examples.

2. BASIC CONCEPTS

We briefly give the definitions and the notations, used
throughout this paper.

Definition 1. A Context Free Grammar (CFG) is a
quadruple G=(V, N, P, S), where:
• V is the set of the symbols of the grammar, N is the
set of the non-terminal symbols (T=V-N is the set of the
terminal symbols)
• P⊆N×V* is the set of the rules of the grammar, which
are of the form A→a, where A∈N and a∈V*. We call the
symbol A the left hand symbol of a rule (LHS) and the
V\PERO�V��.�WKH�ULJKW�KDQG��5+6��

• S is the start (non-terminal) symbol of the grammar.

Definition 2. Let ‘•’ be a symbol not in V. Then a rule
A→.•���$→.��is in P) is called “dotted rule” and means
that WKH�.�part of the rule has been found consistent  with
the input string, while WKH� �� part still needs to be
considered.

Definition 3. The set PREDICT(B), B⊆N and
PREDECESSOR(A), A⊆N are defined as:
PREDICT(B) ={C→�•/ | C→�/ is in P, �⇒
0��ú⇒*C�

for some B in R and some �}
PREDECESSOR(A) = {B | B⇒*A, B∈N}, that is the set
of all the symbols that generate  A

Many versions of the initial Earley’s algorithm can be
found in the literature [1-9]. In this paper, the form
presented by Fu is used. It constructs a parsing table Tnxn,
whose elements tij  are sets of dotted rules. A string is
correctly recognized, if at the element t0n there is a doted
rule of the form S→a•. Formally the algorithm is given
bellow [11].
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In above algorithm Y=PREDICT(N) and the operator ⊗ is
defined as follows (� symbolize the null string):
• Let Q be a set of dotted rules and R ⊆T
    Q⊗R={A→.8�•��_ ù→.•8��∈Q, ��⇒
�,  U∈R}
                              and
    {B→/&�•�_� ��ú→/•&��∈
� and  �⇒
�� C⇒
ù`

• Let Q,R be a set of dotted rules
     Q⊗R={A→.8�•��_ù→.•8��∈Q,  B⇒
�,  U→/•∈R}
 and
    {B→/&�•�_� ��ú→/•&��∈
� and  �⇒
�� C⇒
ù`

Finally, the terms processing element cell and processor
will be interchangeably used.

3. DATA REPRESENTATION

The main characteristics of a VLSI array are, first, its
synchronous and regular flow of constant length data
among neighboring cells, and second, the same simple and
regular internal structure of each cell. In order to fulfill
these requirements, we should represent the array elements
tij in a compact form. In addition to this, the internal ⊗
operator should be as simple as possible.
By the definition of the ⊗ operator, one can see that it
operates on a set of rules. Specifically the operation Q⊗R
is divided into the following steps:
1. The set of all the left symbols of the rules in R (in
which all the right part has been read) is calculated.
2. All the rules in set Q, which contain any element of
the above set at the right of the dot, are found. In these
rules, the dot is moved one place to the right.
3. All the rules in set Q, in which all the right part has



been read, are found. The corresponding set of the
predecessors of their left-hand symbol is computed.
4. Finally, all the rules in the set PREDICT(N) are
computed in the same way as in step 2.
The result is the union of the sets of the rules found in
steps 2 and 4. A similar procedure is executed when R is a
set of symbols and not a set of rules.
In general, the above steps have different execution times,
depending on the index of the elements Q, R. This
problem is solved if we represent the grammar with bit-
vectors as it was proposed by Chang & Fu in [11].
In the following, a formal description of the
implementation of the operator ⊗ in an PASCAL-like
algorithm is given, which can be used in a preprocessing
level as input to an automatic hardware synthesis tool.
Moreover, the proposed implementation allows the
grammar to support also 0�productions. (In [11] only 0-free
grammars are considered as input). The removing of the 0�

productions may duplicate the rules of the grammar, thus
duplicating the length of the data that travel through the
VLSI array. Since, in our implementation, 0�productions
are also allowed, the overall execution time is significantly
reduced.
The implementation of the operator ⊗ is illustrated as
follows: If the grammar has s symbols, each symbol is
encoded into a non-zero s-bit vector. In this encoding
every s-bit vector differs only in one bit from the others.
The set of the predecessors for each non-terminal is
similarly encoded into a s-bit vector. The value of this bit -
vector is derived by or-ing all the bit-vectors, that
represent the symbols, which belong to this set. For each
non-terminal symbol we use its encoding and the encoding
of the set of its predecessors. If the grammar has n non-
terminal symbols, we store at each cell an array containing
2n s-bit vectors. We use the notation symb[i], to point the
i-th symbol in this 2n array. Each rule of the grammar is
encoded as an array of s-bit vectors. The first bit-vector is
the LHS of the rule and the others the RHS. If the
grammar has w rules and each rule has at most r symbols
at the right part, then the rules of the grammar are stored in
a w(r+1) array of k bit–vectors. We use the notation
rule[i],  to point the position of the i-th rule (i.e. its LHS).
Finally we store at each cell three arrays of w (r+1)bit-
vectors. Each row in these matrices represents a rule (only
the RHS part), and each bit in the (r+1)-bit vector a
position of the dot. The first matrix contains the set
Y=PREDICT(N). In the second matrix (called M) the bit
which denotes the end of the RHS of the corresponding
rule is marked in each bit-vector. The third matrix,
symbolized as E, is called the ‘empty’ matrix. In each row
of E, we mark the bit(s), which correspond to symbols that
produce the empty string. This matrix is used to transform
G\QDPLFDOO\� WKH� JUDPPDU� LQWR� DQ� HTXLYDOHQW� 0�IUHH� IRUP�

without increasing the size of the main cell. Finally the
elements of the parsing matrix T have the same form as
the matrices Y, E, M (i.e. a w(r+1) array of bits).

 The algorithm is executed in a 5-step procedure. It takes
as input the sets Q, R in the form of a W(r+1) bit arrays
and calculates the set (matrix) T = Q⊗R. We use the
internal variables U, PRED of the form s-bit vector and B
of r+1 bit-vector with initial value 0. Finally with A (a s-
bit vector) we symbolize the representation of a symbol of
the input string. In the following, algorithm the operator  ∧
symbolizes the vectorial AND where:

       1 if ( x & y  ≠ 0)
    vectorial AND:
                                         0  otherwise

Algorithm 2 (operator ⊗ )
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Notice that with the above representation a null bit-vector
represents the ‘neutral’ element for the operator ⊗. This
gives us the possibility to preserve the regular data flow
even if, at some time steps we transmit null values. All bit
operations can be implemented in parallel, implying even
the lowest level inherent parallelism of the algorithm.

4. DEPENDENCE ANALYSIS

The algorithm 1 can be rewritten in an equivalent form of
perfectly double nested loop:

Algorithm 3 (Modified Earley’s algorithm)
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It can be easily seen that the above algorithm calculates
the recognition matrix row by row, so that the last element
that will be computed is t(n,0) instead of t(0,n).
For the efficient parallelization of the algorithm 3, we use
the method proposed by Andronikos et al. in [13]. This
method partitions the index space of the above double
nested loop into the less possible uniform disjoint chains
of computations. After the partitioning phase, it assigns
each chain to a different processing element, while
preserving the dependence relations between the loop
iterations. The resulting schedule is proved to be optimal
both in terms of time and processor utilization.
In our algorithm the set of all possible dependence vectors
(called Dependence Set, and symbolized DS), which relate
different loop iterations is:

DS={di (i-k,0), dj(0,j-k) | 1≤ i-k ≤ n,1-n ≤ j-k ≤ 0 )

From the above set it is clear that satisfying dependencies
d1(1,0) and d2(0,-1) all other dependencies will
automatically be satisfied. This is illustrated in figure 1
where the index space and the dependence vectors are
presented (for  n=6).

            1                2    3      4         5            6               j0

1

2

3

4

5

i

Figure 1: - The Index Space and the dependence vectors for
algorithm (For simplicity reasons, only the first two
dependencies (i.e. d (k, 0)) and d(0,-k), k=1,2) are shown ).

5.  MAPPING ONTO AN 1-D VLSI ARRAY

Unlike the empirical approach by Fu in [11], a systematic
way, for mapping algorithm 3 to hardware, is used. More
specifically, we applied the method [13], which leads to
optimal time and space schedules. Table 1 presents, the
time-schedule for n=6. Processor Pi is responsible for the
computation of all the elements in the i-th column of the
recognition matrix t
It is clear that, by applying the above mapping, the proper
data flow is ensured.
For example, the computation of element t(4,0) will be
done  by processor p1 at the 4-th time step. From algorithm
3 we see, that for the computation of the element t(4,0),
the values of the elements t(4, k), t(k, 0) (j ≤ k ≤ i-1) are
needed. By this time, all these elements (i.e. T(1,0), t(2,0),

t(3,0), t(4,1), t(4,2), and t(4,3)) have already been
computed and sent to processor p1.

Processing Elements
Time P1 P2 P3 P4 P5 P6

1 t(1, 0) t(2, 1) t(3, 2) t(4, 3) t(5, 4) t(6, 5)
2 t(2, 0) t(3, 1) t(4, 2) t(5, 3) t(6,4) -
3 t(3, 0) t(4, 1) t(5, 2) t(6,3) - -
4 t(4, 0) t(5, 1) t(6,2) - - -
5 t(5, 0) t(6,1) - - - -
6 t(6,0) - -

Table 1: -. Time schedule for n=6. Each column of the matrix
T is assigned to a different cell

Assigning the computation of each column of the
recognition matrix to the same processor, leads to one-
dimensional vlsi architecture of n processors. This
architecture is illustrated in figure 2. Each link is used to
transfer both the element t(i,j) and the input symbol ai,
within one time step (recall from section 3 that both are
represented as bit-vectors).

Figure 2: -  One dimensional architecture for the parallel
implementation of Earley’s algorithm

The input string S=a1a2. . .an is initially loaded, in parallel,
to processing elements, so that Pi processor has ai

character (Figure 2).
The number of operators implemented inside each cell is
at most equal to the length of the input string as it is shown
in figure 3. Most specifically, Pi processor contains i
operators ⊗.
With this architecture, we can obtain the result from the
processor 1 at exactly n time steps.
The VLSI cell is illustrated in Fig 3. Since we represent
the set of rules with an array of bit vectors, it is obvious
that the operator ∪ can be implemented by OR gates.
Since each cell computes the corresponding t(i,j) within
one time instance, we use an additional 1D delay to
synchronize the transfer of data from input to output.
Thus, the data from Inputi are forwarded to Outputi   



Figure 3 :-   The internal structure of the cell Pk.

synchronously with the result from the ∪ operator.
The Pk cell has n-k inputs and n-k+1 outputs, so that
neighboring cells have the same number of
interconnection links (Figure 2).
Finally there are n-k ≥ 1 registers which are driven by a
control unit. The registers are loaded one by one each time
step. Specifically, the output of the ∪ operator e is loaded
to Ri  at the i-th time instance.
Each cell performs the following operation:

Cell output= operation 1∪ . . . ∪ operation  n-k

where:  operation i = Ri ⊗ Inputi

The above interconnection strategy, implements the
following relations:

Output1 = Cell output

 Outputi  = Inputi-1 for 2 ≤ i ≤ n- k+1

In table 2, the operation of the 4-th cell, for an input string

of maximum length n=7, is summarized.
The proposed architecture has the following advantages
over the so far presented implementations: First, it has a
single time clocking and simple data flow. Second, it only
needs one copy of the encoded grammar (symbols, rules,
predecessors etc) inside each processing element. Finally,
on the contrary with the 2-D architecture of [11], we have
at the i-th time step, the result of the parsing of the
substring Si=a1a2 . . .ai, as the output of the P1 cell. This
could be very useful in cases where, we want to collect
information about a sub-string of the entire string (e.g. in
some pattern recognition problems).

6. ALGORITHM PARTITIONING INTO FIXED

SIZE OF CELLS

For the majority of the applications the maximum length is
small, fixed and known beforehand (e.g. syntactic
recognition of the ECG signal). In the above Section, we
assumed unbound number of cells, equal to the maximum
length of the input string. This means, that the internal
structure of each cell depends on the maximum length.
However, it would be ideal to produce a general-purpose
cell with a fixed internal structure. If we need to
implement an array for a specific application (thus an
arbitrary fixed maximum length) wee only connect several
such kind of cells. In addition to this, we may also have
limitations on the number of off-the-shelf cells.  In this
section we present a partitioning strategy, allowing for
bounded number of cells and fixed number of internal
operators. We follow the LPGS (Locally Parallel Globally
Sequential) approach, which is widely used in systolic
array partitioning [19]. The virtual array of cell is divided
into blocks, whose size is equal to the number of the
available cells. Inside every block each virtual processor is
assigned to the corresponding physical one. Once the
block is completed, the same physical array of cells is used
to implement the next block and so on. We first present a
partitioning scheme, where we have bounded cells but the

7LPH
,QSXW
6\PERO 5� 5� 5� OQSXW�� ,QSXW�� ,QSXW�� 2SHUDWLRQ� 2SHUDWLRQ� 2SHUDWLRQ� 2XW�

,QLWLDO D� � � � � � � � � � �

�
�
�

�
W�����

�
�

�
�

�
W������D�

�
�

�
�

<⊗D�
�

�
�

�
�

W�����
�

�
�
�

�
W�����

�
W�����

�
�

�
W�����

�
W������D�

�
�

W������⊗�W�������D�
�

�
�

�
�

W�����
�

�
�
�

�
W�����

�
W�����

�
W�����

�
W�����

�
W�����

�
W������D�

W������⊗�W�����
�

W������⊗�W�������D�
�

�
�

W�����
�

�
�
�

�
W�����

�
W�����

�
W�����

�
�

�
�

�
�

W������⊗�W�����
�

W������⊗�W�����
�

W������⊗�W������D�
�

W�����

�

7DEOH�����7KH�WLPH�VFKHGXOLQJ�LQVLGH�HDFK�FHOO��'XULQJ�D�FORFN�F\FOH���ILUVW�WKH�YDOXHV�DW�WKH�UHJLVWHUV�DQG�DW�WKH
LQSXW� OLQHV� DUH� XVHG� WR�EH� FRPSXWHG� WKH� QH[W� HOHPHQW� W�L���� DQG�QH[W� WKH� RXWSXW� LV� VWRUHG� WR� WKH
FRUUHVSRQGLQJ�UHJLVWHU



number of the internal operators depends on the maximum
length.

a. Fixed number of processors and unbounded number
of ⊗ operators

Let us symbolize with p the number of processors, k the
number of operators inside each cell, and with n the length
of the input string. In this case it is assumed that k ≥ n-1.
Recall from table 1, that the i-th processor calculates the i-
th column in exactly n-i+1 time steps. We divide the total
of n-columns in n/p blocks of p columns each. Each block
of p columns is mapped to the available set of p cells,
following the mapping strategy presented in Section 5.
The j-th block will complete its computations at (j-1)*p
time steps. Adding all the computations for the entire
length of string we have:

(1)             )/O(n 
2

)1(*

*p 

p*n ...p*3p*2pTime      Total

2  p
p

n

p

n

=

+

=++++=

The architecture is a ring of p processors with additional
memory modules and delays as feedback of the results of
the previous block. In figure 4 we show the block diagram
for p=3 and  n=6.
In this partitioning, the data that come out of P1 are
automatically arranged using only some register buffers
and delayers. Specifically each output line of the last
processor P1 is stored to a register (filled in the same way
as that of the cell). A p-time step delay is added before the
output of the register is forwarded to the corresponding
input of the processor Pp. This procedure is graphically
shown in figure 5.

Cell1

MEMORY MODULES
AND DELAYERS

Cell2 Cell3

Figure 4: - The ring architecture for n=6, p=3.

Figure 5: -  The connections inside the Control Unit for
the automatic re-arrangement of the data

Once a block finishes its calculations, we reset the
registers of the cells to prepare for the calculation of the
next block.
In tables 3.i the detailed data flow inside the partitioned
architecture is shown. Notice that the Pi  processor
calculates columns i+j*p where, 0≤ j ≤ n/p-1.  In this
example 0≤ j ≤ 1 and the result is obtained after 9 time
steps instead of 6 (relation (1)).

b. Fixed number of processors and ⊗ operators inside
each cell
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In this paragraph we will present a partitioning strategy
using off-the-shelf processing elements. In other words,
the internal structure of each cell is predefined. The
designer has to use a fixed number of such cells to
construct an array, which recognizes, up to a specific
length, input strings. Specifically, the maximum length of
the input string is determined by the number p of available
cells, as well as by the number k of the operators inside
each cell.
The key issue behind the proposed partitioning is the
cascading of several cells to create a larger containing the
required number of ⊗ operators. We thus construct a
bigger, virtual cell. After this initial cascading, we apply
the partitioning of the previous paragraph to implement the
whole array. It is clear that this approach depends on the
product p*k.
Thanks to the associative property of the ∪ operation, the
right result can be obtained by oring the outputs of the
cascaded cells. The cell’s control unit is slightly modified
as shown in figure 6.

Figure 6:- The internal structure for a processing element,
which can be connected with other similarly structured
elements, in order to build a cell with larger number of
operators ⊗

The following links/signals are added: the Control Unit
Input Signal, the Control Unit Output Signal, and the
External Input. The data from the External Input are
copied to registers Ri (in the same way as the output of the
∪ operator) with an appropriate signal from the control
unit of the cell. It is clear, that this enhanced cell can be
also used without a modification in the mapping phase of
Section 4. If the Control Input Signal is not activated, the
cell works as in figure 3. This means, that the registers of
the cell are filled by the output of the ∪ module. On the
contrary, if the signal is activated, the cell is working in
the “cascaded” mode, and the registers are filled by the

external input.
Suppose, for example, that we want to cascade two cells of
3 basic elements, in order to build a virtual cell of 6 basic
elements. The interconnection is shown in figure 7.
Initially, the control unit of cell1 works, while the  control
unit of cell2 is halted. When all the registers of cell1 are
filled, the control unit sends to the corresponding unit of
cell2 a signal. This signal forces the data in External Input
line of cell2 to be copied to register R1 and also activates
the Control unit of cell2 in “cascade” mode. Thus, by the
next time instance, the output of cell2|cell1 will be copied
to the corresponding registers. Notice that the control unit
of cell1 will be now halted and the output will not be
copied to any register.
Consider the virtual cell of figure 7 used to parse an input
string of length 7. This virtual cell is consisted of two
cascaded cells with 3 inputs and 4

Figure 7:-  Connection of two cells with 3 ⊗ operators, in
order to build a virtual cell with 6 ⊗ operators

outputs, for a total of six inputs and seven outputs, thus
responsible for the computation of the first column of the
parsing table (i.e. the computation of the elements t(i,0) 1
≤ i ≤ 7). Obviously such cascaded is not necessary for all
columns, since the required inputs and ⊗ operators are less
than three for Pi  i≤ 4.
Initially cell1 will compute the element t(1,0) using the
input symbol a1 (from input line). This value will be stored
in register R1. As already seen in Section 4, after 3 time
steps the registers of cell1 will have the values: R1=t(1,0),
R2=t(2,0), R3=t(3,0). Since all the registers of cell1 are
filled, the control unit will sent the corresponding signal to
the control unit of sell2. The next time step cell1 will
compute the value:  t(4,0)=t(1,0) ⊗ t(4,1) (from Input1) ∪
t(2,0) ⊗ t(4,2) (from Input2) ∪ t(3,0) ⊗ (t(4,3),a4) (from
Input3). The value t(4,0) will be copied to register R1 of
cell2.
The values of the internal registers and input and output
links, are next as follows:

Cell1:

Input1=t(5,1), Input2 = t(5,2), Input3 =t(5,3),
R1=t(1,0), R2=t(2,0), R3=t(3,0),



Output1= t(1,0)⊗t(5,1) ∪ t(2,0)⊗t(5,2) ∪ t(3,0)⊗ t(5,3).
Output2 = t(5,1), Output3= t(5,2), Output4=t(5,3).

Cell2:

Input1= t(5,4), a5, Input2=0, Input3=0

R1=t(4,0), R2=t(5,0), R3=0
Output1=t(4,0)⊗(t(5,4),a5), Output2= Output3=
Output4=0

Cascaded Cell :
Output1 =t(4,0)⊗(t(5,4),a5), t(1,0)⊗t(5,1) ∪ t(2,0)⊗t(5,2)
∪ t(3,0)⊗t(5,3) =t(5,0)
Output2=t(5,1),Output3=t(5,2),Output4=t(5,3)
Output5=t(5,4), a5, Output6=0

which are exactly the outputs of a cell with 6 basic
elements
 Generally, if we have a string of maximum length of n
and also holds: n-1=a*k, and p/a=b ≥ 1, then we use a
cells in order to construct b virtual cells of n-1 basic
elements (operators). Similar, according the LPGS
partitioning algorithm of the previous paragraph, we can
parse the string in O(n2/b) time steps. Given an example, if
we have 10 cells of 5 basic elements and we want to parse
an input string of length 21 then we cascade 4 cells and we
recognize the string in O(212/2) time steps.

7. CONCLUSION

An optimal one-dimensional VLSI architecture for the
parallel execution of Earley’s algorithm was presented in
this paper. This architecture was derived by a general
method of mapping nested loops onto VLSI architectures.
Two alternative partitioning methods of the above
algorithm were presented, considering limitations not only
in the number of the processing elements but also in the
structural complexity inside each cell.

8. REFERENCES

1 K. S. Fu Syntactic Pattern Recognition and Applications,
Prentice-Hall 1982

2  D. H. Younger “Recognition and parsing of context-free
languages in time n3,” Information and Control,  vol. 10,
pp. 189-208, 1967.

3 V. Acho,  J. D. Ullman  The theory of Parsing Translating
and Compiling vol. I  Prentice Hall Inc.

4  J. Earley “An efficient context-free parsing algorithm,”
Commun. of the ACM,  vol. 13, pp. 94-102, 1970.

5  L. Valiant “General context free recognition in less than
cubic time,” Journal of Computer and System Science,
vol. 10,  pp. 308-315,  1975.

6  S. L. Graham, M. A. Harrison and W. L. Ruzzo “On line
context-free languages recognition in less than cubic
time,” in Proc, 8th Annu. ACM Symp. Theory of Comput ,
May 1976.

7  T. Kasami  “An efficient recognition and syntax analysis

algorithm for context free languages,” Science Report AF
CRL-65-758, Air Force Cambridge Research Laboratory,
Bedford, Mass. 1965.

8 H.D. Cheng, K.S. Fu “Algorithm Partition and Parallel
Recognition of General CFG Languages Using Fixed-
Size VlSI Architecture,” Pattern Recognition, vol 19, no
5, pp 362-372, 1986.

9 J. H. Chang, O. H. Ibbara, M. A. Palis “Parallel Parsing
on a One-Way array of Finite-State Machines,” IEEE
Trans. Comput., vol 36, no 1, pp. 64-75, 1987.

10 O.H. Ibarra, T.C. Pong, S.M. Sohn “Parallel Recognition
and Parsing on the hypercube,” IEEE Trans.Comp. 40, pp
764-770, 1991.

11 Y. T. Chiang and K. S. Fu “Parallel parsing algorithms
and VLSI implementation for syntactic pattern
recognition,” IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-7,  1985.

12 D.Y.Ra, J.H. Kim, ”A parallel parsing algorithm for
arbitrary context-free grammars,” Information Processing
Letters  58, pp. 87-96, 1996.

13  T. Andronikos, N. Koziris, Z. Tsiatsoulis, G.
Papakonstantinou, P. Tsanakas  “Lower Time and
Processor Bounds for Efficient Mapping od Dependence
Algorithms into Systolic Arrays,” Journal of Parallel
Algorithms and Applications, vol 10,  pp. 177-194,  1997.

14 T. Andronikos, N. Koziris, G. Papakonstantinou,
P.Tsanakas “Optimal Scheduling for UET/UET-UCT
Generalized n-Dimensional Grid Task
Graphs”,Proceedings of 11th IEEE/ACM International
Parallel Processing Symposium (IPPS 97), pp. 146-151,
Geneva, Switzerland.

15 E. Bampis, C. Delorme, J.C. Konig, “Optimal Schedules
for d-D Grid Graphs with Communication Delays,”
Symposium on Theoretical Aspects of Computer Science
(STACS96), Grenoble France 1996.

16 N. Koziris, G. Papakonstantinou, P. Tsanakas,
“Automatic Loop Mapping and Partitioning into Systolic
Architectures,” Proceedings of the 5th Panhellenic
Conference on Informatics, Dec. 1995, pp. 777-790,
Athens.

17 P. Z. Lee, Z.M. Kedem “Mapping Nested Loop
Algorithms into Multidimensional Systolic Arrays,” IEEE
Trans. Parallel Distrib. Syst., vol. 1, no.1,  pp. 64-76,
1990.

18 W. Shang, J.A.B. Fortes “Time Optimal Linear Schedules
for Algorithms with Uniform Dependencies,” IEEE
Trans. Comput., vol. 40, no. 6, pp. 723-742,  1991.

19 A. Darte, “Regular Partitioning for fixed-size systolic
arrays,” INTEGRATION, The VLSI Journal, vol. 12, pp.
239-304, 1991.


