
ÅÈÍÉÊÏ ÌÅÔÓÏÂÉÏ �ÏËÕÔÅ×ÍÅÉÏÓ×ÏËÇ ÇËÅÊÔÑÏËÏ�ÙÍ ÌÇ×ÁÍÉÊÙÍ ÊÁÉ ÌÇ×ÁÍÉÊÙÍ Õ�ÏËÏ�ÉÓÔÙÍÔÏÌÅÁÓ ÔÅ×ÍÏËÏ�ÉÁÓ �ËÇÑÏÖÏÑÉÊÇÓ ÊÁÉ Õ�ÏËÏ�ÉÓÔÙÍÅÑ�ÁÓÔÇÑÉÏ Õ�ÏËÏ�ÉÓÔÉÊÙÍ ÓÕÓÔÇÌÁÔÙÍ�áñáëëçëïðïßçóç Êþäéêá Âñü÷ùí óå Áñ÷é�åê�ïíéêÝòìç Ïìïéüìïñöçò �ñïóðÝëáóçò ÌíÞìçò (NUMA)
ÄÉÄÁÊÔÏÑÉÊÇ ÄÉÁÔÑÉÂÇ
Ìáñßá �. ÁèáíáóÜêç

ÁèÞíá, ÄåêÝìâñéïò 2005

ÅÈÍÉÊÏ ÌÅÔÓÏÂÉÏ �ÏËÕÔÅ×ÍÅÉÏÓ×ÏËÇ ÇËÅÊÔÑÏËÏ�ÙÍ ÌÇ×ÁÍÉÊÙÍ ÊÁÉ ÌÇ×ÁÍÉÊÙÍ Õ�ÏËÏ�ÉÓÔÙÍÔÏÌÅÁÓ ÔÅ×ÍÏËÏ�ÉÁÓ �ËÇÑÏÖÏÑÉÊÇÓ ÊÁÉ Õ�ÏËÏ�ÉÓÔÙÍÅÑ�ÁÓÔÇÑÉÏ Õ�ÏËÏ�ÉÓÔÉÊÙÍ ÓÕÓÔÇÌÁÔÙÍ�ÑÁÊÔÉÊÏ ÅÎÅÔÁÓÇÓ ÄÉÄÁÊÔÏÑÉÊÇÓ ÄÉÁÔÑÉÂÇÓ�çòÌáñßáò �. ÁèáíáóÜêçÄéðëùìá�ïý÷ïõ Çëåê�ñïëüãïõ Ìç÷áíéêïý êáé Ìç÷áíéêïý Õðïëïãéó�þí Å.Ì.�. (2001)�áñáëëçëïðïßçóç Êþäéêá Âñü÷ùí óå Áñ÷é�åê�ïíéêÝò ìçÏìïéüìïñöçò �ñïóðÝëáóçò ÌíÞìçò (NUMA)ÔñéìåëÞò Óõìâïõëåõ�éêÞ åðé�ñïðÞ: �áíáãéþ�çò ÔóáíÜêáò, åðéâëÝðùí�åþñãéïò �áðáêùíó�áí�ßíïõÍåê�Üñéïò ÊïæýñçòÅãêñßèçêå áðü �çí åð�áìåëÞ åîå�áó�éêÞ åðé�ñïðÞ �çí�. ÔóáíÜêáò �. �áðáêùíó�áí�ßíïõ Í. ÊïæýñçòÊáèçãç�Þò Å.Ì.�. Êáèçãç�Þò Å.Ì.�. Åðßê. Êáèçãç�Þò Å.Ì.�..........................Å. ÆÜ÷ïò Ô. ÓåëëÞòÊáèçãç�Þò Å.Ì.�. Êáèçãç�Þò Å.Ì.�..........................Á. Óõìâþíçò È. Èåï÷ÜñçòÁíáðë. Êáèçãç�Þò Å.Ì.�. Êáèçãç�Þò �áíåðéó�çìßïõ ÁèçíþíÁèÞíá, ÄåêÝìâñéïò 2005

.................Ìáñßá �. ÁèáíáóÜêçÄéäÜê�ùñ Çëåê�ñïëüãïò Ìç÷áíéêüò êáé Ìç÷áíéêüò Õðïëïãéó�þí Å.Ì.�.

Copyright © Ìáñßá �. ÁèáíáóÜêç, 2005Ìå åðéöýëáîç ðáí�üò äéêáéþìá�ïò - All rights reservedÁðáãïñåýå�áé ç áí�éãñáöÞ, áðïèÞêåõóç êáé äéáíïìÞ �çò ðáñïýóáò åñãáóßáò, åî' ïëïêëÞñïõ Þ�ìÞìá�ïò áõ�Þò ãéá åìðïñéêü óêïðü. Åðé�ñÝðå�áé ç áíá�ýðùóç, áðïèÞêåõóç êáé äéáíïìÞ ãéáóêïðü ìç êåñäïóêïðéêü, åêðáéäåõ�éêÞò Þ åñåõíç�éêÞò öýóçò, õðü �çí ðñïûðüèåóç íá áíáöÝñå�áéç ðçãÞ ðñïÝëåõóçò êáé íá äéá�çñåß�áé ç ðáñïýóá óçìåßùóç. Åñù�Þìá�á ðïõ áöïñïýí �ç ÷ñÞóç�çò åñãáóßáò ãéá êåñäïóêïðéêü óêïðü ðñÝðåé íá áðåõèýíïí�áé ðñïò �ç óõããñáöÝá.Ïé áðüøåéò êáé �á óõìðåñÜóìá�á ðïõ ðåñéÝ÷ïí�áé óå áõ�Þí �ç äéá�ñéâÞ åêöñÜæïõí �ç óõããñáöÝáêáé äåí ðñÝðåé íá èåùñçèåß ü�é áí�éðñïóùðåýïõí �éò åðßóçìåò èÝóåéò �ïõ Åèíéêïý Ìå�óüâéïõ�ïëõ�å÷íåßïõ.

NATIONAL TECHNICAL UNIVERSITY OF ATHENSSCHOOL OF ELECTRICAL AND COMPUTER ENGINEERINGDEPARTMENT OF COMPUTER SCIENCECOMPUTING SYSTEMS LABORATORYParallelization of Nested Loop Codes forNon-Uniform Memory Aess (NUMA)Arhitetures
PHD THESIS

Maria G. Athanasaki
Athens, Greee, Deember 2005

.................Maria G. AthanasakiShool of Eletrial and Computer Engineering, National Tehnial University of Athens, Greee

Copyright © Maria G. Athanasaki, 2005All rights reservedNo part of this thesis may be reprodued, stored in retrieval systems, or transmitted in any formor by any means { eletroni, mehanial, photoopying, or otherwise { for pro�t or ommerialadvantage. It may be reprinted, stored or distributed for a non-pro�t, eduational or researhpurpose, given that its soure of origin and this notie are retained. Any questions onerningthe use of this thesis for pro�t or ommerial advantage should be addressed to the author.The opinions and onlusions stated in this thesis are expressing the author. They should notbe onsidered as a pronounement of the National Tehnial University of Athens.

�åñßëçøç
Ç äéá�ñéâÞ áõ�Þ ðñïóèÝ�åé Ýíá ëéèáñÜêé áêüìç ó�ç ëýóç �ïõ ðñïâëÞìá�ïò �çò ðáñáãùãÞò ðá-ñÜëëçëïõ êþäéêá ãéá ðñïãñÜììá�á ðïõ ðåñéÝ÷ïõí �Ýëåéá öùëéáóìÝíïõò âñü÷ïõò. Ó�ç óýã÷ñïíçâéâëéïãñáößá, ç ðáñáëëçëïðïßçóç �Ý�ïéùí äïìþí Ý÷åé êá�' áñ÷Þí âáóéó�åß ó�ï ìå�áó÷çìá�éóìütiling, Þ áëëéþò, ìå�áó÷çìá�éóìü õðåñêüìâùí. ¸÷ïõí ðñï�áèåß ìÝèïäïé ãéá �çí áõ�üìá�ç ìå-�á�ñïðÞ �ïõ óåéñéáêïý êþäéêá óå ðáñÜëëçëï. Åðßóçò, Ý÷ïõí ðñï�áèåß åíáëëáê�éêÝò ëýóåéò ãéá�ï ÷ñïíéóìü ìå�áîý åðéêïéíùíßáò êáé õðïëïãéóìþí. ¼ëåò áõ�Ýò ïé ëýóåéò, üìùò, áöïñïýí �çíåê�Ýëåóç �ïõ �åëéêïý ðñïãñÜììá�ïò óå ìßá áðëÞ óõó�ïé÷ßá (luster) õðïëïãéó�þí.ÓÞìåñá, �á ðëÝïí éó÷õñÜ ìç÷áíÞìá�á, äåí áðï�åëïýí�áé áðü áðëïýò õðïëïãéó�Ýò, áëëÜ áðüðïëõ-åðåîåñãáó�éêÝò ìïíÜäåò (äåß�å �ç ëßó�á �ùí 500 ðéï éó÷õñþí õðïëïãéó�þí �ïõ êüóìïõ �ïõÍïåìâñßïõ 2004). Ôï éäéáß�åñï ÷áñáê�çñéó�éêü �ïõò åßíáé ü�é ïé åðåîåñãáó�Ýò �ïõ ßäéïõ êüìâïõâëÝðïõí êïéíÞ ìíÞìç, åíþ üóïé âñßóêïí�áé óå äéáöïñå�éêïýò êüìâïõò åðéêïéíùíïýí áíáãêáó�éêÜìå áí�áëëáãÞ ìçíõìÜ�ùí. �ñüêåé�áé, äçëáäÞ ãéá äéåðßðåäåò áñ÷é�åê�ïíéêÝò. ÌÝ÷ñé ó�éãìÞò äåíåß÷å ðñï�áèåß êÜðïéá ëýóç ðïõ íá ëáìâÜíåé õðüøç �çí áíïìïéïìïñößá áõ�Þ. ¼ìùò, ç áí�áëëáãÞìçíõìÜ�ùí áêüìç êáé áíÜìåóá ó�ïõò åðåîåñãáó�Ýò ðïõ Ý÷ïõí Üìåóç ðñüóâáóç ó�çí ßäéá ìï-íÜäá ìíÞìçò, áðï�åëåß óçìáí�éêÞ áðþëåéá ÷ñüíïõ ãéá �ï �åëéêü ðñüãñáììá. Ôï ðñüâëçìá áõ�ü,ëïéðüí, áí�éìå�ùðßæå�áé áðïäï�éêÜ ó�çí ðáñïýóá äéá�ñéâÞ. Åðé�õã÷Üíïõìå �çí ìÝ÷ñé ó�éãìÞòâÝë�éó�ç áîéïðïßçóç �ïõ åýñïõò æþíçò êáé �ùí äõíá�ï�Þ�ùí �ùí êáñ�þí äéê�ýïõ. Ôáõ�ü÷ñïíá,ìðïñïýìå áðëÜ êáé ìå óáöÞíåéá íá ïñßæïõìå ìßá ÷ñïíéêÞ äñïìïëüãçóç �ùí õðåñêüìâùí, ðáñÜ�çí áíïìïéüìïñöç åðéêïéíùíßá ìå�áîý �ïõò.¸íá Üëëï èÝìá ðïõ äåí åß÷å ìÝ÷ñé ó�éãìÞò áí�éìå�ùðéó�åß åßíáé áõ�ü �çò êá�áíïìÞò �ùí tiles,Þ õðåñêüìâùí óå åðåîåñãáó�Ýò. Ó�ç âéâëéïãñáößá, üëåò ó÷åäüí ïé ðñïóåããßóåéò èåùñïýí åß�åü�é õðÜñ÷åé áðåñéüñéó�ïò áñéèìüò åðåîåñãáó�þí, åß�å ü�é �ï ìÝãåèïò �ùí tiles åðéëÝãå�áé þó�åïé äéáèÝóéìïé åðåîåñãáó�Ýò íá åßíáé áñêå�ïß. ¼ìùò, óêïðüò �ïõ ìå�áó÷çìá�éóìïý õðåñêüìâùí(tiling) äåí åßíáé ìüíï ç ðáñáëëçëïðïßçóç �ïõ êþäéêá, áëëÜ êáé ç âåë�éó�ïðïßçóç �çò �ïðéêü-�ç�áò �ùí áíáöïñþí óå äåäïìÝíá �çò ìíÞìçò. Ó�çí ðåñßð�ùóç áõ�Þ, ïé äýï ó�ü÷ïé ïäçãïýí óåáí�éêñïõüìåíá áðï�åëÝóìá�á. ÅðåéäÞ ï ÷ñüíïò ðïõ ÷ñåéÜæå�áé ãéá �çí ðñïóðÝëáóç äåäïìÝíùí,

viii
ðïõ äå âñßóêïí�áé ó�çí ãñÞãïñç ìíÞìç �ïõ óõó�Þìá�ïò, äåí åßíáé áìåëç�Ýïò (ìðïñåß íá åßíáé óõ-ãêñßóéìïò, Þ áêüìç êáé ðïëëáðëÜóéïò �ïõ ÷ñüíïõ ðïõ ÷ñåéÜæå�áé ãéá �çí åðåîåñãáóßáò �ïõò), äåíèá Ýðñåðå íá ðáñáìåëçèåß ç ðáñÜìå�ñïò áõ�Þ êá�Ü �çí åðéëïãÞ �ïõ ìå�áó÷çìá�éóìïý õðåñêüì-âùí. Ó�ç äéá�ñéâÞ áõ�Þ, ëïéðüí, äéåñåõíïýìå ìåèüäïõò ãéá �çí êá�áíïìÞ �ùí õðåñêüìâùí ó�éòõðïëïãéó�éêÝò ìïíÜäåò, óå ðåñßð�ùóç ðïõ ï ìå�áó÷çìá�éóìüò õðåñêüìâùí êáé �ï ðëÞèïò �ïõòåßíáé Þäç äåäïìÝíï. �ñïêåéìÝíïõ ïé ìÝèïäïé áõ�ïß íá ìðïñïýí íá åíóùìá�ùèïýí áðïäï�éêÜ óåÝíá åñãáëåßï áõ�üìá�çò ðáñáãùãÞò êþäéêá, åó�éÜæïõìå �çí ðñïóï÷Þ ìáò óå ìåèüäïõò ó�á�éêÞòêá�áíïìÞò �ùí õðïëïãéóìþí, ïé ïðïßïé ðáñïõóéÜæïõí êÜðïéá êáíïíéêü�ç�á.
ËÝîåéò-êëåéäéÜ: Ìå�áó÷çìá�éóìüò tiling, Ìå�áó÷çìá�éóìüò õðåñêüìâùí, Ïìáäïðïßçóç õðåñ-êüìâùí, ÁëëçëïåðéêÜëõøç åðéêïéíùíßáò êáé õðïëïãéóìþí, Õðåñåðßðåäá, Óõó�ïé÷ßåò ðïëõ-åðåîåñ-ãáó�éêþí ìïíÜäùí, �åñéïñéóìÝíïò áñéèìüò êüìâùí.

Abstrat
This thesis adds some intuition and some pratial solutions to the well-studied problemof parallelizing nested for-loops. In literature, parallelization of suh ode segments has beenbased on supernode, or tiling transformation. There have been proposed some methods forthe automati transformation of sequential ode into parallel one. In addition, the timingbetween ommuniation and omputation has been studied. However, these solutions onernthe exeution of the �nal parallel ode onto a luster of single CPU nodes.Nowadays the most powerful omputing systems are onsisted of multiproessor units (seethe Top 500 superomputer list for November 2004). In suh superomputers, proessors withinthe same node an diretly aess the same memory data, while proessors in di�erent nodesshould ommuniate via message passing. No solution had been proposed so far to overomethis heterogeneity. Message passing among proessors inside the same SMP node implies asigni�ant ommuniation overhead. The above mentioned problem is eÆiently alleviated inthis thesis. We pursue and ahieve a proper utilization of the bandwidth and the possibilities ofthe network ards. At the same time, we an simply and expliitly de�ne a time sheduling oftiles, in spite of the heterogeneous ommuniation patterns.Another issue, that had not been thoroughly examined so far, is the alloation of tiles, or su-pernodes to proessors. Almost all approahes in literature onsider either an unlimited numberof proessors, or that tile size is properly seleted to �t the existing arhiteture. However, tilinghas not been used only for parallelization, but also for ahieving ahe loality of data memoryreferenes. These two goals onit with eah other, onerning the tile size seletion. Sine thetime needed for aessing data in main memory is not at all negligible (it may be omparable, oreven a multiple of time needed for proessing data), this parameter should not be left out whenseleting a tiling transformation. In this thesis, we investigate ertain tehniques for alloatingtiles to omputing nodes, in ase the tiling transformation, the size of the tile spae and of thearhiteture are given. We onsider stati, regular tehniques of alloation, in order to be ableto inorporate them eÆiently into an automati parallel ode generation tool.

x
Keywords: Supernodes, Loop tiling, Tile grouping, Overlapping ommuniation, PipelinedShedules, Hyperplanes, Clusters of SMPs, Fixed number of nodes.

Contents
�åñßëçøç viiAbstrat ixList of Figures xvList of Tables xixÁí�ß �ñïëüãïõ xxvii1 Introdution 11.1 Motivation . 11.2 Related Work . 21.3 One step ahead: What do we need? . 51.4 Thesis Contribution . 61.5 Thesis Overview . 71.6 Publiations . 82 Preliminary Conepts - Mathematial Bakground 112.1 Notation . 122.2 Algorithmi Model - Nested for-loops . 122.3 Dependene Vetors . 152.4 Fourier-Motzkin Elimination Method . 172.5 Time Sheduling . 192.5.1 Linear Time Sheduling . 192.6 Loop Transformations . 222.6.1 Linear Loop Transformations . 222.6.2 Tiling or Supernode Transformation . 262.6.3 Tile Dependenes . 32

xii CONTENTS
2.7 Overlapping vs. Non-Overlapping Exeution . 342.7.1 Non-Overlapping Exeution Poliy . 342.7.2 Overlapping Exeution Poliy . 352.8 Hardware High Performane Features . 372.8.1 Zero-Copy Protools . 382.8.2 DMA transfers . 393 Automati parallel ode generation for tiled nested loops 413.1 Introdution . 423.2 Generation of Serial Tiled Code . 433.2.1 Enumerating the tiles . 433.2.2 Sanning the points within a tile . 533.2.3 Comparison { Experimental Results . 663.3 Parallelization . 733.3.1 Some more algorithmi assumptions . 743.3.2 Computation Distribution . 763.3.3 Data Distribution . 763.3.4 Communiation sets . 824 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes) 874.1 An Intuitive Approah . 884.2 Grouping Transformation . 904.3 Intuition of our algorithm . 914.4 Determining PG aording to the number of CPUs within an SMP node 934.4.1 Linear time shedule . 984.4.2 Assigning Tiles to CPUs . 1014.4.3 Generalization: Grouping tiles along an arbitrary dimension of JS 1024.4.4 Optimal seletion of mks . 1084.5 Theoretial Comparison . 1144.6 Experimental Veri�ation . 1164.6.1 Experimental platform and algorithm . 1164.6.2 Tuning Parameters . 1174.6.3 Experimental Results . 1184.6.4 Salability Issues . 1215 Sheduling onto a fixed number of homogeneous SMP nodes 1255.1 Introdution . 1265.2 Cyli assignment to SMPs . 1275.3 Mirror assignment to SMPs . 131

CONTENTS xiii
5.4 Cluster assignment to SMPs . 1345.5 Retiling . 1375.6 Experimental Results . 1395.6.1 Experimental Platform . 1395.6.2 Experimental Data: Retangular Tile Spaes 1395.6.3 Simulation Data . 1435.7 Blok-yli assignment to SMPs . 1465.8 Implementation issues for non-retangular tile spaes 1485.8.1 Assigning as many neighboring tiles as possible to the same SMP node . . 1495.8.2 Eviting deadloks . 1505.8.3 Simulation Data . 1536 Conlusion 167Appendies 171A Summary of Notations 173B Algorithmi Model - Summary of assumptions 175C Simple Mathematial Formulas 177Bibliography 181

xiv CONTENTS

List of Figures
1.1 The BlueGene/L Arhiteture - No 1 in the 24th Top500 Superomputer list . . 51.2 The Earth Simulator Arhiteture - No 3 in the 24th Top500 Superomputer list 62.1 Example 2.1 - Graphial representation of 2-dimensional iteration spaes onto Zn 152.2 Lexiographi order of iterations for the iteration spae of Example 2.1(3). 162.3 Example 2.2 - Graphial representation of ow dependenes 182.4 Example 2.3 - Time Shedule produed by linear sheduling vetor Π = [1 1]. . . 212.5 Example 2.3 - Time Shedule produed by linear sheduling vetor Π = [2 3]. . . 222.6 Graphial representation of an interhange transformation 232.7 Graphial representation of a reversal transformation 242.8 Graphial representation of a skewing transformation 252.9 Unimodular and non-unimodular transformations. 262.10 Fine-grained parallelism. 272.11 Coarse-grained parallelism. 282.12 Tiling Transformation. 292.13 Constrution of Tiling Matries. 302.14 When the lass of dependene matrix D is less than n 312.15 Validity of a tiling transformation. 332.16 Non-overlapping Exeution Poliy . 352.17 Overlapping Exeution Poliy. 362.18 Single-Copy Protool and paketization proess 382.19 Loked and memory mapped \RAM devie" for SCI ommuniations 393.1 Automati parallel ode generation for tiled iteration spaes. 433.2 Example 3.1: Representation of the spaes used. 453.3 Expanding iteration spae bounds to inlude all tile origins. 513.4 Expanding iteration spae bounds to inlude all tile origins. 523.5 Example 3.2: Expanding iteration spae bounds to inlude all tile origins. 54

xvi LIST OF FIGURES
3.6 Sanning the iterations of a tile. 593.7 Traverse the TIS with a non-unimodular transformation. 603.8 Steps and initial o�sets in TTIS derived from matrix H̃ ′ 623.9 Average tiling overhead fators for 3 −D problems 693.10 Tiling overhead fators for real appliations . 713.11 Determining ommuniation sets in the TIS and TTIS. 743.12 Loal data spae LDS and transformed tile iteration spae TTIS 773.13 Relations between DS, Jn and LDS . 813.14 Communiation among proessors. 834.1 Exeution of tiles on single-CPU nodes. 884.2 Exeution of tiles on SMP nodes with 2 CPUs eah. 894.3 Vertial grouping. 894.4 Hyperplane grouping. 904.5 Set of tiles assigned to an SMP node. 914.6 Groups of tiles exeuted simultaneously in an SMP node. 924.7 Construting the inverse grouping matrix. 934.8 Example 4.1 - Tile spae. 954.9 Example 4.1 - Group spae. 964.10 Example 4.2 - Tile spae. 974.11 Example 4.2 - Group spae. 974.12 Example 4.4 - 2 × 1 CPUs per SMP node - Overlapping exeution. 1034.13 Example 4.4 - 2 × 1 CPUs per SMP node - Non-overlapping exeution 1044.14 Example 4.5 - 4 × 1 CPUs per SMP node - Overlapping exeution. 1064.15 Example 4.5 - 4 × 1 CPUs per SMP node - Non-overlapping exeution 1084.16 Example 4.6 - 2 × 2 CPUs per SMP node. 1104.17 Example 4.6 - 2 × 2 CPUs per SMP node. 1114.18 Communiation load of a tile. 1114.19 Communiation load of a group. 1144.20 In order to exeute at the same time tiles grouped together by a vertial groupingsheme, we should further divide them into sub-tiles and exeute some of themin parallel, aording to an intra-tile hyperplane sheduling. 1144.21 Vertial grouping - Tile exeution time in respet to the number of slies a tile isut . 1184.22 Vertial grouping - Zoom in the minimum area of the plot of Figure 4.21 1184.23 Diretions and soure/destination nodes of message exhanges for an SMP nodewith 2 CPUs . 1204.24 Experimental Results: 16 × 16 × 1024k iteration spae 120

LIST OF FIGURES xvii
4.25 Experimental Results: 24 × 24 × 1024k iteration spae 1214.26 Experimental Results: 32 × 32 × 1024k iteration spae 1214.27 Experimental Results: 32 × 32 × 512 iteration spae 1224.28 Experimental Results: 48 × 48 × 512 iteration spae 1225.1 Cyli assignment to SMP nodes. 1275.2 Cyli sheduling when there is not atual lak of proessors. 1295.3 Cyli sheduling when there is lak of proessors. 1305.4 Mirror assignment to SMP nodes. 1325.5 Cluster assignment to SMP nodes. 1345.6 Clustering ommuniation . 1375.7 Retiling. 1385.8 Experimental Data: Tile Size 32 × 32 × 32 . 1405.9 Experimental Data: Tile Size 128 × 32 × 32 . 1425.10 Experimental Data: Tile Size 256 × 32 × 32 . 1435.11 Communiation among SMPs . 1435.12 Simulation Data: Tile Spae · · · × 16 × 16 on a grid of 4 × 4 nodes with 2 × 2CPUs eah . 1445.13 Simulation Data: Tile Spae · · · × 22 × 22 on a grid of 4 × 4 nodes with 2 × 2CPUs eah . 1455.14 Simulation Data: Tile Spae · · · × 16 × 16 on a grid of 2 × 2 nodes with 4 × 4CPUs eah . 1455.15 Blok-yli assignment to SMP nodes. 1475.16 Alloating a non-retangular tile spae to proessors. 1505.17 Time distane between the arrival of an event and the use of data it arries. . . . 1535.18 Deadloks in the exeution of non-retangular tile spae. 1545.19 Simulation Data: Exeution of ADI onto a shared memory multiproessor. 1565.20 Simulation Data: Exeution of ADI onto a luster of 2 SMP nodes, following theoverlapping exeution poliy . 1575.21 Simulation Data: Exeution of ADI onto a luster of 4 SMP nodes, following theoverlapping exeution poliy . 1585.22 Simulation Data: Exeution of ADI onto a luster of 8 SMP nodes, following theoverlapping exeution poliy . 1595.23 Simulation Data: Exeution of ADI onto a luster of 2 SMP nodes, following thenon-overlapping exeution poliy . 1605.24 Simulation Data: Exeution of ADI onto a luster of 4 SMP nodes, following thenon-overlapping exeution poliy . 161

xviii LIST OF FIGURES
5.25 Simulation Data: Exeution of ADI onto a luster of 8 SMP nodes, following thenon-overlapping exeution poliy . 162

List of Tables
3.1 Example iteration spaes . 663.2 Fourier-Motzkin row operations and ompilation time for 2D algorithms 673.3 Fourier-Motzkin row operations and ompilation time for 3D algorithms. 683.4 Average row operations and ompilation time for 3D algorithms 693.5 Tiling overhead fators (TOF) for 2 −D problems 693.6 Tiling overhead fators (TOF) for 3 −D problems. 703.7 Performane for real appliations . 713.8 Using funtion loc() to loate ~j ∈ Jn in the LDS of a proessor 813.9 Using funtion loc−1() to loate ~j′′ ∈ LDS of proessor ~pid in Jn 824.1 Example 4.1 . 964.2 Example 4.2 . 984.3 Example 4.4 - 2 × 1 CPUs per SMP node - Overlapping exeution 1044.4 Example 4.4 - 2 × 1 CPUs per SMP node - Non-overlapping exeution 1054.5 Example 4.5 - 4 × 1 CPUs per SMP node - Overlapping exeution. 1074.6 Example 4.5 - 4 × 1 CPUs per SMP node - Non-overlapping exeution 1094.7 Example 4.6 - 2 × 2 CPUs per SMP node - Overlapping exeution 1124.8 Example 4.6 - 2 × 2 CPUs per SMP node - Non-overlapping exeution 1134.9 Implementation of the non-overlapping sheme 1194.10 Implementation of the overlapping sheme . 1194.11 Implementation of the vertial vs. hyperplane grouping 1195.1 Implementation of shedules (yli assignment, mirror assignment, luster as-signment to SMP nodes) when the tile spae is retangular 1415.2 Exeution shemes implementation (overlapping vs. non-overlapping) using theGM low level message passing system . 1425.3 Implementation of the blok-yli assignment shedule when the tile spae isretangular . 149

xx LIST OF TABLES
5.4 Implementation of the yli assignment shedule when the tile spae is not re-tangular . 1515.5 Implementation of the luster assignment shedule when the tile spae is notretangular . 1515.6 Implementation of the mirror assignment shedule when the tile spae is notretangular . 1525.7 Implementation of the blok-yli assignment shedule when the tile spae is notretangular . 1525.8 ADI - Simulation Data . 1585.9 ADI - Simulation Data . 1635.10 SOR - Simulation Data . 1645.11 SOR - Simulation Data, following the overlapping exeution poliy 1645.12 SOR - Simulation Data, following the non-overlapping exeution poliy 165

Áí�ß �ñïëüãïõ
Ç ðáñïýóá äéäáê�ïñéêÞ äéá�ñéâÞ åêðïíÞèçêå ó�ïí ÔïìÝá Ôå÷íïëïãßáò �ëçñïöïñéêÞò êáéÕðïëïãéó�þí, �çò Ó÷ïëÞò Çëåê�ñïëüãùí Ìç÷áíéêþí êáé Ìç÷áíéêþí Õðïëïãéó�þí, �ïõ ÅèíéêïýÌå�óüâéïõ �ïëõ�å÷íåßïõ. �åñéëáìâÜíåé �çí Ýñåõíá êáé �á óõìðåñÜóìá�á ðïõ ðñïÝêõøáí êá�Ü�ç äéÜñêåéá �ùí ìå�áð�õ÷éáêþí óðïõäþí ìïõ ó�ï Åñãáó�Þñéï Õðïëïãéó�éêþí Óõó�çìÜ�ùí �çòó÷ïëÞò áõ�Þò.Ó�ï óçìåßï áõ�ü èá Þèåëá íá åêöñÜóù �éò åéëéêñéíåßò åõ÷áñéó�ßåò ìïõ óå Ýíá ðëÞèïò áíèñþ-ðùí, ðïõ ìå âïÞèçóáí ïõóéáó�éêÜ ó�çí ðñáãìá�ïðïßçóç �çò åñãáóßáò áõ�Þò. �ñþ�á áðü üëïõòèá Þèåëá íá åõ÷áñéó�Þóù �ïí åðéâëÝðïí�á êáèçãç�Þ ìïõ, �áíáãéþ�ç ÔóáíÜêá, åðåéäÞ, üí�áòðñïð�õ÷éáêÞ öïé�Þ�ñéá, åêåßíïò ðñþ�ïò ìå Ýöåñå óå åðáöÞ ìå �ï ÷þñï ó�ïí ïðïßï áñãü�åñá áðï-öÜóéóá íá óõíå÷ßóù �éò óðïõäÝò ìïõ ùò ìå�áð�õ÷éáêÞ öïé�Þ�ñéá. Ôïí åõ÷áñéó�þ éäéáß�åñá åðåéäÞìå åðÝëåîå ãéá óõíåñãÜ�ç �ïõ, ãéá �éò ÷ñÞóéìåò ãíþóåéò ðïõ ìïõ ìå�Ýäùóå, ãéá �çí ïéêåéü�ç�áðïõ ìïõ åìðíÝåé, áëëÜ ðåñéóóü�åñï ãéá �çí åìðéó�ïóýíç ðïõ ìïõ Ýäåéîå óå üëá �á èÝìá�á.Åðßóçò, èá Þèåëá íá åõ÷áñéó�Þóù èåñìÜ �ïí êáèçãç�Þ �åþñãéï �áðáêùíó�áí�ßíïõ, ìÝëïò�çò �ñéìåëïýò óõìâïõëåõ�éêÞò åðé�ñïðÞò ìïõ êáé åðéêåöáëÞ �ïõ åñãáó�çñßïõ, ãéá �çí áãÜðç �ïõ,�éò óõìâïõëÝò �ïõ, ãéá �ç äéÜèåóÞ �ïõ íá áó÷ïëçèåß ìå êá�áíüçóç ìå ïðïéïäÞðï�å ðñüâëçìÜ ìáò.Éäéáß�åñç áíáöïñÜ èá Þèåëá íá êÜíù ó�ï �ñß�ï ìÝëïò �çò óõìâïõëåõ�éêÞò åðé�ñïðÞò ìïõ,�ïí åðßêïõñï êáèçãç�Þ Íåê�Üñéï Êïæýñç. ¹�áí ï Üíèñùðïò ðïõ êáèüñéóå �çí êá�åýèõíóç �çòÝñåõíÜò ìïõ, ðïõ áó÷ïëÞèçêå ïõóéáó�éêÜ ìå �çí ðïñåßá êáé �á ðñïâëÞìá�á ðïõ áí�éìå�þðéóá êá�Ü�ç äéÜñêåéá �ùí óðïõäþí ìïõ, ðïõ áíÝêáìð�å �ï çèéêü ìïõ óå äýóêïëåò åñåõíç�éêÜ ðåñéüäïõò,ðïõ öñüí�éóå íá Ý÷ù äéáèÝóéìï �ïí åîïðëéóìü ðïõ ÷ñåéáæüìïõí. �Ýñá, üìùò, áðü �á êáèáñÜåðéó�çìïíéêÜ èÝìá�á, äßðëá �ïõ ðÞñá áîÝ÷áó�á ìáèÞìá�á æùÞò ìå �éò ðïëýùñåò óõæç�Þóåéò ðïõåß÷áìå ìáæß �ïõ. Ìïõ Ýìáèå íá ðéó�åýù ó�ïí åáõ�ü ìïõ, íá èÝ�ù êáé íá ðå�õ÷áßíù ó�ü÷ïõò, íáåßìáé ðéï áíïé÷�Þ áðÝíáí�é óå áíèñþðïõò ìå åí�åëþò äéáöïñå�éêÞ íïï�ñïðßá êáé åðéäéþîåéò. ¼ëááõ�Ü åßíáé éäéáß�åñá óçìáí�éêÜ, ü÷é ìüíï ãéá �çí åðáããåëìá�éêÞ áðïêá�Üó�áóÞ åíüò áíèñþðïõ,áëëÜ êáé ãéá �çí ïéêïãåíåéáêÞ êáé êïéíùíéêÞ æùÞ �ïõ.ÂÝâáéá, ðÝñá áðü �ïõò êáèçãç�Ýò ìïõ, èá Þ�áí ðïëý ìåãÜëç ðáñÜëåéøç íá ìçí áíáöåñèþêáé ó�á õðüëïéðá ìÝëç �ïõ åñãáó�çñßïõ. Êá�' áñ÷Þí, ï �éþñãïò �êïýìáò Þ�áí Ýíáò ìéêñü�åñïòêáèçãç�Þò ìïõ. Ôïí åõ÷áñéó�þ éäéáß�åñá, ü÷é ìüíï ãéá �ç óõìâïëÞ �ïõ ó�çí åñåõíç�éêÞ äïõëåéÜìïõ, áëëÜ êáé ãéá�ß ìå �ï ðáñÜäåéãìÜ �ïõ óêéáãñÜöçóå �ï ðñü�õðï óõìðåñéöïñÜò åíüò áíèñþðïõðïõ Ý÷åé âñåé �ç óùó�Þ éóïññïðßá ìå�áîý åðáããåëìá�éêÞò êáé êïéíùíéêÞò æùÞò, ðïõ îÝñåé íá äßíåé

ó�á ðñüóùðá êáé �éò êá�áó�Üóåéò �çí ðñïóï÷Þ ðïõ �ïõò áñìüæåé. Éäéáß�åñç ãéá ìÝíá Þ�áí êáé çó÷Ýóç ðïõ áíÝð�õîá ìå �ï Íßêï Äñïóéíü. Ôïí åõ÷áñéó�þ, ü÷é ìüíï ãéá �ç óõíåñãáóßá ìáò óååñåõíç�éêÜ èÝìá�á, áðü �çí ïðïßá áðïêüìéóá ðïëý�éìåò ãíþóåéò, áëëÜ êáé ãéá �éò óõæç�Þóåéò ìáòóå èÝìá�á ðïõ êïõâåí�éÜæïí�áé ìüíï ìå�áîý ðñáãìá�éêþí ößëùí.Ó�ç óõíÝ÷åéá, ïöåßëù íá åõ÷áñéó�Þóù èåñìÜ üëá �á ðáéäéÜ ìå �á ïðïßá óõíåñãÜó�çêá, �ïí ¶ñçÓù�çñüðïõëï, �ï �éþñãï ÔóïõêáëÜ, �ï ÂáããÝëç Êïýêç. ×ùñßò �ç óõìâïëÞ �ïõò, ç äéäáê�ïñéêÞäéá�ñéâÞ ìïõ èá Þ�áí óßãïõñá ðïëý ö�ù÷ü�åñç. Äõó�õ÷þò, èá ìáêñçãïñïýóá ðïëý áí ó�åêüìïõíóå êÜèå Ýíá áðü �á ìÝëç �ïõ åñãáó�çñßïõ îå÷ùñéó�Ü. �áñüëá áõ�Ü, ðñÝðåé íá áíáöÝñù ü�é ïÁí�þíçò ÆÞóéìïò, ï Áí�þíçò ×áæÜðçò, ï ÊïñíÞëéïò Êïýñ�çò, ï �éþñãïò ÂåñõãÜêçò, ï ÍßêïòÁíáó�üðïõëïò, ðñïóèÝ�ïõí ï êáèÝíáò ìå �ïí �ñüðï �ïõ, ìå �éò ãíþóåéò êáé �ï ÷áñáê�Þñá �ïõ,ìßá éäéáß�åñç íü�á ó�çí êïõë�ïýñá �ïõ åñãáó�çñßïõ. Áóöáëþò, äåí ðñÝðåé íá åííïçèåß ü�é �áðáéäéÜ ðïõ äåí áíáöÝñèçêáí ïíïìáó�éêÜ Ý÷ïõí ìéêñü�åñç óõìâïëÞ ó�ï öéëéêü êëßìá óõíåñãáóßáòêáé ó�çí ðåñéññÝïõóá ãíþóç �ïõ åñãáó�çñßïõ.Åðßóçò, Ýíá �åñÜó�éï åõ÷áñéó�þ ãéá áíáñßèìç�ïõò ëüãïõò ïöåßëù ó�çí áäåëöÞ ìïõ êáé õðï-øÞöéá äéäÜê�ïñá �ïõ åñãáó�çñßïõ, Åõáããåëßá ÁèáíáóÜêç. ¼÷é ìüíï ãéá�ß áðü �á ðáéäéêÜ ìïõ÷ñüíéá Þ�áí ç êáëý�åñç ößëç ìïõ, ü÷é ìüíï åðåéäÞ ìå áêïëïýèçóå êáé ìå óõí�ñüöåõóå óå üëá �áóçìáí�éêÜ âÞìá�á �çò æùÞò ìïõ, ü÷é ìüíï åðåéäÞ Þ�áí ðÜí�á ï ðñþ�ïò Üíèñùðïò ðïõ èá áó÷ï-ëïýí�áí ìå ïðïéáäÞðï�å áíçóõ÷ßá ìïõ. ÁëëÜ êáé åðåéäÞ ìå �çí åíåñãÞ ðáñïõóßá �çò êáèüñéóå,óå âáèìü ðáñáðëÞóéï ìå �ïõò ãïíåßò ìïõ, �çí ðñïóùðéêü�ç�Ü ìïõ.ÔÝëïò, åõ÷áñéó�þ èåñìÜ �ï ÊïéíùöåëÝò ºäñõìá ÁëÝîáíäñïò ÙíÜóçò ãéá �çí ïéêïíïìéêÞ ó�Þ-ñéîç ðïõ ìïõ ðáñåß÷å ìÝóù ìßáò õðï�ñïößáò ìå�áð�õ÷éáêþí óðïõäþí.Ç åñãáóßá áõ�Þ áöéåñþíå�áé ó�çí ïéêïãÝíåéÜ ìïõ êáé óå üóïõò áðï�åëïýí Ýíá åõ�õ÷Ýò áíá-ðüóðáó�ï êïììÜ�é �çò æùÞò ìïõ.

1Introdution1.1 MotivationTiling, or supernode transformation has been widely used in parallel proessing for restruturingnested for-loop ode segments. When applying tiling, neighboring iterations are grouped to-gether into a tile, or supernode. Thereupon, eah tile is treated as one omputation unit. Thatis, we shedule tiles instead of iterations, we deide whih tiles will be assigned to a proessorand so on. Therefore, we ahieve to derease the total ommuniation load of the ode segmentas follows:
• Assuming that iterations of the initial ode segment may be assigned to any proessor ofthe parallel arhiteture, the ommuniation load implied may be vast in omparison to theomputation load. When applying tiling, we fore neighboring iterations to be exeutedonto the same proessor. Therefore, the ommuniation requirements among them areeliminated.
• In message passing interfaes, designed for distributed memory omputing systems, theost of initializing a data transfer is not negligible. When applying tiling, apart fromgrouping iterations, we also group the resulting data transfers. Thus, we may initializeonly one message per tile per ommuniation diretion, reduing in this way the numberof messages and the ommuniation startup ost.A lot of work has been onduted in this area, onerning the seletion of the optimal tilingtransformation. Researhers have onluded that, on the one hand, retangular tiling is simple.Thus, both the appliation of the tiling transformation and the exeution of the �nal tiled odeis eÆient [TX00℄. On the other hand, non-retangular tiling may be more appropriate for aspei� ode segment [HS02℄, [HCF03℄. Thus, if it is properly applied, it may give the peakperformane [GDAK02a℄.

2 Introdution
As far as parallel proessing is onerned, the size and shape of tiles is mainly seleted so as tominimize the ommuniation overhead. The resulting tiling transformation seems to be the samewhen either a distributed [Xue97a℄ or a shared memory [RR02℄ system is aimed. Consequently,when a multilevel parallel arhiteture is involved, the optimal tiling transformation is just thesame.However, when applying a tiling transforation, tile shape and size are not the only onerns.One should also determine a time shedule, for both omputations and ommuniation. Thisproblem has also been addressed when either a distributed or a shared memory arhiteture isinvolved. It has not been addressed for a multilevel parallel arhiteture, suh as a luster ofshared memory multiproessors (SMPs). In this thesis, a time shedule is produed, whih takesinto aount the ommuniation requirements among proessors, whih may reside either in thesame or in di�erent SMP nodes.One a tiling transformation has been applied onto a nested for-loop ode segment, and atime sheduling has been produed, one may assume that it an be really implemented onto aparallel arhiteture. In fat, this is not always true. The number of proessors of an existingplatform may be less than the number of proessors required for the appliation of a timeshedule. Although in literature a lot of papers deal with the problem of sheduling onto a�xed number of proessors, very few of them are appliable on nested for-loops, that annotbe partitioned into independent sub-spaes. In this thesis �ve alternative stati shemes, forsheduling a tile spae and assigning tiles to the proessors of an existing parallel arhiteture,are proposed.1.2 Related WorkA few years ago the onstant inrease of the exeution speed of programs was mainly basedon the lok frequeny inrease. In 1980's, both aademia and industry realized that it wasmeaningless to further promote the lok speed if they ould not feed the proessor with datafrom memory [PH94℄, [HP03℄. Their e�orts onentrated onto minimizing the distane betweenthe proessor and memory data, using ahe memories. They went on inreasing the lokspeed, but at the same time they inreased the size and bandwidth of ahes, they improved thealgorithms used for storing and searhing data in them.Nowadays, tehnology seems to have approahed the ore. A further inrease of either thelok speed or the ahe bandwidth is sustained by physial restritions, suh as the speed oflight and the minimum distanes that should exist inside a hip, so as eletrial signals do notinterfere with eah other. Therefore, the only notion that an supply omputer performanewith a thrust seems to be parallel proessing.However, without an intervention from the programmer, parallel proessing may have animpat only when several independent programs are to be exeuted simultaneously. A minor

1.2 Related Work 3
intervention is required when a single program an be partitioned into independent or looselydependent tasks. What happens when we are interested in speeding up a single program, whihannot be partitioned into independent regions? Then, a thorough analysis of data dependenes[Ban88℄, [Pug92℄ is required, so as to deide whih tasks ould be eÆiently parallelized.Nested for-loops an be plaed among the most ritial ode segments, whih deserve paral-lelization. They usually impose a signi�ant overhead to the total program exeution, sine theyiterate many times over the same statements. In order to ahieve the maximum aeleration,one of the key issues to be onsidered is minimization of the ommuniation overhead. Paperselaborating on this issue an be divided into two main ategories orresponding to �ne grainparallelization and oarse grain parallelization.As far as �ne grain parallelism is onerned, the ommuniation overhead is redued byapplying methods that group together neighboring hains of iterations [KCN91℄, [SC95℄, whilepreserving the optimal hyperplane shedule [DGK+00℄, [ST91℄, [TKP00℄. The objetive of par-titioning the initial iteration spae into hains of iterations has always been the minimizationof inter-hain dependenes. Thereupon, some hains may be grouped together and exeuted inthe same proessor, aiming again to redue the inter-proessor dependenes.As far as oarse grain parallelism is onerned, researhers have dealt with the problem ofalleviating the ommuniation overhead by applying the supernode or tiling transformation.Supernode partitioning of the iteration spae was initially proposed by Irigoin and Triolet in[IT88℄. They introdued the initial model of loop tiling and gave onditions for a tiling trans-formation to be valid. Later, Ramanujam and Sadayappan in [RS92℄ showed the equivalenebetween the problem of �nding a set of extreme vetors for a given set of dependene vetorsand the problem of �nding a tiling transformation that produes valid, deadlok-free tiles. Theproblem of determining the optimal shape was surveyed, and more aurate onditions were alsogiven by others, as in [BDRR94℄, [HS02℄, [HCF03℄. Some of these approahes aim at minimizingthe amount of data transferred through a message passing interfae [Xue97a℄. Some more ofthem are appliable on a shared memory arhiteture and pursue the minimum amount of datato be aessed by more than one proessors [AKN95℄, [RR02℄. The rest of them attempt tominimize the time eah proessor remains idle waiting for the neessary data to be available,before going on with the omputations assigned to it [DDRR97℄, [HCF97℄, [HCF99℄. All threeapproahes result to the same mathematial formulas for the alulation of the optimal tilingtransformation.Sheduling tiled iteration spaes onto parallel arhitetures is another important issue, whihhas been partially addressed in literature. Dion et al. [DRR96℄ and Rastello et al. [RRP03℄have redued the total run-time by properly sheduling the iterations inside a tile. They assumethat a tile exeution is non-atomi and eah data element is sent to proessors that will need it,as soon as it is omputed. Although suh an approah may be pratial on a VLSI proessorarray, it will not be eÆient on a modern luster, where the startup lateny of a message annot

4 Introdution
be ignored, imposing oarse-grain ommuniation.Although sheduling of tasks on a luster of workstations seems to be a well elaboratedidea [CKE+04℄, in fat very few approahes have taken into aount the regularity of nestedfor-loops. Several of them [SG97℄, [Sak97℄, [HP96℄ deal with the distribution of loop iterationsto proessors, in speial ases, when the iteration spae an be deomposed to regions, thatan be parallelized with no ommuniation or synhronization among proessors. However, thisis not always the ase. As onluded by [LL98℄, the dependenes among iterations may notallow the appliation of suh a sheduling. In [ML94℄ a run-time sheduling is presented, whihminimizes ommuniation and synhronization overhead. In [ID98℄, [ZLP97℄, a dynami load-balaning sheduling algorithm is presented, with a ombination of ompile-time and run-timesupport (hybrid ompile and run-time proess). However, as argued in [TN93℄, dynami, orrun-time sheduling ahieves a better load balane when the omputation load of iterations isunevenly distributed. In addition, it is appliable if the loop bounds are unknown at ompiletime. Stati, or ompile-time sheduling is more appropriate for uniformly distributed loops,following the algorithmi model of this thesis.As far as the exeution of tiles on a luster of PCs is onerned, all onventional approahes[ABRY03℄, [ABR96℄, [HS98℄, [OSKO95℄, [RS92℄ onsider that eah proessor exeutes all tilesalong a spei� dimension, by interleaving omputation and ommuniation phases. All proes-sors �rst reeive data, then ompute, and �nally send result data to neighbors in expliitly dis-tint phases, aording to the hyperplane sheduling vetor. Taking into aount that modernnetwork interfaes allow for onurrent ommuniation and omputation, in [GSK01℄ an alter-native method for the problem of sheduling the tiles to single CPU nodes was proposed. Theproposed method ats like enhaning the performane of a proessor's datapath with pipelining[PH94℄, beause a proessor omputes its tile at k time step and onurrently reeives data fromall neighbors to use them at k + 1 time step and sends data produed at k − 1 time step. Suha pipelined exeution sheme was proven [STK02℄ to nearly double the performane of the al-gorithms, provided that we use modern NICs (Network Interfae Cards), apable of performingommuniation without annoying the CPU, and advaned ommuniation protools (i.e. VIA)with Zero-Copy [CTHI98℄, DMA support and User-Level [Blu96℄ harateristis.Although the tiling transformation had been so widely studied, in pratie it was almostunattainable to implement the proposed methods in real appliations. The overhead for pro-duing the parallel ode was almost prohibitive. In [AL93℄, Amarasinghe and Lam presenteda method for automatially produing parallel SPMD ode, based on the mathematial rep-resentation of the iteration spae, the data spae and the ommuniation data, using a set ofinequalities. In [TX00℄, Tang and Xue presented a omplete framework for produing SPMDode for distributed memory parallel arhitetures. However, their approah onerns only re-tangular tiling transformations. Finally, in [GAK03℄, [GDAK02a℄ a omplete framework hasbeen presented for automatially produing parallel ode for arbitrarily tiled nested for-loops.

1.3 One step ahead: What do we need? 5
This method, apart from enhaning the eÆieny of the �nal parallel ode, aims at reduing theoverhead of the automati parallelization.1.3 One step ahead: What do we need?Nowadays the most powerful omputing systems are onsisted of multi-level parallel arhite-tures, suh as a luster of Shared-Memory Multiproessors. The top 5 omputing systemsannouned in the 2004 Superomputer Conferene (SC2004) [TOP℄ in Pittsburgh (BlueGene/L,Columbia, Earth Simulator, MareNostrum, Thunder), are all based on a multi-level parallelarhiteture (see, for example, Figures 1.1 and 1.2).

Figure 1.1: The BlueGene/L Arhiteture - No 1 in the 24th Top500 Superomputer listThe method presented in [GSK01℄, [STK02℄ had been applied only on lusters of single CPUnodes. If applied on a luster of SMP nodes (Symmetri Multi-Proessors), it ould not take intoonsideration the fat that, among proessors of the same node, whih an diretly ommuniatewith eah other through the node's shared memory, there is no need for message interhange,in order to exhange data. This fat has not been taken into aount in [MA01℄ either, whihaims at sheduling tiles on a luster of SMP nodes. The result of suh a onsideration may beunneessary transfers from the proessing unit to the network ard and vie versa, whih willonsume a portion of the intra-node ommuniation bandwidth. In the best ase, when theompiler an detet and prevent suh unneessary ommuniation between the proessor andthe network ard, it will not evit unneessary transfers among the shared and private spae of

6 Introdution

Figure 1.2: The Earth Simulator Arhiteture - No 3 in the 24th Top500 Superomputerlistthreads inside the same SMP node [DK04℄.In this thesis, as in [AST+05℄, [ASTK02b℄, [ASTK02a℄, the method proposed in [GSK01℄,[STK02℄ is applied on lusters of SMP nodes. For this purpose, we group together tiles, whihshould be simultaneously exeuted by proessors of the same node. Thus, we annihilate theneed for ommuniation among proessors of the same node. In the sequel, in order to shedulethe groups of tiles, whih have arisen, we an make use of the overlapping ommuniation-omputation model, proposed in [GSK01℄, [STK02℄.Unfortunately, the subsequent exeution sheme (similar to its parent shemes proposedin [HS98℄, [GSK01℄ and the automati shedules produed when using a ode generation tool[GDAK02a℄) preassumes an unlimited number of proessing nodes, or that the tile size has beenseleted so that the number of nodes needed is less than or equal to the nodes available. Of ourse,it is not always true. The tile size may often be seleted so as to minimize the ommuniationoverhead [Xue97a℄, [AKN95℄, [RR02℄ or maximize memory data referenes loality [KRC99℄,[LRW91℄, [WL91a℄, [PHP03℄, [MHCF98℄. Thus, we need an eÆient method to alloate thetasks to a prede�ned number of proessors. In this thesis, as in [AKK04℄, [AKK03℄, somedi�erent assignment shemes for sheduling tiles onto a luster with a �xed number of SMPnodes, will be proposed.1.4 Thesis ContributionThe ontribution of this thesis, an be mainly foused on the following two issues:1. A theoreti model is supplied for sheduling tiles onto a luster of SMP nodes, using ei-ther the overlapping or the non-overlapping exeution poliy, as desribed in [GSK01℄,[STK02℄, [HS98℄. This is attained by grouping together tiles, whih should be simultane-ously exeuted by proessors of the same node. Thus, the need for ommuniation amongproessors of the same node is annihilated. They should only synhronize with eah other

1.5 Thesis Overview 7
using a barrier or a semaphore. In addition, the subsequent ommuniation among proes-sors in di�erent SMP nodes an be similarly grouped, whih further redues the overallommuniation overhead of a ode segment.2. In order to apply all above mentioned tehniques and automati ode generation tools[Gou03℄ onto a luster with a �xed number of nodes, �ve alternative assignment shemesfor sheduling tiles are proposed. The advantages and disadvantages of eah one are theo-retially and experimentally investigated. Thus, the guidelines for seleting the appropriateassignment sheme for eah tile spae, are provided.1.5 Thesis OverviewIn Chapter 2 of this thesis, some basi preliminary onepts and the mathematial bakgroundrequired for the omprehension of our methodology are presented. First of all, some mathe-matial symbols used throughout the thesis are de�ned. Then, we briey desribe the model ofalgorithms, whih an be parallelized using the proposed tehniques. In the sequel, some basionepts from parallel proessing, suh as dependenes and time sheduling, are desribed. Inaddition, some loop transformations, whih have been widely used in ompiler optimizations, arebriey disussed. They are divided into linear and non-linear transformations. Among non-linearloop transformations, we emphasize the tiling transformation, whih will be used throughout therest of this thesis. Finally, we outline the non-overlapping [HS98℄ and the overlapping [GSK01℄exeution poliies, whih onstitute the base for the appliation of our theory.In Chapter 3, a methodology for the onstrution of a tool, whih an automatially produeparallel tiled ode, is disussed. Speial are is taken, so as the �nal tool to be eÆient inonsideration of both the time needed for the generation of the parallel ode and the quality ofthe ode produed. The eÆieny at ompile-time is enhaned by a redution of the inequalitiesdesribing the tile spae, through a proper expansion of the initial spae boundaries. TheeÆieny at run-time is ahieved by a transformation of the tile iteration spae into a retangularone. Finally, as far as the ommuniation among proessors is onerned, an enhanement ofthe ideas presented in [GDAK02a℄, [Gou03℄ for a luster of single-proessing nodes, is desribed.In Chapter 4, the non-overlapping and the overlapping exeution poliies are generalized,so as to be applied on a luster of shared memory multiproessors. In order to ahieve thisgeneralization, we introdue the tehnique of grouping, whih is a kind of tiling applied ontotiles. We determine the guidelines for the seletion of the grouping transformation. Then, avalid and optimal time shedule for the subsequent group spae is produed. We also indiatehow omputation tasks should be alloated to the proessors. Finally, we theoretially andexperimentally validate the tehniques proposed.In Chapter 5, we assume that a luster with a �xed number of SMP nodes is availablefor the exeution of the tiled iteration spae. Thus, our sheduling needs to be adapted, so

8 Introdution
as to take into onsideration that a �xed number of tiles an be omputed at the same time.Five alternative shedules are proposed: yli assignment shedule (§5.2), mirror assignmentshedule (§5.3), luster assignment (§5.4), retiling (§5.5) and blok-yli assignment shedule(§5.7). Then, we theoretially and experimentally argue about whih one should be seleted forthe parallelization of a tile spae.In Chapter 6, we onlude with a summary of the arguments presented in this thesis and wereport some future extensions of our work. In Appendix A a summary table of the symbols usedthroughout the thesis is provided. Appendix B onstitutes a quik referene of our algorithmiassumptions. Finally, in Appendix C, some simple mathematial formulas, whih are often usedin this thesis, are proven.1.6 Publiations INTERNATIONAL JOURNALS

• M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, N. Koziris, and P. Tsanakas. HyperplaneGrouping and Pipelined Shedules: How to Exeute Tiled Loops Fast on Clusters of SMPs.The Journal of Superomputing, 33(3):197{226, Sep. 2005.
• G. Goumas, M. Athanasaki, and N. Koziris. An EÆient Code Generation Tehnique forTiled Iteration Spaes. IEEE Trans. on Parallel and Distributed Systems, 14(10):1021{1034, Ot. 2003.
• G. Goumas, M. Athanasaki, and N. Koziris. Code Generation Methods for Tiling Trans-formations. Journal of Information Siene and Engineering, 18(5):667{691, Sep. 2002.INTERNATIONAL CONFERENCES
• G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Automati Parallel CodeGeneration for Tiled Nested Loops. In Proeedings of the 2004 ACM Symposium onApplied Computing (SAC 2004), pages 1412{1419, Niosia, Cyprus, Marh 2004.
• M. Athanasaki, E. Koukis, and N. Koziris. Sheduling of Tiled Nested Loops onto a Clusterwith a Fixed Number of SMP Nodes. In Proeedings of the 12-th Euromiro Conferene onParallel, Distributed and Network based Proessing (PDP04), pages 424{433, A Coruna,Spain, Feb. 2004. IEEE Computer Soiety Press.
• M. Athanasaki, E. Koukis, and N. Koziris. EÆient Sheduling of Tiled Iteration Spaesonto a Fixed Size Parallel Arhiteture. In Proeedings of the 9th Panhelleni Conferenein Informatis, pages 178{192, Thessaloniki, Greee, Nov. 2003.

1.6 Publiations 9
• N. Drosinos, G. Goumas, M. Athanasaki, and N. Koziris. Delivering High Performaneto Parallel Appliations Using Advaned Sheduling. In Proeedings of the Parallel Com-puting 2003 (ParCo 2003), Dresden, Germany, Sep. 2003.
• M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, and N. Koziris. Pipelined Sheduling ofTiled Nested Loops onto Clusters of SMPs using Memory Mapped Network Interfaes. InProeedings of the 2002 ACM/IEEE onferene on Superomputing (SC2002), Baltimore,Maryland, Nov. 2002. IEEE Computer Soiety Press.
• G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Compiling Tiled Iteration Spaesfor Clusters. In Proeedings of the 2002 IEEE Int'l Conferene on Cluster Computing,pages 360{369, Chiago, Illinois, Sep. 2002.
• M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, and N. Koziris. A Pipelined Exeutionof Tiled Nested Loops on SMPs with Computation and Communiation Overlapping. InProeedings of the Workshop on Compile/Runtime Tehniques for Parallel Computing, inonjuntion with 2002 Int'l Conferene on Parallel Proessing (ICPP-2002), pages 559{567, Vanouver, Canada, Aug. 2002.
• G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Data Parallel Code Generationfor Arbitrarily Tiled Nested Loops. In Proeedings of the 2002 Int'l Conferene on Par-allel and Distributed Proessing Tehniques and Appliations, pages 610{616, Las Vegas,Nevada, USA, June 2002.
• G. Goumas, M. Athanasaki, and N. Koziris. Automati Code Generation for Exeut-ing Tiled Nested Loops Onto Parallel Arhitetures. In Proeedings of the 2002 ACMSymposium on Applied Computing (SAC 2002), pages 876{881, Madrid, Spain, Marh2002.

10 Introdution

2Preliminary Conepts -Mathematial Bakground
In this hapter, we present some basi preliminary onepts and the mathematialbakground, whih are neessary for the omprehension of the rest of this thesis.First of all, we supply an outline of the algorithmi model aimed by the tehniquespresented in this thesis. This model is further spei�ed and restrited later on in thishapter. A summary of the restritions imposed is also given in Appendix B. Whilegoing through this thesis, readers may use Appendix B as a quik referene of ouralgorithmi model. In addition, some terms originating from the sienti� area ofalgebra (e.g. lexiographi order) are briey de�ned in this hapter. Moreover, wedisuss some onepts widely used in the area of parallel proessing (e.g. dependeneanalysis, time sheduling, linear loop transformations, tiling). Finally, we outlinethe arhitetural harateristis, whih are neessary for the implementation of thetehniques desribed in this thesis.

12 Preliminary Conepts - Mathematial Bakground2.1 NotationThroughout this thesis, we indiate the set of natural numbers by N , and the set of naturalnumbers, exluding zero by N∗ (N∗ = N − {0}). In addition, we indiate the set of integernumbers by Z, and the set of integer numbers, exluding zero by Z∗ (Z∗ = Z − {0}).In addition, when writing ~a > 0 (or ~a ≥ 0), we mean that all oordinates of vetor ~a shouldbe positive (or non negative). Similarly, when writing A > 0 (or A ≥ 0), where A is a matrix,we mean that all elements of A should be positive (or non negative).By ⌊~a⌋, we imply the appliation of the oor integer funtion to all oordinates of ~a. Similarly,by ⌊A⌋, we imply the appliation of the oor integer funtion to all elements of matrix A.2.2 Algorithmi Model - Nested for-loopsThe methods proposed in this thesis may be applied to any ode segment of perfetly nestedfor-loops with uniform data dependenes (see §2.3) [SF91℄. That is, our algorithms are of theform: for (j1=l1; j1 ≤ u1; j1 + +){...for (jn=ln; jn ≤ un; jn + +){Loop Body
}...

}where l1 and u1 are integer parameters, lk and uk (k = 2, . . . , n) are funtions of the outer loopindies. Spei�ally, they may have the form:
lk = max(⌈fk1(j1, . . . , jk−1)⌉, . . . , ⌈fkr(j1, . . . , jk−1)⌉)and
uk = min(⌊gk1(j1, . . . , jk−1)⌋, . . . , ⌊gkr(j1, . . . , jk−1)⌋)where fki and gki are aÆne funtions. Therefore, we are not only dealing with retangulariteration spaes, but also with more general onvex spaes, with the only assumption that theiteration spae is de�ned as the bisetion of a �nite number of semi-spaes of the n-dimensionalspae Zn.Eah iteration of this ode segment is represented by an n-dimensional vetor

~j = (j1, j2, . . . , jn) ∈ Zn,

2.2 Algorithmi Model - Nested for-loops 13
alled as iteration vetor. Eah oordinate of the iteration vetor represents one of the loopindies. Coordinate j1 represents the outermost loop index, while jn represents the innermostone.De�nition 2.1 We de�ne as iteration space the set of iteration vetors (representing iter-ations), whih are to be traversed during the exeution of a nested for-loop ode segment, asdesribed in page 12.

Jn = {~j = (j1, j2, . . . , jn)|ji ∈ Z ∧ li ≤ ji ≤ ui, 1 ≤ i ≤ n}The iteration spae Jn an also be desribed with a system of linear inequalities. An in-equality of this system expresses a boundary surfae of the iteration spae. Thus, Jn an beequivalently de�ned as:
Jn = {~j ∈ Zn|B~j ≤ ~b} (2.1)Matrix B and vetor ~b an be easily derived from the aÆne funtions lk and uk and vie versa.Eah iteration ~j = (j1, j2, . . . , jn) ∈ Zn may be represented in the n-dimensional spae bypoint (j1, j2, . . . , jn). In onsequene, the iteration spae may be represented as a subset of Zn,as indiated in the following example.Example 2.1: The following nested for-loops are onsistent to the algorithmi modeldesribed in this setion.1. Retangular iteration spae:for (j1=0; j1 ≤ 7; j1 + +)for (j2=0; j2 ≤ 5; j2 + +){Loop Body

}Matries B and ~b, orresponding to this loop segment, an be derived as follows:
j1 ≤ 7

j1 ≥ 0

j2 ≤ 5

j2 ≥ 0

⇔

1 0

−1 0

0 1

0 −1

~j ≤

7

0

5

0

2. Trapezoidal iteration spae:

14 Preliminary Conepts - Mathematial Bakgroundfor (j1=0; j1 ≤ 7; j1 + +)for (j2=0; j2 ≤ 9 − j1; j2 + +){Loop Body
}Matries B and ~b, orresponding to this loop segment, an be derived as follows:

j1 ≤ 7

j1 ≥ 0

j2 ≤ 9 − j1

j2 ≥ 0

⇔

1 0

−1 0

1 1

0 −1

~j ≤

7

0

9

0

3. Convex spae:for (j1=0; j1 ≤ 7; j1 + +)for (j2=max(0, 1 − j1); j2 ≤ min(6, 9 − j1); j2 + +){Loop Body

}Matries B and ~b, orresponding to this loop segment, an be derived as follows:
j1 ≤ 7

j1 ≥ 0

j2 ≤ 6

j2 ≤ 9 − j1

j2 ≥ 0

j2 ≥ 1 − j1

⇔

1 0

−1 0

0 1

1 1

0 −1

−1 −1

~j ≤

7

0

6

9

0

−1

The respetive iteration spaes an be represented in a 2-dimensional spae, as depited inFigure 2.1.Aording to the onstraints onerning the form of loop bounds li, ui, iteration spae Jnmay be a onvex subset of Zn. This model is ompatible with several real appliations, mainlyfrom the sienti� areas of maths, physis, moleular biology, e.t.. For example, we mayrefer to some of them: Jaobi, Gauss Suessive Over-Relaxation - SOR, Alternative DiretionImpliit Integration - ADI [GDAK02a℄, Texture Smoothing - TS [PB99℄, 9-point Star Di�erentialEquation Stenil - PDE [AI91℄, Global Sequene Alignment - Fikett's Algorithm [ABRY03℄.Unless a loop transformation is applied, the iterations of a nested-loop ode segment areexeuted sequentially, in lexiographi order.De�nition 2.2 Iteration ~j is lexiographially previous than iteration ~j′ (~j ≺ ~j′), i� ji = j′i,∀i =

1, . . . , k − 1 ∧ jk < j′k, k ≤ n.

2.3 Dependene Vetors 15
j2

j1(1) Rectangular iteration space

j1 = 7

j2 = 5

j2

j1

j2 = 9 - j1

j1 = 7

j2 = 1 - j1

j2 = 6

(3) Convex iteration space

j2

j1

j2 = 9 - j1

j1 = 7

(2) Trapezoidal iteration spaceFigure 2.1: Example 2.1 - Graphial representation of 2-dimensional iteration spaes onto
ZnFor example, it holds that (1, 2, 5) ≺ (4, 1, 0) ≺ (4, 1, 1) ≺ (4, 3,−8). In Figure 2.2, we havedepited the lexiographi order, whih is oinident to the program order, for the iterations ofthe ode segment in Example 2.1(3).2.3 Dependene VetorsDe�nition 2.3 Iteration ~j2 is dependent on iteration ~j1 i�1. All three onditions are valid:(a) ~j1 ≺ ~j2 and(b) Both iterations ~j1, ~j2 aess the same memory data item M and() At least one of these memory data aesses is a write aess,or,2. Iteration ~j2 is dependent on iteration ~j3 and iteration ~j3 is dependent on iteration ~j1.

16 Preliminary Conepts - Mathematial Bakground
j2

j1Figure 2.2: Lexiographi order of iterations for the iteration spae of Example 2.1(3).It is oinident to the order of exeution of the iterations if no transformation is applied to theiteration spae.In the �rst ase, ~j2 is directly dependent on ~j1, while in the seond one, ~j2 is indirectly

dependent on ~j1.When ~j2 is dependent on ~j1, we equivalently say that there is a dependene betweeniterations ~j1 and ~j2. Formally, dependenes are modelled by dependene vetors: ~d = ~j2− ~j1.Dependene analysis is espeially ritial for the parallelization of programs, sine any twoiterations an be exeuted in parallel, if there is no diret or indiret dependene between them[Ber66℄, [Ban94℄. However, when modelling dependenes using dependene vetors, we only dealwith diret dependenes. Indiret dependenes are implied.Diret dependenes are distinguished into three ategories [Ban88℄:
• ow or true dependenes, if iteration ~j1 writes on M and dependent iteration ~j2 readsthe value of M .
• anti-dependenes, if iteration ~j1 reads the value of M and then dependent iteration ~j2writes on M .
• output dependenes, if both iterations ~j1 and ~j2 write on M .In our algorithmi model, we only deal with ow or true dependenes. Anti-dependenesand output dependenes an be eliminated using more variables [CDRV98℄. In addition, notiethat, in our algorithmi model (§2.2), all dependene vetors are onsidered as uniform, i.e.independent of the indies of omputations. Thus, we may onstrut the dependene matrix

D of a ode segment, whih onsists of all dependene vetors starting from any iteration of Jn.Eah dependene vetor forms a olumn of matrix D: D = [d1|d2|...|dq].

2.4 Fourier-Motzkin Elimination Method 17
Example 2.2: Let us onsider the nested for-loop ode segment:for (j1=0; j1 ≤ 7; j1 + +)for (j2=max(0, 1 − j1); j2 ≤ min(6, 9 − j1); j2 + +){A[j1,j2℄ = B[j1 + 4,j2℄+A[j1 − 2,j2℄B[j1,j2℄ = A[j1 − 3,j2 + 1℄ -A[j1,j2 − 1℄

}Iteration (j1, j2) reads matrix elements A[j1 − 2, j2], A[j1 − 3, j2 + 1], A[j1, j2 − 1], whihare written by iterations (j1 − 2, j2), (j1 − 3, j2 + 1), (j1, j2 − 1), respetively. Thus, there aretrue or ow dependenes: ~d1 = (2, 0), ~d2 = (3,−1), ~d3 = (0, 1). In addition, iteration (j1, j2)reads matrix element B[j1 + 4, j2], whih is later written by iteration (j1 + 4, j2), imposinganti-dependene ~d4 = (4, 0). Therefore, the dependene matrix of this ode segment is: D =[
2 3 0 4

0 −1 1 0

]. Notie that all four dependene vetors are lexiographially positive.In order to eliminate anti-dependene ~d4 = (4, 0), we may equivalently rewrite the previousode segment as follows:for (j1=0; j1 ≤ 7; j1 + +)for (j2=max(0, 1 − j1); j2 ≤ min(6, 9 − j1); j2 + +)B temp[j1 + 4,j2℄ = B[j1 + 4,j2℄for (j1=0; j1 ≤ 7; j1 + +)for (j2=max(0, 1 − j1); j2 ≤ min(6, 9 − j1); j2 + +){A[j1,j2℄ = B temp[j1 + 4,j2℄+A[j1 − 2,j2℄B[j1,j2℄ = A[j1 − 3,j2 + 1℄ -A[j1,j2 − 1℄
}The dependene matrix for the seond nested for-loop of this ode segment is: D =[

2 3 0

0 −1 1

]. These dependenes an be graphially represented, as depited in Figure 2.3.
2.4 Fourier-Motzkin Elimination MethodThe Fourier-Motzkin elimination method (FME) an be used to onvert a system of linearinequalities A~x ≤ ~a into a form, in whih the lower and upper bounds of eah element xi ofthe vetor ~x is expressed in terms of the elements x1, . . . , xi−1 only. This fat is very importantwhen using a nested loop, in order to traverse an iteration spae Jn de�ned by a system ofinequalities. In this ase, the bounds of index jk of the nested loop must be expressed in termsof the k − 1 outer indies only. This means that the Fourier-Motzkin elimination method anonvert a system desribing a general iteration spae into a form suitable for use in nested loops.After applying the Fourier-Motzkin elimination method, the eliminated system onsists of a

18 Preliminary Conepts - Mathematial Bakground
j2

j1Figure 2.3: Example 2.2 - Graphial representation of ow dependenesvery large number of inequalities desribing the bounds of eah variable xi, but some of them arenot neessary for the alulation of xi's bounds. The unneessary inequalities must be eliminatedto simplify the resulting system. In order to remove the redundant inequalities, two methods havebeen proposed: the ad-Ho simpli�ation method and the exat simpli�ation method.A full desription of the Fourier-Motzkin elimination method, the ad-Ho simpli�ation and theexat simpli�ation is presented in [BW95℄.If the initial system of inequalities onsists of k inequalities with n variables, then the om-plexity of the Fourier-Motzkin elimination algorithm an be expressed by the formula ([Jim99℄):
Complexity = O(

k2n

22(n+1)−2
) ≈ O((

k

2
)2

n

)The Fourier-Motzkin elimination method is extremely omplex, sine it depends doubly expo-nentially on the number of loops involved.In addition, a single appliation of the method is almost always useless, sine it results to alot of inequalities, whih are not neessary for the alulation of the loop bounds. They shouldbe alulated a lot of times during the exeution of the �nal ode and impose an unaeptableoverhead to the �nal ode exeution. Thus, the above simpli�ation methods should be applied,in order to eliminate the redundant inequalities. The ad-Ho simpli�ation method, whihis quite fast, ahieves to eliminate only some of the redundant inequalities. The rest of themshould be eliminated with the use of the exat simpli�ation method. It applies one the Fourier-Motzkin elimination method for eah inequality of the �nal system, in order to hek whetherit is redundant. Thus, it inreases onsiderably the omplexity of the �nal program.

2.5 Time Sheduling 192.5 Time ShedulingWhen parallelizing a nested for-loop, one should primarily reorganize the sequential exeutionof iterations, in order to reate parallel regions, whih may be exeuted at the same time bydi�erent CPUs. The �nal goal is the minimization of the total exeution time. This is the asewhen no other appliations are running simultaneously on the same omputing system and thuswe are not interested in the interation among di�erent appliations.The funtions whih map the iterations of a nested for-loop onto di�erent time instanes,are alled time sheduling funtions. When devising a time sheduling funtion, our goal isto enable the exeution of as many parallel iterations as possible, so as to ahieve the minimumtotal exeution time, without modifying the results produed by the initial sequential exeutionof the program.In order to ertify that the results produed by the initial sequential exeution are notmodi�ed, a time shedule must respet the initial program dependenes. In other words, itshould map iterations onneted by a dependene vetor to distint exeution steps. In thisway, it is ensured that only those iterations of the initial nested for-loop that have no diretor indiret dependene among them will be exeuted in parallel. Thus, a time shedule is validwhen for eah dependene vetor, the soure iteration is mapped to a time instane previousthan the destination iteration.De�nition 2.4 Time sheduling funtion s : Jn → Z is valid for a nested for-loop, with adependene matrix D, i� for eah pair of iterations ~j1, ~j2 ∈ Jn : ~j2 = ~j1 + ~d, ~d ∈ D, it holds that
s(~j1) < s(~j2).2.5.1 Linear Time ShedulingLinear time sheduling is a speial ase of time sheduling. It arises when the sheduling funtion
s(~j) is linear. Linearity is onvenient, as we shall see in Chapters 4 and 5, sine it results in aregular assignment of iterations or tiles (see §2.6.2 for a de�nition of tile) to CPUs.De�nition 2.5 We de�ne as linear time sheduling of a nested for-loop, any time sheduling
sΠ, suh that: ∀~j ∈ Jn

sΠ(~j) = ⌊
Π~jT + t0
dispΠ

⌋where Π ∈ Z1×n, dispΠ = min{Π~di
T

: ~di ∈ D} and t0 is an integer onstant.We notie that in De�nition 2.5:
• Row-vetor Π is alled as linear sheduling vetor.

20 Preliminary Conepts - Mathematial Bakground
• Integer onstant t0 is alled as alignment onstant.
• Constant dispΠ is alled as displaement onstant.Linear sheduling vetor Π de�nes a lass of hyperplanes suh that: All iterations of Jnbelonging to the same hyperplane are mapped to the same time instane. When using theterm hyperplane, we mean a beeline for a 2-dimensional iteration spae, a ruled surfae for a

3-dimensional iteration spae and so on.It an be proven [PTK98℄ that a linear time sheduling preserves depedenes i�
∀~di ∈ D : Π~di

T
> 0 (2.2)Aording to a linear time sheduling sΠ, the time required for the exeution of a nestedfor-loop (makespan) is alulated with the use of formula:

℘ = max{sΠ(~j) : ~j ∈ Jn} −min{sΠ(~j) : ~j ∈ Jn} + 1 (2.3)Example 2.3: In this example, we will produe a parallel time shedule for the iterations ofthe nested for-loop ode segment:for (j1=0; j1 ≤ 7; j1 + +)for (j2=max(0, 1 − j1); j2 ≤ min(6, 9 − j1); j2 + +){A[j1,j2℄ = B temp[j1 + 4,j2℄+A[j1 − 2,j2℄B[j1,j2℄ = A[j1 − 3,j2 + 1℄ -A[j1,j2 − 1℄
}The dependenes of this nested for-loop have been designed in Figure 2.3. Let us seletvetor Π =

[
1 1

], as a linear sheduling vetor for this iteration spae.
Π ~d1

T
=
[

1 1
](2

0

)
= 2 > 0,

Π ~d2
T

=
[

1 1
](3

−1

)
= 2 > 0,

Π ~d3
T

=
[

1 1
](0

1

)
= 1 > 0,

2.5 Time Sheduling 21
Aording to formula (2.2), Π is a valid sheduling vetor for this example. In addition, aordingto De�nition 2.5, dispΠ = min{Π~di

T
: ~di ∈ D} = 1. If we set t0 = −1, then we get:

sΠ(j1, j2) = j1 + j2 − 1In Figure 2.4 we have depited the resulting time shedule. Notie that, aording to formula(2.3), the makespan is ℘= 9.
j2

j1s
Π = 0

s
Π = 1

s
Π = 2

s
Π = 3

s
Π = 4

s
Π = 5

s
Π = 6

s
Π = 7

s
Π = 8

Figure 2.4: Example 2.3 - Time Shedule produed by linear sheduling vetor Π = [1 1].The dashed lines indiate the lass of hyperplanes-beelines de�ned by the linear sheduling vetor
Π (Π~j = constant). The grey areas inlude iterations that are mapped to the same time instane,aording to the sheduling funtion sΠ(j1, j2) = j1 + j2 − 1. Sine dispΠ = 1, eah grey areainludes only one hyperplane.

If we selet vetor Π =
[

2 3
], as a linear sheduling vetor:

Π ~d1
T

=
[

2 3
](2

0

)
= 4 > 0,

Π ~d2
T

=
[

2 3
](3

−1

)
= 3 > 0,

Π ~d3
T

=
[

2 3
](0

1

)
= 3 > 0,

22 Preliminary Conepts - Mathematial Bakground
Aording to formula (2.2), Π is a valid sheduling vetor for this example. In addition, aordingto De�nition 2.5, dispΠ = min{Π~di

T
: ~di ∈ D} = 3. If we set t0 = −2, then we get:

sΠ(j1, j2) = ⌊
2j1 + 3j2 − 2

3
⌋In Figure 2.5 we have depited the resulting time shedule. Notie that, aording to formula(2.3), the makespan is ℘= 8.

j2

j1s
Π = 0

s
Π = 1

s
Π = 2

s
Π = 3

s
Π = 4

s
Π = 5

s
Π = 6

s
Π = 7

Figure 2.5: Example 2.3 - Time Shedule produed by linear sheduling vetor Π = [2 3].The dashed lines indiate the lass of hyperplanes-beelines de�ned by the linear sheduling vetor
Π (Π~j = constant). The grey areas inlude iterations that are mapped to the same time instane,aording to the sheduling funtion sΠ(j1, j2) = ⌊ 2j1+3j2−2

3 ⌋. Sine dispΠ = 3, eah grey areainludes 3 hyperplanes.
2.6 Loop Transformations2.6.1 Linear Loop TransformationsLinear transformations, whih are often used in loop transformation literature an be distin-guished into three main ategories:1. loop interhange2. loop reversal

2.6 Loop Transformations 23
3. loop skewingEah linear loop transformation an be represented by a n × n transformation matrix T .Thus, iteration ~j of the initial iteration spae is mapped to iteration T~j of the �nal iterationspae and dependene vetor ~di is transformed to dependene vetor T ~di. A loop transformationresults in a ode segment equivalent to the original one i� it preserves dependenes, that is i�all transformed dependene vetors are lexiographially positive (∀~di ∈ D it holds T ~di ≻ ~0)[WL91b℄.If more than one linear transformations T1, T2 are suessively performed, the �nal looptransformation an be represented by the produt of the respetive transformation matries

T = T2T1.Loop interhange transforms iteration vetor (j1, j2) into iteration vetor (j2, j1) (see Fig-ure 2.6). This transformation an be represented by matrix T =

[
0 1

1 0

]. Thus
~j′ =

[
0 1

1 0

](
j1

j2

)
=

(
j2

j1

)

j2

j1

Loop Interchange

j2' = j1

j1' = j2Figure 2.6: Graphial representation of an interhange transformationTwo suessive loop interhanges an model a yli exhange of three loop indies, soas the innermost loop index j3 to beome the outermost one. First, interhange of loopindies j2, j3 is represented by matrix T1 =

1 0 0

0 0 1

0 1 0

. Seond, interhange of loopindies j1, j2 is represented by matrix T2 =

0 1 0

1 0 0

0 0 1

. The total transformation is

24 Preliminary Conepts - Mathematial Bakground
represented by matrix T = T2T1 =

0 0 1

1 0 0

0 1 0

.Loop reversal is modelled by multiplying a loop index by −1. For example, the reversal trans-formation depited in Figure 2.7 is modelled by transformation matrix T =

[
1 0

0 −1

].
j2

j1

Loop Reversal j1

j2' = -j2

Figure 2.7: Graphial representation of a reversal transformationLoop skewing adds a loop index multiple to another loop index. For a 2-dimensional iterationspae, it an be modelled by a transformation matrix T =

[
1 0

f 1

] or T =

[
1 f

0 1

],where f ∈ Z. For example, the transformation shown in Figure 2.8 is represented bymatrix T =

[
1 1

0 1

].All above loop transformations are unimodular transformations and are represented byunimodular matries.De�nition 2.6 A square matrix A is unimodular, if it onsists of only integer elements and itsdeterminant equals to ±1.Unimodular transformations have a very useful property: their inverse transformation isintegral as well. On the other hand the inverse of a non-unimodular matrix is not integral,whih auses the transformed spae to have holes. We all holes the integer points of thetransformed spae that have no integer anti-image in the original spae.

2.6 Loop Transformations 25
j2

j1

Loop skewing

j2

j1' = j1 + j2Figure 2.8: Graphial representation of a skewing transformationDe�nition 2.7 Let A be an m×n integer matrix. We all the set L(A) = {~y|~y = A~x∧~x ∈ Zn}the lattie that is generated by the olumns of A.Consequently, we an de�ne the holes of a non-unimodular transformation as follows: if T isa non-unimodular transformation, we all holes the points ~j′ ∈ Zn, suh that T−1~j′ /∈ Zn. Onthe ontrary, we all atual points of a non-unimodular transformation T the points ~j′ ∈ Zn, forwhih it holds T−1~j′ ∈ Zn ⇔ ~j′ ∈ L(T). Figure 2.9 shows the image of an iteration spae afterthe appliation of a unimodular and a non-unimodular transformation. Holes are depited withwhite dots and atual points with grey ones. It has been proven in [Ram92℄ that if T is a m×ninteger matrix, and C is an n× n unimodular matrix, then L(T) = L(TC).De�nition 2.8 We say that a square, non-singular matrix H = [~h1, . . . , ~hn] ∈ Rn×n is inolumn hermite normal form (HNF) i� H is lower triangular (hij 6= 0 implies i ≥ j) and for all
i > j, 0 ≤ hij < hii (the diagonal is the greatest element in the row and all entries are positive.)As proven in [Ram92℄, if T is a m × n integer matrix of full row rank, then there existsan n × n unimodular matrix C suh that TC = [T̃0] and T̃ is in hermite normal form. Everyinteger matrix with full row rank has a unique hermite normal form. It holds that L(T) = L(T̃),whih means that an integer matrix of full row rank and its hermite normal form produe thesame lattie. This property is very useful for ode generation of tiled spaes, as we shall see inChapter 3.

26 Preliminary Conepts - Mathematial Bakground
j1

j2

T1=
1
0

1
1

|T1|=1 j1'

j2'

j1

j2

T2=
2
0

1
1

|T2|=2
j1'

j2' actual point hole

Figure 2.9: Unimodular and non-unimodular transformations.The main di�erene between unimodular and non-unimodular transformations is that: The formeronstitute a 1-1 funtion from Zn to Zn. The latter results to \holes" in the transformed spae,whih do not have an integer anti-image in the initial spae, as depited by white dots in this�gure.2.6.2 Tiling or Supernode TransformationFine vs. Coarse grained parallelismWhen parallelizing a ode segment, apart from performing a dependene analysis and determin-ing whih iterations may be exeuted simultaneously (as seen in §2.5), we should also determinewhih iterations will be exeuted by whih proessors. For example, the shedule depited inFigure 2.4, an be implemented by assigning a row of iterations to eah proessor, as seen inFigure 2.10. This partitioning of the iteration spae an supply an intuition of �ne grain par-allelism [PTK98℄. The goal of this mapping is the parallel exeution of as many iterations aspossible.In Figure 2.10, we have erased dependenes among iterations assigned to the same proessor.Only dependenes among iterations assigned to di�erent proessors are represented by blakarrows. These dependenes orrespond to data omputed in a proessor, whih should be usedin omputations exeuted by another proessor. Thus, they orrespond to data that shouldbe somehow transferred from a proessor to another. This transfer implies a ommuniationoverhead, whih may be minimal, when a systoli parallel arhiteture is embedded on hip[PTK98℄, or vast when implemented upon a message passing interfae, suh as MPI [MPI94℄,[MPI97℄.The volume of data that must be transferred may be large enough to annihilate the ad-vantages of parallelization. It is strongly possible that the parallel program will take longer toexeute than the sequential one. The problem in this implementation is not only the amount ofdata to be transferred, but also the number of distint messages enapsulating the data. Thus,

2.6 Loop Transformations 27

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

j2

j1s
Π = 0

s
Π = 1

s
Π = 2

s
Π = 3

s
Π = 4

s
Π = 5

s
Π = 6

s
Π = 7

s
Π = 8

CPU 0Figure 2.10: Fine-grained parallelism.In this �gure, iterations along the same dashed line are exeuted at the same time. Iterationsinside the same grey area are exeuted by the same proessor. Dependenes among iterationsassigned to the same proessor have been eliminated. With blak arrows, we have depited onlydependenes among iterations assigned to di�erent proessors.in order to ahieve an eÆient parallelization one should devise a way to1. redue the amount of data transferred and2. group them into fewer messages.Both of these objetives an be ahieved by a supernode or tiling transformation, thatis by grouping together a number of neighboring iterations and onsidering them as an atomiunit. Then, instead of sheduling iterations, we shedule tiles. Communiation ours beforeand after the exeution of a whole tile. In other words, a proessor should reeive the datarequired for the omputation of a tile, before the exeution of this tile's iterations start, andsend data omputed inside this tile, after the exeution of the entire tile has been ompleted.Thus, apart from reduing the amount of data to be transferred, we may also group in a singlemessage the transmission of data omputed in the same tile, as seen in Figure 2.11.An Intuitive De�nition of Tiling TransformationIn general, when applying tiling, an n-dimensional iteration spae Jn is partitioned by n indepen-dent families of parallel hyperplanes into n-dimensional hyperparallelepipeds, named as tiles.Eah tile is represented by an n-dimensional vetor ~jS = (jS
1 , j

S
2 , . . . , j

S
n) ∈ Zn, alled as tilevetor (in orrespondene to iterations being represented by iteration vetors). In Figure 2.12we have indiated the tile vetor, whih identi�es eah tile.In addition, eah tile has a unique starting iteration, alled as tile origin iteration. Iter-ation (0, . . . , 0) is the origin iteration of tile (0, . . . , 0). In order to identify the origin iteration

28 Preliminary Conepts - Mathematial Bakground
j2

j1

CPU 0

CPU 1

CPU 2

CPU 3

Figure 2.11: Coarse-grained parallelism.Iterations within the same parallelogram are grouped together in the same tile. Neighboring tilesof the same shade are assigned to the same proessor and exeuted suessively. Dependenesamong iterations assigned to the same proessor have been eliminated. In addition, dependeneswith origin inside the same tile have been depited with arrows of the same shade. The respetivedata transfers an be grouped in a single message.of another tile ~jS
x , we should parallely shift tile (0, . . . , 0), so as to be ongruent with tile ~jS

x .Then, the iteration of tile ~jS
x , whih is ongruent with iteration (0, . . . , 0) is the origin iterationof tile ~jS

x . In Figure 2.12 we have pointed out the origin iteration of eah tile. Notie thattile origin iterations may not be inluded in the iteration spae. For example, in Figure 2.12,iteration (0, . . . , 0), whih is the origin iteration of tile (0, . . . , 0), is not inluded in Jn. In orderto distinguish this iteration from other tile origin iterations, we have depited it as a white dot.A tiling transformation an be uniquely de�ned by n vetors-edges of the tiles-hyperparal-lelepipeds. Thus, a tiling transformation an be de�ned by an n × n matrix P , alled inversetiling matrix, whose olumns onsist of the above mentioned vetors-edges. For example, inFigure 2.13, we have indiated how the inverse tiling matrix is derived from Figure 2.12.Dually, a tiling transformation an be de�ned by an n × n matrix H = P−1, alled tilingmatrix. Eah row-vetor of H is perpendiular to a lass of hyperplanes partitioning theiteration spae into tiles.The tiling matrix H has some important properties onerning tiling transformation:1. Iteration ~j is mapped to tile ~jS = ⌊H~j⌋.2. Iteration ~j0 = H−1 ~jS is the origin iteration of tile ~jS .

2.6 Loop Transformations 29
j2

j1

tile (0,0)

tile (1,0)

tile (0,1)

tile (1,1)

tile (2,1)

tile (0,2)

tile (1,2)

tile (2,2)

tile (0,3)

tile (1,3)

Tile origin iterations

Iteration space
Tile space

−=
21
03

P

=
31
02

6
1H

Tiling matrices

t2

t1

Tile origin iterations not
included in the iteration spaceFigure 2.12: Tiling Transformation.The iterations inside the same grey area are mapped to the same tile. Eah tile is identi�ed by aunique tile vetor, whih has been indiated inside the respetive grey area. Blak dots representthe origin iterations of eah tile. Notie that tile origin iterations may not be inluded in theiteration spae. See, for example, the tile origin iterations of tiles (0, 0) and (1, 0), whih havebeen designed as white dots.Notie that, as far as parallel proessing is onerned, tiling transformation is useful onlyin ase the iteration spae annot be partitioned into independent subsets. This happens whenthe lass of dependene matrix D equals to n. Otherwise, the independent subsets may beassigned one to eah proessor [WL91b℄, [Hol92℄, [SF92℄, [PC89℄. Then, there is no need forommuniation among proessors during the exeution of the iteration spae (see, for example,Figure 2.14).A Formal De�nition of Tiling TransformationFormally, tiling transformation is de�ned as follows:

r : Zn −→ Z2n, r(~j) =

[
⌊H~j⌋

~j −H−1⌊H~j⌋

]where vetor ⌊H~j⌋ identi�es the oordinates of the tile that index point ~j = (j1, j2, . . . , jn) ismapped to, and ~j − H−1⌊H~j⌋ gives the oordinates of ~j within that tile relative to the tile

30 Preliminary Conepts - Mathematial Bakground

1p

2p

1h
2h

−=
21
03

P

=
31
02

6
1H

IPH =⋅Figure 2.13: Constrution of Tiling Matries.Matrix P onsists of the edge-vetors of the tile-hyperparallelepiped. Matrix H is the inverse ofmatrix P .origin. Thus, the initial n-dimensional iteration spae Jn is transformed to a 2n-dimensionalone, onsisting of the n-dimensional spae of tiles (tile spae) and the n-dimensional spae ofindies within tiles (tile iteration spae).
• The tile spae JS is de�ned as follows:

JS = { ~jS | ~jS = ⌊H~j⌋,~j ∈ Jn} (2.4)It an be also written as
JS = { ~jS = (jS

1 , . . . , j
S
n)|jS

i ∈ Z ∧ lSi ≤ jS
i ≤ uS

i , 1 ≤ i ≤ n}where lSi , uS
i an be diretly omputed from the funtions l1, . . . , ln, u1, . . . , un and thetiling matrixH, as desribed in [AI91℄, [GAK03℄ and in Chapter 3 of this thesis. Eah point

~jS in this n-dimensional integer spae JS is a distint tile with oordinates (jS
1 , j

S
2 , . . . , j

S
n).

• The tile iteration spae
TIS = {~j ∈ Zn|0 ≤ ⌊H~j⌋ < 1} (2.5)ontains all points that belong to the tile starting at the axes origins.

• The tile origin spae
TOS = {~j0 ∈ Zn|~j0 = H−1 ~jS , ~jS ∈ JS} (2.6)ontains the origins of tiles in the original iteration spae.Thus, it holds: Jn H

−→ JS and JS P
−→ TOS. Note that all points of Jn that belong to thesame tile, are mapped to the same point of JS . Note also that TOS is not neessarily a subset of

2.6 Loop Transformations 31
j2

j1Figure 2.14: When the lass of dependene matrix D is less than nwe an partition the n-dimensional iteration spae into independent subsets. Thus, we ahieveparallelization of this iteration spae with no ommuniation at all.
Jn, sine there may exist tile origins whih do not belong to the original iteration spae Jn, butsome iterations within these tiles do belong to Jn. These tile origins are depited in Figure 2.12by white dots.Points belonging to the same tile with tile origin ~j0 ∈ TOS, satisfy the system of inequalities

0 ≤ H(~j − ~j0) < 1 (2.7)In order to deal with integer inequalities, we de�ne g to be the smallest natural number suhthat gH is an integer matrix. Thus, we an rewrite the above system of inequalities as follows:
0 ≤ gH(~j − ~j0) < g ⇔

0 ≤ gH(~j − ~j0) ≤ (g − 1) (2.8)We denote
S =

(
gH

−gH

) and ~s =

(
(g − 1)~1

~0

)Equivalently, system (2.8) beomes:
S(~j − ~j0) ≤ ~s (2.9)

32 Preliminary Conepts - Mathematial Bakground
Note that if ~j0 = 0, S(~j − ~j0) ≤ ~s is satis�ed i� a point belongs to TIS.Example 2.4: If we apply the tiling transformation of Figure 2.12 to the iteration spae ofExample 2.3, then, as shown in Figure 2.12,1. Jn is transformed by matrix H to the tile spae

JS = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2)}2. The tile iteration spae ontains the points TIS = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}.3. The tile spae is transformed by matrix P to the tile origin spae
TOS = {(0, 0), (0, 2), (0, 4), (0, 6), (3,−1), (3, 1), (3, 3), (3, 5), (6, 0), (6, 2)}Note that points (0, 0), (3,−1) ∈ TOS do not belong to Jn.Sine g = 6, the system of inequalities S(~j − ~j0) ≤ ~s desribing the boundaries of a tile is

2 0

1 3

−2 0

−1 −3

(
j1 − j01

j2 − j02

)
≤

5

5

0

0

2.6.3 Tile DependenesAs seen in page 27, one of the �nal goals of tiling is to onstrut a more eÆient parallel exeutionshedule for a spei� appliation. Instead of sheduling iterations, as in §2.5, we should nowshedule tiles. Thus, instead of dependenes among iterations (see De�nition 2.4), we shouldtake into onsideration the dependenes among tiles.Dependenes among tiles are given by the olumn-vetors of the tile dependene matrix
DS , whih is de�ned as follows:

DS = { ~dS | ~dS = ⌊H(~jt0 + ~d)⌋, ~d ∈ D, ~jt0 ∈ Zn ∧ ⌊H ~jt0⌋ = 0},where ~jt0 denotes the index points belonging to the �rst omplete tile starting from iteration

2.6 Loop Transformations 33
(0, . . . , 0) (tile (0, . . . , 0)).Given an algorithm with dependene matrix D, for a tiling to be legal, it must hold HD ≥ 0(see [IT88℄, [RS92℄). This ensures that tiles are atomi and that the initial exeution order ispreserved. In the opposite ase, any exeution order of tiles would result in a deadlok (seeFigure 2.15).

j2

j1

tile (0,0)

tile (1,0)

tile (0,1)

tile (1,1)

tile (2,1)

tile (0,2)

tile (1,2)

tile (2,2)

tile (0,3)

tile (1,3)

Iteration space

−=
21
03

P

=
31
02

6
1H

Tiling matrices

−=
11
01

D

Dependence matrix

−
=

2
1

3
1

0
3
1

HD

< 0Figure 2.15: Validity of a tiling transformation.All elements of matrix HD should be non-negative. In this �gure ~h2
~d1 < 0. Thus, we an �ndno time sheduling of tiles whih preserves dependenes. For example, tile (1, 2) is dependent ontile (1, 1) and tile (1, 1) is dependent on tile (1, 2). Assuming an atomi exeution of tiles, thistiling results to a deadlok.

In this thesis, as in [GSK01℄, we assume that all dependene vetors are smaller than thetile size, thus they are entirely ontained in eah tile's area. This means that all elements ofmatrix HD are smaller than 1 (~hi
~dj ≤ 1, ∀i, j = 1, . . . , n) [Xue97b℄, or, alternatively, that thetile dependene matrix DS ontains only 0's and 1's. This assumption is quite reasonable, sinedependene vetors for ommon problems are relatively small, while tile sizes may result to beorders of magnitude greater in systems with very fast proessors. In this ase every tile needsto exhange data only with its nearest neighbors, one in eah dimension of JS .

34 Preliminary Conepts - Mathematial Bakground2.7 Overlapping vs. Non-Overlapping Exeution2.7.1 Non-Overlapping Exeution PoliyIn [HS98℄, Hodzi and Shang have presented a sheme for sheduling loops that have beentransformed by a tiling transformation. Their approah is to minimize the total exeution time,as follows: First, the optimal tiling matrix H is determined and then the tiling transformationHis applied to the original iteration spae. The resulting tile spae JS is sheduled using a lineartime hyperplane Π. All tiles along a ertain dimension are mapped to the same proessor. Totalexeution of tiles onsists of suessive omputation phases interleaved with ommuniation ones.A proessor reeives the data needed to exeute a tile at time step i, performs the omputationsand sends to its neighboring proessors the boundary data, whih will be used for tile alulationsin time step i+ 1.Thus, the total exeution time is given by formula:
Tnonoverlap = ℘(tcomp + tcomm) (2.10)where ℘ is the number of time steps needed to omplete the parallel exeution (makespan),

tcomp is the exeution time of a tile and tcomm is the ommuniation time.Therefore, the overall parallel loop exeution onsists of atomi omputations of tiles inter-leaved with ommuniation for the transmission of the results to neighboring proessors. Sinethe tile spae JS has only the unitary dependene vetors (see §2.6.3 and §B.5), the optimallinear time shedule an be easily proven to be: Π = [1 1 . . . 1] [HS98℄. In Figure 2.16, thenon-overlapping exeution poliy is shown.A possible implementation of this exeution model an be summarized by the followingpseudoode:foraross (t1=lS1 ; t1 ≤ uS
1 ; t1 + +)...foraross (tn−1=lSn−1; tn−1 ≤ uS

n−1; tn−1 + +)/*Sequential exeution of tiles assigned to this CPU*/for (tn=ln; tn ≤ un; tn + +){Reeive data from neighboring tilesCompute this tileSend data to neighboring tiles
}

2.7 Overlapping vs. Non-Overlapping Exeution 35

4

receive(data,p1)

3

2

send(data,p2)

compute

P3

P

P

P
P

comm
comm
comm

compute

compute

4P

2

P

P

P1

5

6

t t t t t t1 2 3 4 5 6

compute
compute
compute comm

comm
comm

compute
compute

compute

comm
comm
commFigure 2.16: Non-overlapping Exeution Poliyfor a tile spae, using six proessors. We see that the overall shedule has omputation subphasesinterleaved with ommuniation ones.2.7.2 Overlapping Exeution PoliyThe previous quite straightforward model of exeution results in very good exeution times, sineit exploits all inherent parallelism at the tile level. However, one of its important drawbaks isthat eah proessor has to wait for essential data before starting the omputation of a ertaintile, and wait for the transmission of the results to its neighbors, thus resulting in signi�antidle proessor time. It would be ideal if a node was able to reeive, ompute and send data atthe same time. Modern network interfaes (NICs) have DMA engines that enable them to workin parallel with the CPU. This means that some ommuniation work an be overlapped withatual CPU yles. In fat, even some part of the non-bloking ommuniation needs the CPU,i.e. DMA initialization. Nevertheless, all subsequent data transferring ations an be ideallyoverlapped with useful omputation.However, what really imposes suh ineÆient proessor utilization, is the data ow betweensuessive time steps. Spei�ally, it seems that omputations and respetive ommuniationsubsteps for eah time step should be serialized to preserve the orret exeution order. Everyproessor should �rst reeive data, then ompute and �nally send the results to be used atthe next time step by its neighbor. A muh more thorough look at the orret data ow inthe non-overlapping ase, reveals the following interesting property: If we slightly modify theinitial linear shedule, then we ould overlap some ommuniation time with omputations. This

36 Preliminary Conepts - Mathematial Bakground
means that, in eah time step, the proessor should send and reeive data that is not diretlydependent to the data omputed at this step. A valid time exeution poliy would be for aproessor to reeive data from all neighbors to use them at k+ 1 time step, send data produedat previous time step (k−1) and ompute its results (Figure 2.17). In this ase, every proessoromputes a tile and, at the same time, sends data produed in the previous step and reeivesdata needed in next one. In Figure 2.17 the overlapping exeution poliy is shown. A moredetailed desription of this shedule an be found in [GSK01℄, [STK02℄, [Sot04℄.

2

3

4

1

2

3

4

5

6

t t t t t t

k−1 k k+1 k+2

1 2 3 4 5 6

P

P

P

P

P

P

P

P

P

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit dma transmit
compute

dma transmit
compute

transmitdma

dma transmit

compute

compute computeFigure 2.17: Overlapping Exeution Poliy.Consider, for example, proessor P3 at k time step: while it omputes a tile, it onurrentlyperforms the following: sends the results produed during k − 1 time step and reeives datafrom neighbors, to be used during the omputation of the next tile at k + 1 time step. Notethe ars shown in this �gure. They depit the atual ow of data between suessive time steps(omputes-sends-reeives) in a pipelined way. The outome of this shedule is to have suessiveomputations overlapped with ommuniation phases, thus 100% proessor utilization.If we implement the overlapping of omputation and ommuniation, then we will havethe following sheme: A proessor �rst initiates all the non-bloking send operations and thenperforms the atual atomi tile omputations. While the proessor performs omputations, theNIC is reeiving data from neighbors and sending previously omputed data to others as well.When ommuniation work is �nished, the proessor reeives an interrupt.A possible implementation of this exeution model an be summarized by the followingpseudoode:

2.8 Hardware High Performane Features 37
foraross (t1=lS1 ; t1 ≤ uS

1 ; t1 + +)...foraross (tn−1=lSn−1; tn−1 ≤ uS
n−1; tn−1 + +)/*Sequential exeution of tiles assigned to this CPU*/for (tn=ln; tn ≤ un; tn + +){Initialize DMA ardCompute this tileWait for send & reeive to ompleteSynhronize with neighbors

}Aording to the previous properties, the total exeution time for the overlapping shedule,as dedued from Figure 2.17, is given by:
Toverlap = ℘(tstart dma + max(tcomp, tcomm dma) + tsynchro), (2.11)where ℘ is the number of time steps of the parallel exeution (makespan). The time needed toinitiate the DMA engine is tstart dma, tcomp is the tile exeution time, tcomm dma is the ommunia-tion time whih an be overlapped with omputation and tsynchro is the required synhronizationtime between suessive time steps. In orrelation to the parameters used in equation (2.10), itholds that: tinit dma + tcomm dma + tsynchro = tcommSine the onept of overlapping of ations is ruial, it should be noted that the ationsinitiated by a non-bloking all are overlapped with the ations initiated by alls following thenon-bloking all. On the ontrary, a bloking all implies no overlapping of ations, sine afollowing all an be initiated only after the bloking all has ompleted.In order to ahieve atual overlapping of omputation and ommuniation, hardware shouldassist. The CPU and the NIC must be able to work simultaneously on di�erent tasks. The mostimportant issue is support from DMA, whih should exist and be enabled to the NIC. Anotheraspet is that the invoation of DMA ommuniation should be done in user level (User-LevelDMA), without kernel intervention. Furthermore, zero-opy ommuniations should be used and�nally, the software paketization proess involved in every ommuniation must be avoided. Allthese prerequisites are disussed in the following setion.2.8 Hardware High Performane FeaturesReent advanes in high speed networks and improved miroproessor performane are makinglusters of workstations an appealing vehile for ost e�etive parallel omputing. The trendin parallel omputing is to move away from ustom-designed platforms of the established HPCindustry to general purpose systems onsisting of loosely oupled omponents built up from

38 Preliminary Conepts - Mathematial Bakground
single or multi-proessor workstations or PCs.The de-fato 100Mbps networking of ommodity lusters an be a bottlenek for many ap-pliations, when saling beyond a small number of nodes. The last years, new networking teh-nologies suh as SCI [Hel99℄, Myrinet and Gigabit Ethernet o�er inreased bandwidth and lowstartup latenies, whih however, are never eÆiently utilized by user appliations. Therefore,high-performane lusters are introdued, whih provide the omputationally intensive appli-ations with inreased performane using speial ommuniation primitives, suh as Zero-CopyProtools and DMA transfers.2.8.1 Zero-Copy ProtoolsNetwork protool staks, suh as TCP/IP, aggravate the ommuniation proedure with theextra opying of data sent or reeived, to and from kernel spae, respetively. As Figure 2.18depits, when sending data from an appliation (user spae) bu�er to the network, data mustbe initially opied from the appliation bu�er to kernel bu�ers. TCP, IP and network headersmust be added and then, as a paket, transferred to NIC's bu�er for transmission. A respetiveproedure takes plae when data reah the reeiving node.

TCP IP NET

1 2

user space

kernel space

TCP IP NET

buffer

su
pe

r f
as

t

NIC

packet 2packet 1

Figure 2.18: Single-Copy Protool and paketization proessThe previous sequene of ations is unavoidable when using legay network tehnologies,but ould be avoided when novel ommuniation tehnologies are used. SCI ahieves Zero-CopyCommuniation, sine it supports a Distributed Shared Memory approah, whih is implementedusing kernel area memory mapped regions for ommuniation. An SCI ommuniation senarioinvolves the following stages: A proess in an SCI node exports a memory segment, whih isimported by a proess that resides in another SCI node. Every imported memory segment isdiretly mapped to the PCI I/O spae of the PCI-SCI NIC. It is part of the importer's (proess)virtual memory through the prior invoation of an SCIConnetSegment() driver all. When theimporting node needs to send data, it just writes them diretly to the imported memory segment(thus, no kernel opies). Data are transferred to the exporter's memory and ommuniation is

2.8 Hardware High Performane Features 39
performed, without any kernel intervention. No other data proessing is needed within eahsend.2.8.2 DMA transfersMessage data an be usually transferred in two ways: Programmed I/O (PIO) mode and DMAmode. In PIO mode, CPU handles data transferring ompletely, word by word. For example,data transferring of 1Kwords involves the initial opying of these words from main memory tothe NIC's bu�ers with the aid of CPU. From a parallel appliation's point of view, these areonsidered \lost" CPU yles, sine useful alulations ould have been exeuted instead. Onthe ontrary, using DMA mode, CPU just programs the NIC's DMA engine with the informationof whih data to transfer from main memory and where to send it. CPU is not used (or blokedfrom a program's perspetive) during the transfer and an perform other (useful) tasks.The DSM feature of SCI allows the eÆient use of its DMA apabilities. Using speialSCI driver alls, the system returns physially ontiguous alloated memory. This is performedusing the get free pages() kernel routine. The alloated memory is �rst \pinned down"and then mapped to user's virtual memory (Figure 2.19). User is able to read/write thatmemory region like the ordinary memory regions returned by LIBC mallo(). Despite thefat that DMA transfer is only invoked as a kernel system all, the omplete transfer of thespei� memory area will be performed with only one DMA invoation. On the ontrary, evenif the NIC in Figure 2.18 was DMA enabled, a new DMA invoation should take plae for eah
{data,TCP,IP,NET} paket, whih would be time onsuming.

CPU

VMA

PMA

SCI

process

SCI
network

memory mapped
"RAM device"

segment

mapped to

Figure 2.19: Loked and memory mapped \RAM devie" for SCI ommuniations

40 Preliminary Conepts - Mathematial Bakground

3Automati parallel ode generationfor tiled nested loops
In this hapter, we briey desribe an approah for the problem of automatiallygenerating parallel ode for tiled nested loops. Our method is applied to generalparallelepiped tiles and non-retangular spae boundaries as well. It onsists of twosteps:1. generating sequential tiled ode2. parallelizing the sequential tiled odeIn order to generate sequential ode eÆiently, the original problem is divided intothe subproblems of enumerating the tiles and sweeping the points inside every tile.In order to parallelize the sequential tiled ode, we address issues suh as data dis-tribution, iteration distribution and automati message passing.

42 Automati parallel ode generation for tiled nested loops3.1 IntrodutionThe tiling transformation, as desribed in §2.6.2, has been used in literature in two di�erentontexts:
• in order to ensure the loality of data referenes and redue the overall exeution timethrough an eÆient utilization of ahe memory levels [Jim99℄
• in order to parallelize the exeution of a nested loop ode segment with dense dependenes,as desribed in §2.2 and §2.6.2 of this thesis.A lot of researh has been onduted, onerning the seletion of optimal tile size and shape, thatredue the ommuniation ost [BDRR94℄, [Xue97a℄, or the time proessors remain idle [HS02℄,[HCF99℄, [XC02℄. However, the parallelizing ompilers ommunity has been pessimisti aboutusing non-retangular tiling transformations to exeute nested loops in distributed memorymahines. General parallelepiped tiling has not been used in either ommerial or researhompilers ([AMC97℄, [AL93℄, [CMZ92℄, [FHK+91℄, [SLR+95℄). This is due to the fat that asigni�ant overhead is imposed by non-retangular tiling to both ompile time and run time ofthe �nal parallel ode. Apart from [ACN+00℄, [XC02℄, that present some experimental resultsfor 2-dimensional spaes, all previous researh on non-retangular tiling is purely theoretial.All omplete frameworks for the automati generation of parallel tiled ode, suh as the onepresented in [TX00℄, an be applied only for retangular tiling. In this hapter, as in [GAK03℄,we present a method for automatially produing non-retangular tiled ode without imposinga prohibitive overhead either at ompile or at run time.The parallelization of a nested loop ode segment, as depited in Figure 3.1, onsists of thefollowing three steps at minimum:1. A dependene analysis is onduted [Ban88℄, [Pug92℄, so as to determine the optimaltiling transformation, whih minimizes the ommuniation overhead among proessors[BDRR94℄, [Xue97a℄, or the time proessors remain idle waiting for the data needed toarrive from neighboring proessors [HS02℄, [HCF99℄, [XC02℄.2. The initial ode segment is onverted to serial tiled ode, aording to the tiling transfor-mation seleted in the previous step, as desribed in [GAK02b℄, [GAK03℄. This onversionis onsisted of two substeps:(a) Produing the bounds of the tile spae from the bounds of the iteration spae and(b) Produing the appropriate boundary expressions for traversing the internal of eahtile, as well as determining the inremental steps of eah loop index.3. Parallelizing the serial tiled ode, as desribed in [GDAK02a℄. This step onsists of(a) the distribution of data and omputations among proessors and

3.2 Generation of Serial Tiled Code 43
(b) the automati generation of the message passing primitives
Initial
Code

Dependence
Analysis

Tiling
Transformation ParallelizationOptimal

Tiling
Sequential
Tiled Code

Parallel
Tiled CodeFigure 3.1: Automati parallel ode generation for tiled iteration spaes.After seleting the optimal tiling transformation, the initial untiled ode segment should beonverted into serial tiled ode. Then, the serial tiled ode should be parallelized.3.2 Generation of Serial Tiled CodeIn this setion, we elaborate on generating tiled ode that will traverse an iteration spae Jntransformed by a tiling transformation. We all this ode sequential tiled ode. By applyingtiling to Jn, we obtain the tile spae JS , the tile iteration spae TIS and the tile origin spae

TOS. In §2.6.2, it was shown that tiling transformation is a Zn −→ Z2n transformation, whihmeans that a point ~j ∈ Jn is transformed into a tuple of n-dimensional fators (~ja, ~jb), where ~jaidenti�es the tile that the original point belongs to (~ja ∈ JS) and ~jb identi�es the oordinates ofthe point relevant to the tile origin (~jb ∈ TIS). The sequential tiled ode reorders the exeutionof indies enfored by their lexiographi order, resulting in an exeution order desribed by thefollowing sheme:FOR (EVERY tile IN tile spae JS) TRAVERSE THE POINTS IN ITS INTERIORAording to the above, the sequential tiled ode onsists of a 2n-dimensional nested loop. The noutermost loops traverse the tile spae JS , using indies jS
1 , j

S
2 , . . . , j

S
n , and the n innermost loopstraverse the points within tile (jS

1 , j
S
2 , . . . , j

S
n), using indies j′1, j′2, . . . , j′n. We denote lSk , uS

k thelower and upper bounds of index jS
k , respetively. Similarly, we denote l′k, u′k the lower and upperbounds of index j′k. In all ases, lower bounds (lSk or l′k) are of the form: max(lk,0, lk,1, . . .) andupper bounds (uS

k or u′k) of the form: min(uk,0, uk,1, . . .), where lk,j , uk,j are aÆne funtions ofthe outermost indies. The alulation of fators lS1 , . . . , lSn and uS
1 , . . . , u

S
n orresponds to substep2a of §3.1, while the alulation of fators l′1, . . . , l′n and u′1, . . . , u′n orresponds to substep 2b.3.2.1 Enumerating the tilesA onventional approahAnourt and Irigoin in [AI91℄ dealt with the subproblem of traversing the tile spae, by on-struting an appropriate set of inequalities. Aording to their approah, a tile ~jS belongs tothe tile spae JS (~jS ∈ JS), i� there is an iteration ~j, whih ful�lls both riteria:

44 Automati parallel ode generation for tiled nested loops
1. It belongs to the iteration spae Jn. That is, ~j ∈ Jn ⇔

B~j ≤ ~b(reall formula (2.1)).2. It belongs to tile ~jS with origin iteration ~j0 = H−1 ~jS (reall formula (2.6)). Note that,aording to the de�nitions given in §2.6.2, a point ~j belongs to a tile with tile origin ~j0,i� it satis�es the set of inequalities: S(~j − ~j0) ≤ ~s. Replaing in this set ~j0 = H−1 ~jS , itan be equivalently written as:
(

−gI gH

gI −gH

)(
~jS

~j

)
≤ ~sCombining the above systems, we obtain the �nal system of inequalities:

0 B

−gI gH

gI −gH

(
~jS

~j

)
≤

(
~b

~s

) (3.1)Anourt and Irigoin propose the appliation of Fourier-Motzkin elimination method to the abovesystem in order to obtain proper formulas for the lower and upper bounds of the 2n-dimensionalloop that will traverse the tiled spae. Note that the n outermost loop boundaries produed areappropriate for traversing the tile spae. The n innermost loop boundaries are appropriate forsanning the interior of tiles and an be presently ignored.Example 3.1: Consider the following nested loop ode segment:for (j1 = 0; j1 ≤ 39)for (j2 = 0; j2 ≤ 29){A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];
}The orresponding iteration spae Jn is: Jn = {(j1, j2)|0 ≤ j1 ≤ 39, 0 ≤ j2 ≤ 29}. Let us applya tiling transformation de�ned by matrix

H =

[
1
5 − 1

10

− 1
20

3
20

] or, equivalently, by P =

[
6 4

2 8

]whih is legal [RS92℄ (sine HD ≥ 0) and has both ommuniation and sheduling-optimal shape([BDRR94℄, [HS98℄, [HS02℄, [HCF97℄, [Xue97a℄), for the spei� problem. Then, as shown in

3.2 Generation of Serial Tiled Code 45

p1=(6,2)

p2=(4,8)

j1

j2

h1=(1/5,-1/10)

h2=(-1/20,3/20)

Tile Iteration Space (TIS)

(b)

j1S

j2S Tile Space (JS)

(c)

(0,0)
(1,0)

(2,0)
(3,0)

(4,0)
(5,0)

(-1,0)

(0,1)
(1,1)

(-1,1)

(2,1)
(3,1)

(4,1)
(5,1)

(2,-1)
(3,-1)

(4,-2)

(5,-1)
(6,-1)

(1,-1)
(0,-1)

(-2,1)

(0,2)
(1,2)

(2,2)
(3,2)

(4,2)

j1

j2

(-1,2)
(-2,2)

(-2,3)
(-1,3)

(0,3)
(1,3)

(-3,3)

(-2,4) (2,3)(-3,4)

(6,0)

(7,-1)

(4,-1)

(5,-2)
(6,-2)

(7,-2)

(5,2)

Iteration Space (Jn)

tile origins
(a)

Figure 3.2: Example 3.1: Representation of the spaes used.(a) The initial iteration spae is partitioned into idential parallelogram tiles, whih are identi�edby a unique vetor indiated inside eah tile. The origin of eah tile has been illustrated by agrey dot. Some of the origins may not belong to the initial iteration spae Jn. (b) The tileiteration spae inludes all iterations of tile (0, 0), whih starts at the axes origin. () The tilespae JS is derived from the iteration spae by formula (2.4). All iterations of the the same tilein sub�gure (a) are mapped to only one point in JS of sub�gure ().

46 Automati parallel ode generation for tiled nested loops
Figure 3.2b, TIS ontains the points {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4), . . . , (7, 5),

(7, 6), (7, 7), (7, 8), (8, 7), (8, 8), (8, 9), (9, 9)}. In addition, as shown in Figure 3.2, Jn istransformed by matrix H to the tile spae JS = {(−3, 3), (−3, 4), (−2, 1), (−2, 2), (−2, 3),

(−2, 4), . . . , (6,−2), (6,−1), (6, 0), (7,−2), (7,−1)}. In the sequel, as shown by the grey dots inFigure 3.2a, the tile spae JS is transformed by matrix P to TOS = {(−6, 18), (−2, 26), (−8, 4),

(−4, 12), (0, 20), (4, 28), . . . , (28,−4), (32,−4), (36, 12), (34,−2), (38, 6)}.
The set of inequalities desribing the iteration spae Jn is:

1 0

0 1

−1 0

0 −1

(
j1

j2

)
≤

39

29

0

0

The system of inequalities S(~j − ~j0) ≤ ~s (see formulas (2.8), (2.9)) desribing a tile is (sine

g = 20):

4 −2

−1 3

−4 2

1 −3

(
j1 − j01

j2 − j02

)
≤

19

19

0

0

Thus, aording to formula (3.1), the �nal system proposed my Anourt and Irigoin for thealulation of loop indies is:

0 0 1 0

0 0 0 1

0 0 −1 0

0 0 0 −1

−20 0 4 −2

0 −20 −1 3

20 0 −4 2

0 20 1 −3

(
~jS

~j

)
≤

39

29

0

0

19

19

0

0

This system of inequalities is not suitable for a nested loop ode segment, sine it ontainsno inequalities for the expressions of outer loop boundaries of jS

1 and jS
2 . An appliation ofthe Fourier-Motzkin elimination method (see §2.4) an onvert it to the equivalent system of

3.2 Generation of Serial Tiled Code 47
inequalities:

1 0 0 0

−1 0 0 0

1 4 0 0

0 1 0 0

3 2 0 0

−1 −4 0 0

−3 −2 0 0

0 −1 0 0

−5 0 1 0

0 20 1 0

−6 −4 1 0

0 0 1 0

0 −20 −1 0

5 0 −1 0

6 4 −1 0

0 0 −1 0

0 0 0 1

0 −20 −1 3

10 0 −2 1

0 0 0 −1

−10 0 2 −1

0 20 1 −3

(
~jS

~j

)
≤

7

3

14

4

19

4

4

2

19

87

9

39

19

0

0

0

29

19

0

0

9

0

(3.2)

Only the eight �rst rows of this system are useful for traversing the tile spae JS . We may utthem o� and go on with the system of inequalities:

1 0

−1 0

1 4

0 1

3 2

−1 −4

−3 −2

0 −1

~jS ≤

7

3

14

4

19

4

4

2

48 Automati parallel ode generation for tiled nested loops
An appliation of the ad-ho simpli�ation method [BW95℄ an detet and eliminate two redun-dant inequalities. Finally, the simpli�ed system

1 0

−1 0

1 4

3 2

−1 −4

−3 −2

~jS ≤

7

3

14

19

4

4

may be used for automatially produing the ode, whih sans the tile spae:for(jS

1 =-3; jS
1 ≤7; jS

1 ++)for(jS
2 =max(⌈−4−jS

1
4 ⌉, ⌈

−4−3jS
1

2 ⌉); jS
2 ≤min(⌊14−jS

1
4 ⌋,⌊19−3jS

1
2 ⌋); jS

2 ++){Exeute tile (jS
1 , j

S
2)

}

Reduing the ompile time overhead of tilingIn order to redue the overhead imposed at ompile time by tiling, we should primarily reduethe omplexity of the Fourier-Motzkin elimination method used. Reall from §2.4 that it dependsdoubly exponentially on the number of loops involved. Thus, in order to derease the ompiletime overhead, we should �rst of all examine whether we may redue the number of loop indiesinvolved in the set of inequalities (3.1).The subproblem of traversing the tile spae JS has been onsidered by many authors asan example of applying the non-unimodular tiling transformation to the original iterationspae. More spei�ally, Ramanujam in [Ram92℄ and [Ram95℄ applied the non-unimodulartiling transformation to the set of inequalities B~j ≤ ~b desribing the iteration spae, as follows:
B~j ≤ ~b⇒ BH−1H~j ≤ ~b⇒

BP ~jS ≤ ~b (3.3)Here again, the appliation of Fourier-Motzkin elimination method to the derived system ofinequalities is proposed, in order to obtain losed form formulas for tile bounds lS1 , . . . , lSn and
uS

1 , . . . , u
S
n .Unfortunately, the previous approah fails to enumerate tiles exatly. This is beause thesystem of inequalities in (3.3) is satis�ed by points in the tile spae JS , whose tile origins belongto Jn. However, as stated in §2.6.2, there exist some points in TOS that do not belong to Jn.

3.2 Generation of Serial Tiled Code 49
Although these points do not satisfy the preeding systems of inequalities, they must be traversedas well. In Figure 3.2a, tiles in the lower boundaries, suh as (-3,3), (-2,1), (4,-2) and others, arenot sanned by this method, beause their origins do not belong to the original iteration spae
Jn. Consequently, a modi�ation is required, so that Fourier-Motzkin elimination method ansan all tiles orretly. As shown in Figure 3.5, what is needed is a proper redution of the lowerbounds and/or a proper inrease of the upper bounds of our spae, in order to inlude all tileorigins. Lemma 3.1 determines how muh we must expand spae bounds, in order to inlude allpoints of TOS.Lemma 3.1 If we apply tiling transformation P to an iteration spae Jn, whose bounds areexpressed by the system of inequalities B~j ≤ ~b, then for all tile origins ~j0 ∈ TOS, it holds:

B~j0 ≤ ~b′, (3.4)where ~b′ is determined by the expression:
b′i = bi +

g − 1

g

n∑

r=1

(~βi · ~pr)
−, i = 1, . . . , n (3.5)where ~βi is the i-th row of matrix B, ~pr is the r-th olumn of matrix P and (~βi · ~pr)

− =

max(−~βi · ~pr, 0).Proof: We suppose that point ~j ∈ Jn belongs to tile with origin ~j0. Sine P onsists of nlinearly independent vetors, ~j an be expressed as the sum of ~j0 and a linear ombinationof the olumn-vetors of the tiling matrix P :
~j = ~j0 +

n∑

l=1

λl~pl (3.6)In addition, as in formula (2.8), the following system of inequalities holds: 0 ≤ gH(~j− ~j0) ≤

(g − 1). The i-th row of this inequality an be rewritten as follows: 0 ≤ ~hi · (~j − ~j0) ≤
g−1

g
,where ~hi is the i-th row-vetor of matrix H = P−1. Replaing in this expression by (3.6),we get:

0 ≤ ~hi ·
n∑

l=1

λl~pl ≤
g − 1

gAs P = H−1 it holds that ~hi · ~pi = 1 and ~hi · ~pl = 0 if i 6= l. Consequently, the last formulaan be rewritten as follows:
0 ≤ λi ≤

g − 1

gfor all i = 1, . . . , n. If multiplied by ~βk · ~pi, this inequality gives:1. If ~βk · ~pi ≥ 0: λi
~βk · ~pi ≥ 0

50 Automati parallel ode generation for tiled nested loops
2. If ~βk · ~pi < 0: λi

~βk · ~pi ≥
g−1

g
~βk · ~piAording to the de�nitions of the symbol (~βk · ~pi)

− = max(− ~βk · ~pi, 0), the previous inequal-ities an in every ase be rewritten as follows: λi
~βk · ~pi ≥ − g−1

g
(~βk · ~pi)

− ⇒ −λi
~βk · ~pi ≤

g−1
g

(~βk · ~pi)
−. If added for i = 1, . . . , n, this inequality gives:

−

n∑

i=1

λi
~βk · ~pi ≤

g − 1

g

n∑

i=1

(~βk · ~pi)
− (3.7)For eah ~j ∈ Jn the system of inequalities B~j = ~b holds. The k-th row of this system anbe written as follows: ~βk · ~j ≤ bk. We an replae ~j in this inequality, using formula (3.6)as follows: ~βk · (~j0 +

n∑
i=1

λi~pi) ≤ bk ⇒ ~βk · ~j0 ≤ bk − ~βk · (
n∑

i=1

λi~pi)

⇒ ~βk · ~j0 ≤ bk −
n∑

i=1

λi(~βk · ~pi)If we ombine this inequality with (3.7), we onlude that ~βk · ~j0 ≤ bk + g−1
g

n∑
i=1

(~βk · ~pi)
−.Thus, for eah tile with origin ~j0, whih has at least one point in the initial iteration spae,it holds that B~j0 ≤ ~b′, where the vetor ~b′ is onstruted so as its k-th element is given bythe form: b′k = bk + g−1

g

n∑
i=1

(~βk · ~pi)
−. ⊣If we work with the tile spae JS and take into aount that ~j0 = P ~jS , we equivalently getthe system of inequalities:
BP ~jS ≤ ~b′ (3.8)If it is given that matrix B onsists of only integer elements, ~b′, an be determined by theexpression:

b′i = bi + ⌊
g − 1

g

n∑

r=1

(~βi · ~pr)
−⌋, i = 1, . . . , n (3.9)Geometrial interpretation: The term added to eah element of ~b expresses a parallel shiftof the orresponding bound of the initial spae. In Figure 3.3, we present an example of ourmethod. Eah row ~βi of matrix B expresses a vetor vertial to the orresponding bound of theiteration spae with its diretion outwards. The equation of this boundary surfae is ~βi · ~x = bi.A parallel shift of this surfae by a vetor ~x0 is expressed by the equation ~βi · (~x − ~x0) = bi ⇔

~βi ·~x = bi + ~βi · ~x0. As shown in Figure 3.3, we shift a boundary surfae by vetor −~pr, i� the tileedge-vetor ~pr forms an angle greater than 90o with vetor ~βi (as the angles between the vetors
~β1 and ~p1, ~β1 and ~p2, ~β3 and ~p1, ~β3 and ~p2, ~β4 and ~p1 of Figure 3.3), or, equivalently, i� ~pr · ~βi < 0.

3.2 Generation of Serial Tiled Code 51

j1

j2

p2
β1

β3

p1

β2

β4

p1

- p1

β4

- p1

- p2

p1β1
p2β1

- p2

- p1

p2β3

p1β3Figure 3.3: Expanding iteration spae bounds to inlude all tile origins.The dark grey area orresponds to the initial iteration spae area. The light grey area indiatesthe expansion of the iteration spae, in order to inlude all tile origins. It is shown that aniteration spae boundary is shifted, i� there is an inverse tiling vetor ~pr, whih traverses thisboundary outside → inside.This fat an be expressed as follows: if the dot produt of ~pr (one of the olumns of the matrix
P) and ~βi (a row of B) is negative, then this dot produt is subtrated from the onstant bi.Equivalently, in formula (3.5) the term (~βi · ~pr)

− is added to the onstant bi for all vetors ~pr.The multiplying fator g−1
g expresses the fat that a tile is a semiopen hyperparallelepiped andthus we need not ontain in the tile spae the tiles whih just touh the initial iteration spae.Note, however, it was proven that the expanded spae inludes all origins of tiles in JS .It was not proven that it ontains only origins of tiles in JS . In other words, this expansionof bounds may inlude some redundant tiles, whose origins belong to the extended spae, buttheir internal points remain outside the original iteration spae. These tiles will be aessed, buttheir internal points will not be swept, as it will be shown next, thus imposing little omputation

52 Automati parallel ode generation for tiled nested loops
1p

2p

iβ

1p

1p

2p

1p

2p

iβ

Jn
Jn JnJnFigure 3.4: Expanding iteration spae bounds to inlude all tile origins.The grey dots orrespond to iteration inside Jn, while the white dots orrespond to iterationsoutside Jn. This �gure indiates that the expansion of the iteration spae should be less thanthe dot produt of vetors ~βi and ~pr, so as not to inlude tiled that just touh the initial iterationspae boundaries, with no integer points inside Jn. The dashed grey lines orresponds to theexpansion of bounds, aording to the dot produt of vetors ~βi and ~pr. The solid grey linesorrespond to the �nal expansion, so as not to inlude a lot of redundant tiles.

overhead in the exeution of the sequential tiled ode.
Example 3.2: We will now enumerate the tiles generated by the tiling transformationdesribed in Example 3.1, using the method desribed just above. Following our approah,we should onstrut the system of inequalities in (3.8) making use of the expression in (3.9).Expression (3.9) in our ase gives ~b′ =

(
39 29 9 9

)T and thus, the system in (3.8) beomes:

6 4

2 8

−6 −4

−2 −8

(
jS
1

jS
2

)
≤

39

29

9

9

The expansion of bounds for this example is shown in Figure 3.5. An appliation of the Fourier-

3.2 Generation of Serial Tiled Code 53
Motzkin elimination method an onvert this system to its equivalent:

1 0

−1 0

3 2

1 4

−3 −2

−1 −4

(
jS
1

jS
2

)
≤

8

4

19

14

4

4

Note that the implementation used for the Fourier-Motzkin elimination method an take intoaount that index variables an only be integer, and further simplify the �nal expressions,applying the oor or eiling funtions where appropriate. Consequently, a loop that enumeratesthe tiles in our ase has the form:for (jS

1 = −4; jS
1 ≤ 8; jS

1 ++)for (jS
2 =max(⌈−4−3jS

1
2 ⌉, ⌈

−4−jS
1

4 ⌉); jS
2 ≤min(⌊19−3jS

1
2 ⌋, ⌊

14−jS
1

4 ⌋); jS
2 ++) {Exeute tile (jS

1 , j
S
2)

}Note that tiles (8,−3) and (−4, 4) are redundant (Figure 3.5).
3.2.2 Sanning the points within a tileA onventional approahIn order to traverse the internal points of every tile, one an use the n innermost loop indiesof the system of inequalities produed when applying the Fourier-Motzkin elimination methodto the system (3.1). However, it is more eÆient to separately apply the Fourier-Motzkinelimination method to the systems:1.

B~j ≤ ~b (3.10)Reall from formula (2.1) that this systems indiates that iteration ~j belongs to the itera-tion spae.

54 Automati parallel ode generation for tiled nested loops

(0,0)
(1,0)

(2,0)
(3,0)

(4,0)
(5,0)

(-1,0)

(0,1)
(1,1)

(-1,1)

(2,1)
(3,1)

(4,1)
(5,1)

(2,-1)
(3,-1)

(4,-2)

(5,-1)
(6,-1)

(1,-1)
(0,-1)

(-2,1)

(0,2)
(1,2)

(2,2)
(3,2)

(4,2)

j1

j2

(-1,2)
(-2,2)

(-2,3)
(-1,3)

(0,3) (1,3)

(-3,3)

(-2,4) (2,3)(-3,4)

(6,0)

(7,-1)

(4,-1)

(5,-2)
(6,-2)

(7,-2)

(5,2)

redundant
tile

redundant
tile

Figure 3.5: Example 3.2: Expanding iteration spae bounds to inlude all tile origins.The dark grey area orresponds to the iteration spae area. The light grey area indiates theexpansion of the iteration spae, in order to inlude all tile origins, aording to formulas (3.4),(3.5). Unfortunately, the expanded area ontains also two tile origins, whih do not orrespondto a tile in JS . Fortunately, they may be loated only in near the edges of the expanded iterationspae. Thus, their number is negligible in omparison to the number of tiles of JS .2.
(

gH

−gH

)(
~j − ~j0

)
≤

(
(g − 1)~1

~0

) (3.11)Reall from formulas (2.8), (2.9) that this system indiates that iteration ~j belongs to tilewith origin iteration ~j0 = H−1 ~jS .This modi�ation is used in our implementation for automatially produing tiled ode. Asdedued during our experimentation, it results to reduing both ompile and run time of the�nal ode.Compile time is redued beause there is no more need for applying the ad-Ho and ex-at simpli�ation methods to the whole system produed by (3.1), but only to its subsystemorresponding to the n outer loop indies.

3.2 Generation of Serial Tiled Code 55
Run time is redued beause the ombination of inequalities produed by (3.10) and (3.11)are less than inequalities produed by (3.1). This is partly due to the fat that the exatsimpli�ation method may not be able to detet the redundany of an inequality in Zn if it isnot redundant in Rn. On the other hand, inequalities originating from di�erent systems (3.10)and (3.11) are rarely redundant in respet to eah other. Thus, it is almost improbable to havean extra inequality in the �nal system due to not applying the simpli�ation methods to theombination of systems (3.10), (3.11).In addition, when this modi�ation is used, it is possible to hek even less inequalities fortiles that are not loated near a boundary of the iteration spae, at run time. If a tile rosses theiteration spae boundaries, then all inequalities produed by (3.10), (3.11) should be hekedduring the san of the interior of the tile. Otherwise, if a tile does not ross any iterationboundary, only inequalities derived from (3.11) may be heked at run time. This simpli�ationpresupposes the use of a method for distinguishing tiles into internal and boundary. As internalwe may haraterize a tile with all its verties in Jn.Lemma 3.2 If all 2n verties of a tile (~c = ~j0 +

n∑
i=1

xi
g−1

g ~pi for xi ∈ {0, 1}, i = 1, . . . , n) belongto the onvex iteration spae Jn, then all iterations of this tile belong to Jn.Proof: Aording to Lemma C.1, in order to prove this lemma, we may only prove thatevery iteration inside a tile ~jS may be alulated by an expression of the form (C.1).In the proof of Lemma 3.1, we have written that every iteration ~j an be expressed as thesum of its tile origin ~j0 and a linear ombination of the olumn-vetors of the inverse tilingmatrix P :
~j = ~j0 +

n∑

i=1

λi~pi (3.12)where 0 ≤ λi ≤ g−1
g

for all i = 1, . . . , n. Equation (3.12) an be equivalently rewritten asfollows
~j =

∑

∀xi ∈ {0, 1}

i = 1..n

[
n∏

i=1

[(
1 −

λig

g − 1

)
(1 − xi) +

λig

g − 1
xi

](
~j0 +

n∑

i=1

xi

g − 1

g
~pi

)] (3.13)sine1. The total multiplying fator of ~j0 equals to 1.
∑

∀xi ∈ {0, 1}

i = 1..n

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
=

∑
∀xi ∈ {0, 1}

i = 1..n− 1

xn = 0

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
+

56 Automati parallel ode generation for tiled nested loops
∑

∀xi ∈ {0, 1}

i = 1..n− 1

xn = 1

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
=

∑
∀xi ∈ {0, 1}

i = 1..n− 1

n−1∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

] (
1 − λng

g−1

)
+

∑
∀xi ∈ {0, 1}

i = 1..n− 1

n−1∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
λng
g−1 =

∑
∀xi ∈ {0, 1}

i = 1..n− 1

n−1∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]Eliminating this way the rest of the variable xi, i = 1, . . . , n− 1, we onlude that
∑

∀xi ∈ {0, 1}

i = 1..n

n∏

i=1

[(
1 −

λig

g − 1

)
(1 − xi) +

λig

g − 1
xi

]
= 1 (3.14)

2. The total multiplying fator of ~pl, (l = 1, . . . , n) equals to λl.
∑

∀xi ∈ {0, 1}

i = 1..n

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
xl

g−1
g

=

∑
∀xi ∈ {0, 1}

i = 1..n, i 6= l

xl = 0

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
xl

g−1
g

+

∑
∀xi ∈ {0, 1}

i = 1..n, i 6= l

xl = 1

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
xl

g−1
g

=

0 +
∑

∀xi ∈ {0, 1}

i = 1..n, i 6= l

∏
i=1..n,i 6=l

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
λlg
g−1

g−1
g

(3.14)
= λlFrom (3.13), (3.14), we onlude that iteration ~j an be expressed in respet to verties

~c by a formula of the type (C.1). Thus, if all verties ~c belong to Jn, then iteration ~j of thistile also belongs to Jn

⊣

Example 3.3: In order to san the tiles enumerated by the ode produed in Example 3.1, wemay use the 14 remaining inequalities of the system (3.2). Otherwise, we may use a ombination

3.2 Generation of Serial Tiled Code 57
of systems

1 0

0 1

−1 0

0 −1

(
j1

j2

)
≤

39

29

0

0

orresponding to formula (3.10) and

4 −2

−1 3

−4 2

1 −3

(
j1 − j01

j2 − j02

)
≤

19

19

0

0

orresponding to formula (3.11). The former system of inequalities has already the requiredform and need not be onverted through a Fourier-Motzkin elimination. An appliation of theFourier-Motzkin elimination method to the latter system of inequalities results to the equivalentsystem:

1 0

−1 0

−1 3

−2 1

2 −1

1 −3

(
j1 − j01

j2 − j02

)
≤

9

0

19

0

9

0

Note that this way only 4 + 6 = 10 inequalities should be heked for eah iteration, insteadof 14, as dedued from formula (3.1) in Example 3.1. In sequel, one an �ll in the missing partof the ode produed in Example 3.1, aording to the systems of inequalities desribed justabove. for(jS

1 =-3; jS
1 ≤7; jS

1 ++)for(jS
2 =max(⌈−4−jS

1
4 ⌉, ⌈

−4−3jS
1

2 ⌉); jS
2 ≤min(⌊14−jS

1
4 ⌋,⌊19−3jS

1
2 ⌋); jS

2 ++){/* Exeute tile (jS
1 , j

S
2) */

j01=6jS
1 +4jS

2 ; /* Calulate ~j0 = P ~jS */
j02=2jS

1 +8jS
2 ;for(j1=max(0, j01); j1 ≤min(39, j01+9); j1++)for(j2=max(0, j02-9+2(j1 − j01), j02+⌈ j1−j01

3 ⌉);
j2 ≤min(29, j02+⌊19+(j1−j01)

3 ⌋, j02+2(j1 − j01)); j2++){/* Exeute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];
}

}

58 Automati parallel ode generation for tiled nested loops
A redution of the run time an be ahieved by distinguishing the tiles into internal andboundary, aording to Lemma 3.2. Suh a disrimination implies a hek whether all vertiesof the tile belong to Jn. This hek is neessary to be onduted one for all 2n verties of eahtile, while without this disrimination, the iteration spae boundaries are heked one for eahiteration. Thus, the above ode segment an be rewritten as follows;for(jS

1 =-3; jS
1 ≤7; jS

1 ++)for(jS
2 =max(⌈−4−jS

1
4 ⌉, ⌈

−4−3jS
1

2 ⌉); jS
2 ≤min(⌊14−jS

1
4 ⌋,⌊19−3jS

1
2 ⌋); jS

2 ++){/* Exeute tile (jS
1 , j

S
2) */

j01=6jS
1 +4jS

2 ; /* Calulate ~j0 = P ~jS */
j02=2jS

1 +8jS
2 ;/* Chek whether tile (jS

1 , j
S
2) rosses the iteration spae *//* boundaries */hek=TILE IN;for(x1=0; x1 ≤1; x1++)for(x2=0; x2 ≤1; x2++){/* Calulate vertex ~c = ~j0 +

n∑
i=1

xi~pi for all xi ∈ {0, 1} */
c1=j01+6x1+4x2;
c2=j02+2x1+8x2;/* Chek whether ~c ∈ Jn */if(c1<0 || c1>39 || c2<0 || c2>29){hek=TILE CROSS;break;
}if(hek==TILE CROSS) break;

}if(hek==TILE CROSS) {/* Exeute tile (jS
1 , j

S
2) in ase it may ross *//* the iteration spae boundaries */for(j1=max(0, j01); j1 ≤min(39, j01+9); j1++)for(j2=max(0, j02-9+2(j1 − j01), j02+⌈ j1−j01

3 ⌉);
j2 ≤min(29, j02+⌊19+(j1−j01)

3 ⌋, j02+2(j1 − j01)); j2++){/* Exeute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];
}

}else {/* Exeute tile (jS
1 , j

S
2) in ase it does not ross *//* the iteration spae boundaries */for(j1=j01; j1 ≤ j01+9; j1++)for(j2=max(j02-9+2(j1 − j01), j02+⌈ j1−j01

3 ⌉);
j2 ≤min(j02+⌊19+(j1−j01)

3 ⌋, j02+2(j1 − j01)); j2++){/* Exeute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];
}

}
}

3.2 Generation of Serial Tiled Code 59
Note that the generation of the above ode segment is ompletely automated, when theinitial iteration spae and the tiling transformation are given. In addition, the loop boundsgenerated in this example for the n innermost loop indies an be also ombined with the loopbounds generated for the n outermost loop indies in Example 3.2.

Reduing the run time overhead of tilingIn order to ahieve a redued run time omplexity of the ode generated automatially, as seenin Example 3.3, one should redue the omplexity of the loop bounds, whih are heked for alltiles. That is, one should redue the omplexity of inequalities generated from formula (3.11). Itis ahieved by applying a linear transformation to the initial iteration spae, so as to transformnon-retangular tiles into retangular ones.

(a) a conventional approach (b) reducing the run-time overheadFigure 3.6: Sanning the iterations of a tile.(a) Iterations of a tile are exeuted aording to their lexiographi order, parallely to the axes.(b) Iterations are sanned in suh an order that traes to be parallel to the tile edges.The method is based on the use of a non-unimodular transformation. The �nal goal is totraverse the TIS and then slide the points of TIS properly, so as to san all points of Jn. Inorder to ahieve this, the TIS is transformed to a retangular spae, alled the transformed tileiteration spae (TTIS). The TTIS is traversed with an n-dimensional nested loop and thenthe indies of the loop are transformed, so as to return to the proper points of the TIS.In other words, there is needed a transformation pair (P ′, H ′): TTIS P ′

−→ TIS and TIS H′

−→

TTIS (Fig. 3.7). Intuitively, P ′ should be parallel to the tile sides, that is, the olumn vetorsof P ′ should be parallel to the olumn vetors of P . This is equivalent to the row vetors

60 Automati parallel ode generation for tiled nested loops
of H ′ being parallel to the row vetors of H. In addition to this, we demand the lattie of
H ′ to be an integer spae for integer loop indies to be able to traverse it. Formally, an n-dimensional transformation H ′ : H ′ = V H must be found, where V is an n× n diagonal matrixand L(H ′) ⊆ Zn. The following lemma proves that the seond requirement is satis�ed if andonly if H ′ is integral.

 ��

Figure 3.7: Traverse the TIS with a non-unimodular transformation.In order to traverse the tile iteration spae parallely to the tile edges, as indiated in Figure 3.6(b),the non-retangular tile iteration spae should be transformed into a retangular one, using a non-unimodular transformation matrix H ′. Sine H ′ is not unimodular, the transformed spae mayinlude integer points with no integer oeÆient in the initial spae. They are depited by whitedots.Lemma 3.3 ~j′ = A~j ∈ Zn ∀~j ∈ Zn i� A is integral.Proof: If A is integral, it is lear that ~j′ ∈ Zn∀~j ∈ Zn.Suppose that ~j′ ∈ Zn∀~j ∈ Zn. We shall prove that A is integral:It holds ~j′ ∈ Zn for ~j = ûk, where ûk is the k-th unitary vetor,
ûk = (uk1, . . . , ukn), ukk = 1, uki = 0, i 6= kThus,

~j′ = Aûk =

(
n∑

i=1

a1iuki,

n∑

i=1

a2iuki, . . . ,

n∑

i=1

aniuki

)T

= [a1k, a2k, . . . , ank]T ∈ ZnThis holds for all ûk, k = 1 . . . n, therefore all elements of A are integer numbers. ⊣

3.2 Generation of Serial Tiled Code 61
Let us onstrut V in the following way: Every diagonal element vkk is the smallest integersuh that vkk

~hk is integral, where ~hk is the k-th row of matrix H. Thus, both requirements for
H ′ are satis�ed. It is obvious that H ′ is a non-unimodular transformation. This means thatthe transformed tile iteration spae ontains holes. In Figure 3.7, the holes in the TTIS aredepited with white dots, while the atual points are depited with blak ones. So, in order totraverse the TIS, we have to san all atual points of the TTIS and then transform them bakusing matrix P ′. We an apply any of the methods presented in [Ram92℄, [Ram95℄, [Xue94℄,[Li93℄, [FLV95℄ to traverse the TTIS. However, we will avoid the appliation of Fourier-Motzkinelimination method by taking advantage of the tile shape regularity.We use an n-dimensional nested loop with iterations indexed by ~j′ = (j′1, j

′
2, . . . , j

′
n), in orderto traverse the atual points of the TTIS. Replaing ~j = P ′~j′ in formula (2.7), the boundariesof TTIS are given by the system of inequalities: 0 ≤ HP ′~j′ < 1 ⇔ 0 ≤ V −1~j′ < 1 ⇔

0 ≤ j′k ≤ vkk − 1, for all k = 1, . . . , n (3.15)The bounds of the indies j′k are determined by formulas (3.15), without applying the Fourier-Motzkin elimination method to the system of inequalities (3.11).However, the inrement step ck of an index j′k is not neessarily 1. In addition to this, ifindex j′k is inremented by ck, indies j′k+1, . . . , j
′
n should not be initialized at 0. Suppose thatfor a ertain index vetor ~j′, it holds P ′~j′ ∈ Zn. The �rst question is how muh to inrementthe innermost index j′n so that the next swept point is also integral. Formally, we searh theminimum cn ∈ Z suh that P ′

(
j′1 j′2 . . . j′n + cn

)T
∈ Zn. After determining cn, the nextstep is to alulate the inrement step of index j′n−1 so that the next swept point is also integral.In this ase, it is possible that index j′n should also be inremented by an o�set an(n−1) : 0 ≤

an(n−1) < cn. In the general ase of index j′k we need to determine ck, a(k+1)k, . . . , ank suhthat: P ′
(
j′1 . . . j′k + ck j′k+1 + a(k+1)k . . . j′n + ank

)T
∈ Zn. Every index j′k has k − 1di�erent inremental o�sets aki, depending on eah of the inrement steps ci of the k − 1 outerindies j′i. These o�sets are ak1, . . . , ak(k−1). The following lemma proves that inrement steps

ck and o�sets akl, (k = 1 . . . n and l = 1 . . . k−1), are diretly obtained from the hermite normalform of matrix H ′, denoted H̃ ′.Lemma 3.4 If H̃ ′ is the olumn HNF of H ′ and ~j′ = (j′1, j
′
2, . . . , j

′
n) is the index vetor usedto traverse the atual points of L(H ′), then the inrement step (stride) for index j′k is ck = h̃′kkand the inremental o�sets are akl = h̃′kl, (k = 1 . . . n and l = 1 . . . k − 1).Proof: It holds L(H ′) = L(H̃ ′). Thus, ~0 ∈ L(H ′) and the olumns of H̃ ′ belong to L(H ′).Suppose ~x ∈ Zn/{~0} with the following properties: xi = 0 for i < k and 0 ≤ xi ≤ h̃′ik for

k ≤ i ≤ n. It suÆes to prove that ~x = ~hk.

62 Automati parallel ode generation for tiled nested loops
Suppose that ~x ∈ L(H ′), whih means that ∃~j ∈ Zn : H̃ ′~j = ~x. H̃ ′ is a lower triangularnon-negative matrix and thus it holds: x1 = h̃′11j1 = 0 ⇒ j1 = 0. Similarly, ji = 0 for i < k.In the sequel, it holds: xk = h̃′kkjk. Aording to the above, it holds: 0 ≤ xk = h̃′kkjk ≤

h̃′kk ⇒ 0 ≤ jk ≤ 1. In addition, 0 ≤ xk+1 = h̃′(k+1)kjk + h̃′(k+1)(k+1)jk+1 ≤ h̃′(k+1)k. Sine
h̃′(k+1)(k+1) > h̃′(k+1)k ⇒ jk+1 = 0. Similarly, ji = 0 for i > k + 1. Consequently, sine
~x 6= ~0, ~x is the k − th olumn of H̃ ′. ⊣

 ��

Figure 3.8: Steps and initial o�sets in TTIS derived from matrix H̃ ′Aording to the above analysis, the point that will be traversed using the next instantiationof indies is alulated from the urrent instantiation, sine steps and inremental o�sets areadded to the urrent indies. Speial are is taken so that every time the index vetor ~j′ =

(j′1, . . . , j
′
n) is to be modi�ed, the new index vetor ~j′ is alulated as a sum of urrent ~j′ anda multiple of a olumn-vetor of H̃ ′. Thus, assuming that the urrent instantiation ~j′ ∈ L(H ′),we ensure that the next point to be traversed remains in L(H ′).Theorem 3.1 The following n-dimensional nested loop traverses all points ~j′ ∈ TTISfor(j′1=0, . . . , j′n=0; j′1 ≤ v11-1; j′1+=h̃′11, . . . , j′n+=h̃′n1)for(j′n+ = ⌈

−j′2eh′
22
⌉ ∗ h̃′n2, . . . , j

′
2+ = ⌈

−j′2eh′
22
⌉ ∗ h̃′22; j′2 ≤ v22 − 1;
j′2+ = h̃′22, . . . , j

′
n+ = h̃′n2)

. . .for(j′n+ = ⌈ −j′neh′
nn
⌉ ∗ h̃′nn; j′n ≤ vnn − 1; j′n+ = h̃′nn){Loop body

}We now need to adjust the above loop, whih sweeps all points in TTIS, in order to traversethe internal points of any tile in JS . If ~j′ ∈ TTIS is the point that is derived from the indiesof the former loop and ~jS ∈ JS is the tile, whose internal points ~j ∈ Jn we want to traverse, itwill hold: ~j = ~j0 +P ′~j′ = P ~jS +P ′~j′, where ~j0 = P ~jS ∈ TOS is the tile origin, and P ′~j′ ∈ TISis the orresponding to ~j′ point in TIS. Sine P = V P ′, the last equality an be equivalently

3.2 Generation of Serial Tiled Code 63
rewritten as follows:

~j = P ′(V ~jS + ~j′) (3.16)Speial attention also needs to be paid so that the points traversed do not overome the originalspae boundaries. As we have mentioned before, a point ~j ∈ Jn satis�es the following set ofinequalities: B~j ≤ ~b. Replaing ~j by the above equation (3.16), we have:
BP ′(V ~jS + ~j′) ≤ ~b (3.17)By applying the Fourier-Motzkin elimination method to this set of inequalities, we obtain properexpressions for ~j′, so that we do not ross the original spae boundaries. As dedued for systems(3.10), (3.11), system (3.17) should be used in ombination with inequalities (3.15).Example 3.4: Let us onsider the same algorithm as in the previous examples. We will nowsweep the internal points of tiles with the use of the method desribed just above. We need thefollowing matries: H ′ =

[
2 −1

−1 3

] and V =

[
10 0

0 20

]. Aordingly, P ′ =

[
3
5

1
5

1
5

2
5

]. TheHermite Normal Form of matrix H ′ is H̃ ′ =

[
1 0

2 5

]
=

[
2 −1

−1 3

][
1 1

1 2

] and thus, asshown in Figure 3.8, c1 = h̃′11 = 1, c2 = h̃′22 = 5, a21 = h̃′21 = 2. Consequently, the ode thattraverses the indies inside every internal tile, aording to Theorem 3.1, is:/* Calulate ~j′0 = V ~jS */
j′01=10jS

1 ;
j′02=20jS

2 ;for (j′1 = 0, j′2 = 0; j′1 ≤ 9; j′1+ = 1, j′2+ = 2)for (j′2+ = ⌈
−j′2
5 ⌉ ∗ 5; j′2 ≤ 19; j′2+ = 5) {/* Calulate ~j = P ′(V ~jS + ~j′) */

j1=3
5(j′01 + j′1)+1

5(j′02 + j′2);
j2=1

5(j′01 + j′1)+2
5(j′02 + j′2);/* Exeute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];

}In order to exatly san the internal of boundary tiles, we onstrut matrix
[BP ′|~b] =

3
5

1
5 39

1
5

2
5 29

−3
5 −1

5 0

−1
5 −2

5 0

64 Automati parallel ode generation for tiled nested loops
The appliation of Fourier-Motzkin elimination method on this matrix gives:

1 0 78

−1 0 29

3 1 195

1 2 145

−3 −1 0

−1 −2 0

Consequently, the ode that traverses the indies inside tiles, whih ut the iteration spaebounds, is:/* Calulate ~j′0 = V ~jS */

j′01=10jS
1 ;

j′02=20jS
2 ;

l′1 =max(0,−29− j′01);
u′1 =min(9 /* v11-1 */, 78 − j′01);for (j′1 = l′1, j

′
2 = l′1 ∗ 2; j′1 ≤ u′1; j′1+ = 1, j′2+ = 2) {

l′2 =max(0,−3(j′01 + j′1) − j′02, ⌈
−(j′01+j′1)

2 ⌉ − j′02);
u′2 =min(19 /* v22-1 */, 195 − 3(j′01 + j′1) − j′02, ⌊

145−(j′01+j′1)
2 ⌋ − j′02);for (j′2+ = ⌈

l′2−j′2
5 ⌉ ∗ 5; j′2 ≤′ b2; j′2+ = 5) {/* Calulate ~j = P ′(V ~jS + ~j′) */

j1=3
5(j′01 + j′1)+1

5(j′02 + j′2);
j1=1

5(j′01 + j′1)+2
5(j′02 + j′2);/* Exeute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];

}
}Using the tile spae boundaries alulated in Example 3.2, and ombining the ode segmentsprodued just above for internal tiles and for tiles rossing the iteration spae boundaries, weget the �nal ode segment:for (jS

1 = −4; jS
1 ≤ 8; jS

1 ++)for (jS
2 =max(⌈−4−3jS

1
2 ⌉, ⌈

−4−jS
1

4 ⌉); jS
2 ≤min(⌊19−3jS

1
2 ⌋, ⌊

14−jS
1

4 ⌋); jS
2 ++) {/* Exeute tile (jS

1 , j
S
2) *//* Calulate ~j′0 = V ~jS */

j′01=10jS
1 ; /* This line ould be plaed outside loop jS

2 */
j′02=20jS

2 ;/* Chek whether tile (jS
1 , j

S
2) rosses the iteration spae *//* boundaries */hek=TILE IN;for(x1=0; x1 ≤1; x1++){

c1=j′01+9x1;

3.2 Generation of Serial Tiled Code 65
if(c1<-29 || c1>78) { hek=TILE CROSS; break; }for(x2=0; x2 ≤1; x2++){
c2=j′02+19x2;/* Chek whether ~c ∈ Jn */if(c2<max(-3c1, ⌈−c1

2 ⌉) || c2>min(195-3c1, ⌊145−c1
2 ⌋)){hek=TILE CROSS; break;

}if(hek==TILE CROSS) break;
}

}if(hek==TILE CROSS) {/* Exeute tile (jS
1 , j

S
2) in ase it may ross *//* the iteration spae boundaries */

l′1 =max(0,−29− j′01);
u′1 =min(9 /* v11-1 */, 78 − j′01);for (j′1 = l′1, j

′
2 = l′1 ∗ 2; j′1 ≤ u′1; j′1+ = 1, j′2+ = 2) {

l′2 =max(0,−3(j′01 + j′1) − j′02, ⌈
−(j′01+j′1)

2 ⌉ − j′02);
u′2 =min(19 /* v22-1 */, 195 − 3(j′01 + j′1) − j′02, ⌊

145−(j′01+j′1)
2 ⌋ − j′02);for (j′2+ = ⌈

l′2−j′2
5 ⌉ ∗ 5; j′2 ≤′ b2; j′2+ = 5) {/* Calulate ~j = P ′(V ~jS + ~j′) */

j1=3
5(j′01 + j′1)+1

5(j′02 + j′2);
j1=1

5(j′01 + j′1)+2
5(j′02 + j′2);/* Exeute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];

}
}

}else {for (j′1 = 0, j′2 = 0; j′1 ≤ 9; j′1+ = 1, j′2+ = 2)for (j′2+ = ⌈
−j′2
5 ⌉ ∗ 5; j′2 ≤ 19; j′2+ = 5) {/* Calulate ~j = P ′(V ~jS + ~j′) */

j1=3
5(j′01 + j′1)+1

5(j′02 + j′2);
j1=1

5(j′01 + j′1)+2
5(j′02 + j′2);/* Exeute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];

}
}

}

66 Automati parallel ode generation for tiled nested loops
3.2.3 Comparison { Experimental ResultsBoth our method (in the sequel denoted as RI - Redued Inequalities) and the one desribedin [AI91℄ by Anourt and Irigoin (denoted as AI), have been implemented as a software toolwhih automatially generates tiled C ode using any tiling transformation P . In this setion,we ompare AI and RI methods both in terms of ompilation time and generated ode eÆieny.We generated several random 2−D and 3−D problems and measured the following: ompilationtime, row operations performed by Fourier-Motzkin elimination and run time of the generatedode. In the sequel, we applied both AI and RI methods to three real appliations: SOR, Jaobiand ADI integration. We also applied the inequalities of AI method to the Omega alulator[KMP+95℄ and generated ode for all problems. We then measured the ompilation time andrun time obtained by Omega (the results are denoted as AI-Omega) and ompared them withthe ones obtained by AI (using our tool) and RI. Table 3.1 shows the iteration spaes used asexamples in 2−D and 3−D problems. We applied several tiling transformations, in whih thenon-zero elements of the tiling matries were randomly generated. In 2 −D spaes we appliedthree di�erent tiling transformations (P1, P2, P3) varying from the diagonal matrix P1 to moreomplex ones. In 3 − D spaes we applied seven di�erent tiling transformations (P4, . . . , P10),again here starting from the diagonal P4 and adding non-zero elements (P10 ontains no zeroelement). We performed our experiments on a PIII � 800MHz proessor with 128MB of RAM.The operating system is Linux with kernel 2.4.18. The generated tiled ode was ompiled usingg v.2.95.4 with the -O3 optimization ag. We also experimented with lower optimizationlevels, where the exeution times were slower, but the relative results for all methods remainedthe same.Table 3.1: Example iteration spaes

j1 j2 j3lower upper lower upper lower upperbound bound bound bound bound bound # of iterationsSpae1 −1999 4999 −1999 4999 - - 48986001Spae2 −1999 4999 −1999 4999 + 2i1 - - 69983001Spae3 −4999 4999 −4999 + 3i1 4999 + 2i1 - - 99980001Spae4 0 399 0 399 0 399 64000000Spae5 0 399 0 399 + i1 0 399 95920000Spae6 0 399 −i1 399 + i1 0 399 127840000Spae7 −99 149 −99 − i1 149 + i1 −99 149 + 2i2 22904099Spae8 0 399 −i1 399 + i1 i1 79 + 2i2 117635018Spae9 −99 149 −99 − i1 149 + i1 −99 − i1 149 + i1 + 2i2 31129399Spae10 0 59 −i1 59 + i1 −i1 − 3i2 59 + i1 + 2i2 1994462Row Operations - Compilation TimeTables 3.2-3.4 summarize the results (row operations and ompilation time) from the ompila-tions of all iteration spaes tiled with all andidate tiling matries. We present here the number

3.2 Generation of Serial Tiled Code 67
Table 3.2: Fourier-Motzkin row operations and ompilation time for 2D algorithmsAI RI AI-Omega AI RI

Row Operations Compilation Time (ms)Spae1 30 10 16.29 0.26 0.26

P1 Spae2 30 10 19.53 0.27 0.26Spae3 34 10 20.82 0.29 0.26Spae1 37 10 22.56 0.28 0.27

P2 Spae2 33 10 21.56 0.28 0.27Spae3 34 10 22.78 0.29 0.26Spae1 56 12 33.36 0.36 0.30

P3 Spae2 55 12 39.40 0.37 0.30Spae3 53 12 40.12 0.36 0.30

Avg. Row Operations Avg. Compilation Time (ms)

P1 31 10 18.88 0.27 0.26

P2 35 10 22.30 0.28 0.27

P3 55 12 37.63 0.36 0.3of row operations and ompilation times of eah matrix for eah iteration spae and the averagevalues of eah matrix for all iteration spaes.Run TimeIn order to evaluate the run time overhead due to tiling, we exeuted all tiled odes of the previousproblems and measured their run time. We also exeuted the original untiled serial ode foreah problem. We de�ne the tiling overhead fator (TOF) as the fration of the run time of thesequential tiled ode to the run time of the untiled ode: TOF = Run time of Sequential Tiled CodeRun time of Untiled Code .Note that, the loop body in eah ase is a simple array assignment statement and, thus, the runtime measured is dominated by the time to ompute the loop bounds. Sine the array size wassmall (20× 20) and the tile sizes were not hosen to be optimal for ahe loality, the sequentialtiled ode does not present any improvement due to the exploitation of the memory hierarhy.Thus, TOF indiates the overhead imposed by the evaluation of the new loop bounds, due totiling. If TOF is too large, it will aggravate the speedup obtained when we parallelize nestedfor-loops using tiling. Tables 3.5-3.6 summarize the tiling overhead fators. Again here wepresent the TOFs of all tiling matries applied to eah iteration spae and the average TOFsof all matries P aross all iteration spaes. Figure 3.9 shows the TOF of 3 −D problems as afuntion of the number of non-zero elements in tiling matrix P .Real AppliationsIn our last set of experiments, we applied AI and RI methods to tile three real appliations: SOR,Jaobi, and ADI integration. For the �rst two problems, there is a skewed and an unskewedversion, and for eah version there are four (ommuniation and sheduling) optimal matries asdesribed in [HS02℄ and [Xue97a℄. Table 3.7 summarizes the row operations, ompilation times

68 Automati parallel ode generation for tiled nested loops
Table 3.3: Fourier-Motzkin row operations and ompilation time for 3D algorithms.In some ases the Fourier-Motzkin elimination method ould not be ompleted in a reasonabletime, or was interrupted due to lak of memory or an overow exeption. In these ases, we havedenoted a { in the respetive ells of the table.

Row Operations Compilation Time (ms)AI RI AI-Omega AI RISpae4 70 22 27 0.41 0.43Spae5 70 22 30.7 0.42 0.43Spae6 74 22 33.39 0.44 0.43

P4 Spae7 80 22 42.5 0.49 0.44Spae8 117 22 84.14 0.62 0.44Spae9 87 20 55.8 0.53 0.43Spae10 116 22 89.54 0.63 0.44Spae4 82 22 36.3 0.45 0.44Spae5 86 22 45.58 0.48 0.43Spae6 96 22 51 0.53 0.43

P5 Spae7 95 22 51.52 0.55 0.44Spae8 150 22 158.12 0.79 0.45Spae9 110 20 55.56 0.62 0.43Spae10 118 22 70.35 0.65 0.45Spae4 132 28 106 0.64 0.48Spae5 159 34 167.63 0.77 0.51Spae6 220 42 371.34 1.1 0.54

P6 Spae7 199 38 213.76 1.03 0.54Spae8 470 42 397.13 3.91 0.54Spae9 316 38 284.81 1.91 0.54Spae10 360 42 382.33 2.32 0.55Spae4 264 28 235.55 1.33 0.49Spae5 578 34 367.78 6.0 0.52Spae6 508 42 1, 188.72 4.24 0.55

P7 Spae7 1411 38 911.38 40.78 0.54Spae8 1522 42 2, 099.32 51.31 0.56Spae9 379 38 370.47 2.61 0.55Spae10 419 42 527.3 3.08 0.56Spae4 4, 254 28 1, 558.04 460.04 0.51Spae5 14, 012 34 2, 891.19 7, 607.2 0.52Spae6 10, 049 38 4, 019.51 3, 022.46 0.54

P8 Spae7 1, 752 36 1, 846.78 73.16 0.54Spae8 6, 031 40 3, 201.75 1, 040.44 0.55Spae9 637 36 3, 889.58 7.27 0.54Spae10 936 40 { 15.95 0.55Spae4 6, 933 46 1, 984.67 1, 280.34 0.56Spae5 10, 569 42 2, 775.25 3, 234.86 0.56Spae6 5, 655 40 3, 662.66 855.78 0.55

P9 Spae7 751 40 5, 132.84 9.77 0.55Spae8 1, 907 36 1, 943.71 83.53 0.54Spae9 259 22 2, 308.23 1.37 0.51Spae10 295 22 2, 640.29 1.65 0.49Spae4 6, 477 46 1, 629.59 1, 034.07 0.58Spae5 27, 763 44 2, 612.24 45, 342.36 0.56Spae6 12, 533 40 2, 484.32 5, 351.28 0.55

P10 Spae7 95, 712 40 2, 428.64 638, 417.48 0.56Spae8 83, 025 40 1, 014.64 450, 599.44 0.56Spae9 71, 119 40 3, 215.22 328, 971.3 0.57Spae10 > 120, 309 40 4, 336.41 > 1, 025, 846.41 0.57

3.2 Generation of Serial Tiled Code 69
Table 3.4: Average row operations and ompilation time for 3D algorithms

Avg. Row Operations Avg. Compilation Time (ms)AI RI AI-Omega AI RI
P4 88 22 51.87 0.51 0.43

P5 105 22 67.2 0.58 0.44

P6 265 38 276.14 1.67 0.53

P7 726 38 814.36 15.62 0.54

P8 5382 36 2, 901.14 1, 746.64 0.53

P9 3767 35 2, 921.1 781.04 0.53

P10 59563 41 2, 531.58 356, 508.91 0.56Table 3.5: Tiling overhead fators (TOF) for 2 −D problems
TOF (2D) Avg. TOF (2D)AI-Omega AI RI AI-Omega AI RISpae1 2.59 0.96 1.24

P1 Spae2 2.73 1.01 1.27 2.85 1.03 1.31Spae3 3.22 1.13 1.43Spae1 6.27 4.55 1.61

P2 Spae2 6.12 4.62 1.63 6.62 4.78 1.69Spae3 7.45 5.16 1.82Spae1 8.00 6.10 3.58

P3 Spae2 7.75 6.21 3.63 8.23 6.41 3.75Spae3 8.95 6.92 4.04and TOFs for eah ase. Figure 3.10 shows the TOFs obtained by eah method, in eah ase.Overall Evaluation CommentsAs far as ompilation time is onerned, RI method learly outperforms AI method. This is dueto the fat that RI method feeds Fourier-Motzkin elimination with the system in (3.8), whihonsists of 2n inequalities with n variables, while AI method feeds Fourier-Motzkin eliminationwith the system in (3.1), whih onsists of 4n inequalities with 2n variables. Reall that Fourier-Motzkin elimination is a doubly exponential algorithm and thus the redution in its input size

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 3 4 5 6 7 8 9 10

T
O

F

of non-zero elements in P

Avg. TOF in 3D problems

using Omega calculator
using AI method
using RI method

Figure 3.9: Average tiling overhead fators for 3 −D problems

70 Automati parallel ode generation for tiled nested loops
Table 3.6: Tiling overhead fators (TOF) for 3 −D problems.In ase the ompilation time ould not be alulated in Table 3.3, then, the run time an not bealulated, either. These ases have been indiated by a { in the respetive ells of this table.

TOF (3D) Avg. TOF (3D)AI-Omega AI RI AI-Omega AI RISpae4 1.33 1.21 1.18Spae5 1.36 1.23 1.17Spae6 1.39 1.23 1.17

P4 Spae7 2.19 1.21 1.11 1.99 1.26 1.17Spae8 2.45 1.16 1.19Spae9 2.44 1.28 1.10Spae10 2.75 1.48 1.30Spae4 5.39 3.57 1.97Spae5 5.57 3.59 1.98Spae6 5.72 3.63 1.91

P4 Spae7 4.33 3.20 1.77 4.96 3.44 1.88Spae8 4.57 3.20 1.85Spae9 4.51 3.33 1.77Spae10 4.61 3.53 1.90Spae4 10.90 7.55 4.05Spae5 10.77 7.52 4.38Spae6 11.17 7.65 4.51

P4 Spae7 8.33 6.67 4.13 9.55 7.16 4.62Spae8 8.44 6.68 4.01Spae9 8.52 6.89 4.61Spae10 8.75 7.18 6.67Spae4 15.50 9.86 4.65Spae5 16.09 10.05 5.14Spae6 16.20 10.10 5.29

P7 Spae7 12.67 9.04 4.80 13.90 9.47 5.17Spae8 12.72 8.92 4.65Spae9 11.80 8.95 4.84Spae10 12.29 9.38 6.84Spae4 12.94 9.81 3.51Spae5 12.40 9.88 3.61Spae6 12.27 9.92 3.68

P4 Spae7 9.87 8.39 3.29 11.24 9.14 3.60Spae8 10.08 8.36 3.16Spae9 9.87 8.60 3.48Spae10 { 8.98 4.46Spae4 12.68 9.63 6.10Spae5 12.52 9.61 6.05Spae6 12.68 9.75 6.09

P4 Spae7 9.21 7.96 5.05 10.74 8.78 5.51Spae8 9.75 7.89 4.39Spae9 9.51 8.15 4.57Spae10 8.86 8.46 6.33Spae4 16.07 11.70 5.17Spae5 16.55 11.75 5.04Spae6 16.24 11.57 5.09

P4 Spae7 12.30 10.48 5.11 13.62 11.07 5.62Spae8 11.20 10.14 3.83Spae9 11.26 10.77 5.67Spae10 11.72 { 9.44

3.2 Generation of Serial Tiled Code 71
Table 3.7: Performane for real appliations

Row Operations Compilation Time (ms) TOFAI RI AI-Omega AI RI AI-Omega AI RI
P1 99 22 53.03 0.50 0.42 1.47 1.20 1.05SOR P2 107 22 50.27 0.53 0.42 1.50 1.21 1.01
P3 118 22 49.01 0.57 0.42 1.75 1.63 1.05
P4 165 40 90.04 0.77 0.5 1.80 1.78 1.30

P1 99 22 42.09 0.53 0.41 1.59 1.29 1.06SOR P2 107 22 40.60 0.53 0.42 1.60 1.29 1.06skewed P3 118 22 57.9 0.57 0.42 1.90 1.73 1.12
P4 165 40 91.97 0.77 0.51 1.95 1.86 1.34

P1 645 28 346.99 5.3 0.46 2.08 1.91 1.57Jaobi P2 645 28 347.96 5.26 0.47 2.09 1.92 1.60
P3 800 28 362.5 8.86 0.47 2.06 1.90 1.56
P4 3207 46 1, 353.55 194.88 0.53 5.58 5.09 2.10

P1 645 28 251.885 4.93 0.48 1.99 1.88 1.44Jaobi P2 645 28 248.27 4.98 0.47 1.98 1.87 1.46skewed P3 800 28 229.34 8.19 0.48 2.02 1.89 1.45
P4 691 28 238.82 5.95 0.47 2.01 1.88 1.43ADI P1 180 28 47.42 0.85 0.46 1.46 1.47 1.07

 ��

Figure 3.10: Tiling overhead fators for real appliationsimposed by our method auses signi�ant redution in the method's exeution steps, as learlyseen by the number of row operations. Note also that the exat simpli�ation method of Fourier-Motzkin elimination was not applied in the presented experiments, sine the gain in run timeby the appliation of the method was inadequate to justify the vast inrease in ompilationtimes, espeially in the ase of AI method (3% average and 10% maximum gain in run time). Inpartiular, while RI ompilation times remained in the order of milliseonds when using exatsimpli�ation, AI ompilation times inreased dramatially (reahed the order of an hour). Thismeans that we an pratially apply exat simpli�ation to RI, in order to further improve theeÆieny of the generated ode.Despite the redution in ompilation time imposed by RI, it seems that both AI and AI-Omega perform well in almost all 2 −D and 3 −D problems (ompilation times are less thanone seond). However, in problems of larger dimensions, both AI and AI-Omega present severalproblems. We exeuted a number of randomly generated 4 −D algorithms and observed that,

72 Automati parallel ode generation for tiled nested loops
at �rst, the ompilation time of AI beomes impratial (several hours or even days). Moreimportantly, AI failed to generate ode for almost half of the problems due to lak of memory.Note that Fourier-Motzkin elimination is also doubly exponential in spae, so in several 4 −Dproblems even 1GB of virtual memory was not suÆient to over the needs of the method. Onthe other hand, AI-Omega also faed some problems with memory spae (to a smaller extentthan AI) but here again, in almost half of the problems, the system rose an overow exeption.Apparently, after a large number of row operations in 4−D algorithms, some oeÆients exeededthe system's MAXINT. In all ases RI method sueeded in generating ode, within some seondsin the worst ase.Note, also, that, sine we do not know all details about the implementation of Omega, weannot be sure why the AI-Omega implementation gives higher implementation times than ourimplementation. However, as dedued by tiling matries P8, P10, Omega is more stable and onean more aurately predit the time needed for the generation of serial tiled ode.As far as run time is onerned, RI also exhibits a signi�ant improvement in performane inall problems. In partiular, as shown in Figure 3.9, as the number of non-zero elements in matrix
P inreases, the improvement of RI method beomes muh more obvious. This means that RImethod performs very well in omplex problems where the tiling matries ontain many non-zero elements and the iteration spaes are non-retangular. In addition, as shown in Figure 3.10,RI's performane is nearly optimal in simpler algorithms suh as SOR, Jaobi and ADI, sinethe TOF in these ases is very lose to one. Thus, RI performs very well in easy problems andsustains a remarkably good performane even when the tiling transformations and the shape ofthe iteration spaes beome inreasingly omplex.The improvement in the quality of the generated ode aused by RI, is due to the fatthat, although the ode to enumerate the tiles is essentially similar in AI and RI, the ode totraverse the internal points of the tiles is ompletely di�erent. Our tool makes a distintionbetween boundary and internal tiles and generates di�erent ode to san the internal points forboth AI and RI (as in Examples 3.3, 3.4). In the ase of boundary tiles, RI method resultsin fewer inequalities for the bounds of the tile spae. Consequently, fewer bound alulationsare exeuted during run time. In the ase of internal tiles, whih are the vast majority in mostproblems, the ode of RI onsists of a loop with onstant bounds 0 ≤ j′i ≤ vii−1 for i = 1, . . . , n(see formula (3.15)), while the ode of AI inludes a loop whose bounds are derived from theappliation of Fourier-Motzkin elimination to the system (

gH

−gH

)
(~j − ~j0) ≤

(
(g − 1)~1

~0

)(see formula (3.11)). It is lear that the alulation of loop bounds in the �rst ase is muhmore eÆient. Finally, note that the enumeration of some redundant tiles does not imposeany signi�ant overhead, sine the number of redundant tiles is negligible. The same holds forthe non-unimodular transformation used to aess the internal points of the tiles. In this ase,the additional operations due to the transformation are simple integer multipliations, while

3.3 Parallelization 73
operations on extra variables are integer additions and assignment statements, whih are alleÆiently exeuted by modern proessors and optimized by any bak-end ompiler like g.Note, also, that, the run time overhead imposed by Omega, in omparison to our implemen-tation for AI inequalities, is due to the fat that Omega is a general purpose ode generationtool, while our implementation is aimed at tiled nested loops. Thus, Omega annot take intoaount the disrimination of internal and boundary tiles, as in Examples 3.3, 3.4. It uses thesystem of inequalities (3.1) for both enumerating the tiles and sanning their interior. Althoughthe optimization desribed in this setion ould not be inorporated into Omega, the respetiveolumns have been used in Tables 3.2-3.7 as a measure of eÆieny of the ode produed by ourtool.Summarizing, the ompilation time redution is due to the method used to enumerate thetiles of the tile spae, while the run time redution is mainly due to the transformation of anon-retangular tile to a retangular one.3.3 ParallelizationIn this setion, we refer to some parallelization aspets of the sequential tiled ode. Reall fromFigure 3.1 that the parallelization of an arbitrarily tiled algorithm involves two separate tasks:�rst, the generation of the sequential tiled ode and, seond, the parallelization of this ode.
§3.2 foused on the �rst task. This setion will fous on the seond one. Parallelization anbe separated in sub-tasks suh as iteration distribution, data distribution and data transferringode generation. Tang and Xue in [TX00℄ addressed the same issues for retangularly tilediteration spaes. In this setion, as in [GDAK02a℄, [Gou03℄, eÆient data parallel ode fornon-retangular tiles will be disussed, without imposing any further omplexity.When exeuting an algorithm on a distributed memory mahine, the original data spae ofthe algorithm is distributed to the loal memories of the proessing nodes. The loal data spaeof eah node is in general a non-retangular subset of the original data spae, even if retangulartiling is applied [AKN95℄. However, applying the transformations proposed in §3.2.2, eahproessor an iterate over a retangular loal iteration spae (TTIS) and aess retangulardata spaes as well. In this way, eah proessor an alloate exatly the required amount ofmemory. Retangular data spaes also allow for straightforward addressing shemes of arrayelements and thus a diret way of sweeping data by the generated ode.Another very important bene�t in parallelization using retangular loal iteration spaes(TTIS) is the onvenient determination of the ommuniation sets. Eah ommuniation setontains the ommuniation points, i.e. the points that are written in the loal memory ofa proessing node and are needed by another. The ommuniation points have the followingproperty: if we add one dependene vetor to them, then the resulting point lies in a tile assignedto a di�erent node. Figure 3.11 shows the ommuniation points and sets when determined in

74 Automati parallel ode generation for tiled nested loops
Transformed Tile Iteration

Space (TTIS)

Tile Iteration Space
(TIS)

j1

j2

j'1

j'2

d1
d2 d'1

d'2

Communication sets

Communication point

Figure 3.11: Determining ommuniation sets in the TIS and TTIS.In ase the following tile along a dimension has been assigned to a di�erent proessing node,then the data alulated by the iterations of the orresponding grey area should be transferredto it.the TIS and in the TTIS. ~d1 and ~d2 are the dependenes of the original algorithm, while ~d′1and ~d′2 are the transformed dependenes in the TTIS. It is obvious that, when working withthe retangular TTIS, the ommuniation sets are muh more easily determined sine they areretangular as well. Note that these sets, indiated by grey areas should be transferred at run-time only in ase the following tile is assigned to a di�erent node, aording to the alloationshemes that will be explored in detail in Chapters 4, 5.3.3.1 Some more algorithmi assumptionsIn addition to the restrition imposed by our algorithmi model in §2.2 and summarized inAppendix B, in this setion we also onsider that the body of the perfetly nested loops isonsisted of a statement of the form:
A[fw(~j)] := F (A[fw(~j − ~d1)], . . . , A[fw(~j − ~dq)]);where:1. ~j = (j1, . . . , jn) is the urrent iteration2. ~di = (di1, . . . , din), i = 1, . . . , q are the uniform and onstant dependenes of this odesegment and3. F , fw are funtions.In order to simplify the model, single assignment statements with one array variable have beenonsidered. Note, however, that this is only a notational restrition, sine all of the tehniques

3.3 Parallelization 75
presented in this setion an be adapted to multiple statements on multiple arrays. In additionto previously de�ned spaes, in this setion we shall use the data spae, denoted DS, de�nedas:

DS = {fw(~j)|~j ∈ Jn}where fw is the write array referene.The underlying arhiteture is onsidered a (n− 1)-dimensional proessor mesh. Thus, eahproessor is identi�ed by a (n − 1)-dimensional vetor denoted ~pid. Note, however, that this isnot a physial restrition, but a onvention for proessor labelling. More generally, a bi-levelparallel arhiteture may be onsidered as a (n−1)-dimensional mesh of SMP nodes (SymmetriMulti-Proessors). Eah SMP node is identi�ed by a (n−1)-dimensional vetor denoted ~smp id.In addition, we onsider that eah SMP node is onsisted of a (n−1)-dimensional mesh of CPUs(proessors) with mx CPUs along the x-th dimension. Eah CPU is identi�ed by a (n − 1)-dimensional vetor denoted ~cpu id (0 ≤ cpu idx ≤ mx − 1). Apparently, there is an one-to-oneorrespondene between the global labels of proessors and their labels inside a node. It holdsthat
pidx = cpu idx + smp idxmxInversely, it holds that

cpu idx = pidx%mx

smp idx = ⌊pidx/mx⌋The memory is physially distributed among nodes. Proessors perform omputations on loaldata. In order to use data alulated by a di�erent proessor,1. if they reside in the same node, they should only synhronize with eah other in order tomake sure that the data neede have already been written to shared memory before used,or2. if they reside in di�erent nodes, they should ommuniate with eah other via messagepassing or remote DMA, in order to exhange data that reside to remote memories.The general intuition in the presented approah is that, sine the iteration spae is trans-formed by H and H ′ into a spae of retangular tiles, eah proessor an work on its loal shareof retangular tiles and, following a proper memory alloation sheme, perform operations onretangular data spaes as well. After all omputations have been ompleted, loally omputeddata an be written bak to the appropriate loations of the global data spae. In this way, eahproessor essentially works on iteration and data spaes that are both retangular, and properlytranslates from its loal data spae to the global one.

76 Automati parallel ode generation for tiled nested loops
3.3.2 Computation DistributionComputation distribution determines whih omputations of the sequential tiled ode will beassigned to whih proessor. The n innermost loops of the sequential tiled ode that aessthe internal points of a tile will not be parallelized, and thus parallelization only involves thedistribution of tiles (traversed by the outermost n-dimensional loop) to proessors. Hodziand Shang in [HS98℄ mapped all tiles along a spei� dimension to the same proessor andused hyperplane Π = [1, . . . , 1] as time sheduling vetor. In addition to this, previous work[AKPT99℄ in the �eld of UET-UCT task graphs has shown that if we map all tiles along thedimension with the maximum length (i.e. maximum number of tiles) to the same proessor,then the overall sheduling is optimal, as long as the omputation to ommuniation ratio isone. This onlusion will also be veri�ed in §4.4.4 for a bi-level parallel arhiteture. However,all researh works resulting to this onlusion have assumed the existene of an in�nite numberof proessors. We will keep on this assumption in this setion also. In Chapter 5 we shall proposesome alloation shemes in ase there are fewer proessors available than needed.Let us denote the i-th dimension as the one with the maximum total length. Aording to theabove, all tiles indexed by ~jS = (jS

1 , . . . , j
S
i , . . . , j

S
n), where jS

k = const, k = 1, . . . , i−1, i+1, . . . , nand lSi ≤ jS
i ≤ uS

i are exeuted by the same proessor. The n−1 oordinates of a tile (exluding
jS
i) will identify the proessor that a tile is going to be mapped to (~pid). All tiles along jS

iare sequentially exeuted by the same proessor, one after the other, in an order spei�ed bya linear time shedule. This means that, after the seletion of index jS
i with the maximumtrip ount, we reorder all indies so that jS

i beomes the innermost index. This orresponds toloop index interhange or permutation. Sine all dependene vetors ~dS in JS are onsideredlexiographially positive, the interhanging or reordering of indies is valid (see also [PW86℄).The boundaries of the reordered loop indies, in ase of a non-retangular tile spae, an bealulated by an appliation of the Fourier-Motzkin elimination method [BW95℄.3.3.3 Data DistributionIn a NUMA arhiteture, the data spae of the original algorithm is distributed to the loalmemories of the various nodes forming the global data spae. Data distribution deisions a�etthe ommuniation volume, sine data that reside in one node may be needed for the omputationin another. In our approah we follow the omputer-owns rule, whih ditates that a proessorowns the data it writes. It means that data omputed by a proessor are diretly written tothe loal memory of the respetive node. Communiation ours when a proessor residing inanother node needs to read data omputed in the former one. Substantially, the memory spaealloated by a node represents the spae where omputed data are to be stored. This meansthat the proessors of eah node iterate over a number of transformed retangular tiles (TTIS)and an loally store their omputed data to a retangular data spae. At the end of all their

3.3 Parallelization 77
omputations, the loally omputed data an be plaed to the appropriate positions of the globaldata spae (DS). Thus, onerning the data writes, we an distinguish the following phases:1. Data (initial and boundary values) are distributed to the loal memories of the nodes,aording to the omputer-owns rule.2. Data are loally omputed by the proessors of eah node. Communiation is interleavedbetween the exeution of two tiles in order to reeive data from neighboring nodes neededduring the exeution of subsequent tiles. The data reeived are loally stored.3. At the end of all omputations, loally omputed data are written to the global data spae(DS).A simpli�ed version of this proedure, onerning single CPU nodes, is extensively desribed in[GDAK02a℄, [Gou03℄.The data spae omputed by a tile ould be an exat image of the TTIS, but in this asethe holes of the TTIS would orrespond to unused extra spae. In addition to the spae storingthe omputed data, eah node needs to alloate extra spae for ommuniation, that is memoryspae to store the data it reeives from its neighbors. This means that we need to1. ondense the atual points of the TTIS and2. provide further spae for reeiving data.Sine, after all transformations, we �nally work with retangular sets, this loal data spae(denoted LDS) alloated by a node, is given by the following de�nition.

LDS

Computation Storage
Communication Storage
Unused Space

j'1

j'2

map-1

map

TTIS

. . .

j''1off1 t=0 t=1 t=2
mapping dimension

off2

cpu_id=0

j''2

cpu_id=1

cpu_id=2

cpu_id=3

Data that should be transferred
to the neighboring node

Figure 3.12: Loal data spae LDS and transformed tile iteration spae TTIS

78 Automati parallel ode generation for tiled nested loops
De�nition 3.1 The loal data spae (LDS) is de�ned as:

LDS =

~j′′ ∈ Zn|

0 ≤ j′′k < offk +mkvkk/h̃′kk, k = 1, . . . , n, k 6= i

∧0 ≤ j′′i < offi + |t|vii/h̃′ii

where |t| denotes the maximum number of tiles assigned to a proessor of the partiular node.As shown in Figure 3.12, the LDS of a proessor onsists of the memory spae required forpaking omputed data (blak dots) and for unpaking reeived data (grey dots) of a tile, multi-plied by the number of tiles assigned to the partiular proessor. White dots depit unused data.The o�set offk, whih expands the spae to store reeived data, derives from the ommuniationriteria of the algorithm, as shown in §3.3.4. Reall that eah proessor iterates over the TTISfor as many times as the number of tiles assigned to that proessor. Lemma 3.5 determines thetranslation funtion from TTIS to LDS, while Lemma 3.6 determines the inverse translationfuntion from LDS to TTIS.Lemma 3.5 If ~j′ ∈ TTIS, then its orresponding point in LDS is given by the followingexpressions:

j′′k = ⌊(cpu idkvkk + j′k)/h̃
′
kk⌋ + offk, k 6= i

j′′i = ⌊(tvii + j′i)/h̃
′
ii⌋ + offiwhere t is the urrent tile. We all this transformation funtion as map(): ~j′′ = map(~j′, t).Proof: In order to prove the validity of this transformation, we need to prove that theresulting point ~j′′ ∈ LDS.1. For eah k 6= i it holds that 0 ≤ j′k < vkk ⇒ 0 ≤ ⌊

j′
keh′

kk

⌋ < vkkeh′

kk

⇒ cpu idkvkkeh′

kk

+

offk ≤ cpu idkvkkeh′

kk

+ ⌊
j′
keh′

kk

⌋+ offk <
(cpu idk+1)vkkeh′

kk

+ offk. Taking into aount that
0 ≤ cpu idk ≤ mk − 1, the previous inequality gives offk ≤ cpu idkvkkeh′

kk

+ offk ≤ j′′k <

(cpu idk+1)vkkeh′

kk

+ offk ≤ mkvkkeh′

kk

+ offk.2. In addition, 0 ≤ j′i < vii ⇒ 0 ≤ ⌊
j′ieh′

ii

⌋ < viieh′

ii

⇒ tviieh′

ii

+ offi ≤
tviieh′

ii

+ ⌊
j′ieh′

ii

⌋ + offi <

(t+1)viieh′

ii

+ offi. Taking into aount that 0 ≤ t ≤ |t| − 1, the previous inequality gives
offi ≤

tviieh′

ii

+ offi ≤ j′′i <
(t+1)viieh′

ii

+ offi ≤
|t|viieh′

ii

+ offi.Therefore, it holds that ~j′′ = map(~j′, t) ∈ LDS. In addition, the proof of item (1) gives thatthe orresponding parts of LDS for eah CPU of a node have no ommon elements, but theyare neighboring i� CPUs are neighboring. The proof of item (2) gives that the orrespondingparts of LDS for eah tile of a proessor have no ommon elements, but they are neighboringi� tiles are neighboring. ⊣

3.3 Parallelization 79
Lemma 3.6 If ~j′′ ∈ LDS, then its orresponding point in TTIS is given by the followingexpression:

~j′ = H̃ ′~xwhere ~x is given by:
xk = j′′k − offk − cpu idkvkk/h̃′kk − ⌊(

k−1∑

l=1

xlh̃′kl)/h̃′kk⌋, k 6= i

xi = j′′i − offi − tvii/h̃′ii − ⌊(
i−1∑

l=1

xlh̃′il)/h̃′ii⌋where t = ⌊(j′′i − offi)h̃′ii/vii⌋ is the urrent tile. We all this transformation funtion as
map−1(): (~j′, t) = map−1(~j′′).Proof: We need to prove that map and map−1 are indeed inverse funtions. Equivalently,we should prove that1. (~j′, t) = map−1(map(~j′, t)) and2. ~j′′ = map(map−1(~j′′)).1. (~j′, t)

?
= map−1(map(~j′, t)) ⇔

t
?
= ⌊

((⌊
tvii+j′i

h′

ii

⌋+offi)−offi)eh′

ii

vii
⌋ (a)

∧

j′l
?
=

l∑
k=1

h̃′lkyk (b)

,
where: yk = ((⌊

cpu idkvkk+j′
keh′

kk

⌋ + offk) − offk − cpu idkvkkeh′
kk

) − ⌊

k−1P
l=1

eh′

kl
yleh′

kk

⌋, k 6= i

yi = ((⌊
tvii+j′ieh′

ii

⌋ + offi) − offi −
tviieh′

ii

) − ⌊

i−1P
l=1

eh′

il
yleh′

ii

⌋

⇔ yk = ⌊
j′
keh′

kk

⌋ − ⌊

k−1P
l=1

eh′

kl
yleh′

kk

⌋ ∀k(a) However, t ?
= ⌊

((⌊
tvii+j′i

h′

ii

⌋+offi)−offi)eh′

ii

vii
⌋ ⇔ t

?
= t + ⌊

⌊
j′i

h′

ii

⌋eh′

ii

vii
⌋. From 0 ≤ j′i <

vii ⇒ 0 ≤ ⌊
j′ieh′

ii

⌋ < viieh′

ii

⇒ 0 ≤ ⌊
j′ieh′

ii

⌋h̃′ii < vii ⇒ 0 ≤ ⌊
⌊

j′i

h′

ii

⌋eh′

ii

vii
⌋ < 1 ⇒

⌊
⌊

j′i

h′

ii

⌋eh′

ii

vii
⌋ = 0. Thus, t ?

= t+ ⌊
⌊

j′i

h′

ii

⌋eh′

ii

vii
⌋ ⇔ t

?
= t+ 0, whih is always valid.(b) In addition, from yk = ⌊

j′
keh′

kk

⌋ − ⌊

k−1P
l=1

eh′

kl
yleh′

kk

⌋ ⇒ ⌊
j′
keh′

kk

⌋ = yk + ⌊

k−1P
l=1

eh′

kl
yleh′

kk

⌋ =

⌊

kP
l=1

eh′

kl
yleh′

kk

⌋ ⇒ h̃′kk⌊

kP
l=1

eh′

kl
yleh′

kk

⌋ ≤ j′k ≤ h̃′kk⌊

kP
l=1

eh′

kl
yleh′

kk

⌋ + h̃′kk − 1. In this interval,

80 Automati parallel ode generation for tiled nested loops
there is exatly one atual point j′k (as h̃′kk is the step of j′k in order to meet anotheratual point), whih is k∑

l=1

h̃′klyl. Therefore, it holds that j′k =
k∑

l=1

h̃′klyl.2.
~j′′

?
= map(map−1(~j′′)) ⇔

j′′k
?
= ⌊

cpu idkvkk+
kP

l=1

eh′

kl
zleh′

kk

⌋ + offk, k 6= i

∧

j′′i
?
= ⌊

tvii+
iP

l=1

eh′

il
zleh′

ii

⌋ + offi

(3.18)
where: zl = j′′l − offl −

cpu idlvlleh′
ll

− ⌊

l−1P
k=1

eh′

lk
zkeh′

ll

⌋, l 6= i

zi = j′′i − offi −
tviieh′

ii

− ⌊

i−1P
k=1

eh′

ik
zkeh′

ii

⌋

⇒

j′′l = offl + cpu idlvlleh′
ll

+ ⌊

lP
k=1

eh′

lk
zkeh′

ll

⌋, l 6= i

j′′i = offi + tviieh′

ii

+ ⌊

iP
k=1

eh′

ik
zkeh′

ii

⌋

(3.19)Therefore, (3.18) (3.19)
⇐⇒

offk + cpu idkvkkeh′
kk

+ ⌊

kP
l=1

eh′

kl
zleh′

kk

⌋
?
= ⌊

cpu idkvkk+
kP

l=1

eh′

kl
zleh′

kk

⌋ + offk, k 6= i

∧

offi + tviieh′

ii

+ ⌊

iP
k=1

eh′

ik
zkeh′

ii

⌋
?
= ⌊

tvii+
iP

l=1

eh′

il
zleh′

ii

⌋ + offiwhih is apparently always valid, taking into aount that vkk is always a multiple of
h̃′kk, ∀k = 1, . . . , n.After proving both laims (1) and (2), it turns out that this lemma is always valid. ⊣Funtionmap(~j′, t) determines, aording to Lemma 3.5, the memory loation in LDS whereomputation for iteration ~j′ ∈ TTIS is to be stored (Figure 3.12). Funtion loc(~j) in Table 3.8uses map(~j′, t) in order to loate the proessor ~pid and the memory loation ~j′′ ∈ LDS, wherethe omputed data of iteration point ~j ∈ Jn is to be stored. Inversely, Table 3.9 shows the seriesof steps in order to loate the orresponding~j ∈ Jn for a point ~j′′ ∈ LDS of proessor ~pid. Thus,

loc−1() is alled by a proessor of eah node at the end of the node's omputations in order totransit from their LDS to the original iteration spae Jn. In the sequel, the orresponding pointin the data spae DS is found via fw (Figure 3.13).

3.3 Parallelization 81
)(ypidLDS

)(xpidLDS

loc()

loc–1()

fw()

loc()
loc–1()

j2

j1
w1

w2

j2''

j2''
j1''

j1''Figure 3.13: Relations between DS, Jn and LDSTable 3.8: Using funtion loc() to loate ~j ∈ Jn in the LDS of a proessor
~j′′ = map(~j′, t):

j′′k = ⌊(cpu idkvkk + j′k)/h̃
′
kk⌋ + offk, k 6= i

j′′i = ⌊(tvii + j′i)/h̃
′
ii⌋ + offi

(~j′′, ~pid) = loc(~j):
~jS = ⌊H~j⌋

~j′ = H ′(~j − P ~jS)
~j′′ = map(~j′, jS

i −min{lSi })
~pid = (jS

1 , . . . , j
S
i−1, j

S
i+1, . . . , j

S
n)Under this sheme, eah node alloates exatly the amount of loal memory needed foromputation and ommuniation (minor over-alloation ours in the few boundary tiles). Notethat diret alloation of a node's share in the original DS would lead to a waste of memoryspae, sine this generally non-retangular share would lead to the alloation of the minimumenlosing retangular memory spae. Note, also, that eah node's share in the original DS(the footprint of a tile beause of fw) is in general non-retangular, even if a retangular tilingtransformation is applied. This method, however, fores the loal data spae of eah node to beretangular, allowing thus more eÆient memory management. In addition, if we also take intoaount that data spaes for ommon omputationally intensive algorithms are very large, andwill probably not �t in eah node's memory, the ompression of the loal spae to the LDS is inmost ases neessary. Eventually, this leads to a trade-o� between omputational omplexity andalloated memory spae, sine extra expressions are needed to address the LDS, but this minoroverhead does not signi�antly a�et performane, as indiated by the experimental veri�ationof [GDAK02a℄. Finally, note that storing data aessed by a non-retangular tile to a denseretangular data spae also exploits ahe loality.

82 Automati parallel ode generation for tiled nested loops
Table 3.9: Using funtion loc−1() to loate ~j′′ ∈ LDS of proessor ~pid in Jn

(~j′, t) = map−1(~j′′):
t = ⌊(j′′i − offi)h̃′ii/vii⌋

xk = j′′k − offk − cpu idkvkk/h̃′kk − ⌊(
k−1∑
l=1

xlh̃′kl)/h̃′kk⌋, k 6= i

xi = j′′i − offi − tvii/h̃′ii − ⌊(
i−1∑
l=1

xlh̃′il)/h̃′ii⌋

~j′ = H̃ ′~x

~j = loc−1(~j′′, ~pid):
~j′ = map−1(~j′′)

~jS = (pid1, . . . , pidi−1, t+min{lSi }, pidi+1, . . . , pidn)
~j = P ′(V ~jS + ~j′)3.3.4 Communiation setsUsing the iteration and data distribution shemes desribed before, data that reside in the loalmemory of one node may be needed by another due to algorithmi dependenes. In this ase,the nodes need to ommuniate via message passing or remote DMA. The two fundamentalissues that need to be addressed regarding ommuniation are1. the spei�ation of the proessors eah proessor needs to ommuniate with, and2. the determination of the data that need to be transferred.As far as the �rst issue is onerned, eah proessor needs to exhange data with its neighborsonly in ase they reside in a di�erent node. That is, proessors with cpu idx = 0 ⇔ pidx%mx = 0need to reeive data from proessors with pid′x = pidx − 1. Similarly, proessors with cpu idx =

mx − 1 ⇔ pidx%mx = mx − 1 should send data to neighboring proessors with pid′x = pidx + 1(see Figure 3.14). When neighboring proessors reside in the same node, they should onlysynhronize with eah other, in order to make sure that data have been written to the sharedmemory of the node before used.As far as the ommuniation data are onerned, we fous on the ommuniation points, asde�ned below:De�nition 3.2 Let i be the mapping dimension. Let ~dS ∈ DS be a tile dependene that impliesproessor dependene, that is ∃l 6= i : dS
l 6= 0. A point ~j′ ∈ TTIS is onsidered a ommuniationpoint respetive to ~dS i� the omputed data at iteration ~j = P ′(V ~jS +~j′) is needed by tile ~jS + ~dS,where ~jS ∈ JS and ~jS + ~dS ∈ JS, and ~jS + ~dS has been alloated to a di�erent node than ~jS.Note that a ommuniation point is only de�ned in respet to a spei� tile dependene ~dS .In other words, ommuniation points in the TTIS orrespond to iterations at whih data areomputed by one node and need to be sent to another node in tile diretion ~dS .

3.3 Parallelization 83

SMP node (0, 0) SMP node (0, 1)

SMP node (1, 0) SMP node (1, 1)

CPU (0, 0)CPU (0, 2)

CPU (2, 2)

Figure 3.14: Communiation among proessors.Only proessors with neighbors in a di�erent node need to transfer data among them. Neighboringproessors within the same node should only synhronize with eah other, in order to make surethat data have been written to the shared memory of the node before used.We further exploit the regularity of the TTIS and LDS to dedue simple riteria for theommuniation points at ompile time. The following lemma is useful:Lemma 3.7 A point ~j′ = (j′1, . . . , j
′
n) ∈ TTIS orresponds to a ommuniation point respetiveto a tile dependene ~dS = (dS

1 , . . . , d
S
n) ∈ DS i� it holds:
j′k ≥ dS

k (vkk − max
~d′∈D′

{d′k})where k = 1, . . . , n, ~d′ ∈ D′, D′ = H ′D, and tile ~jS + ~dS has been alloated to a di�erent nodethan ~jS.Proof: For ~j′ to be a ommuniation point aording to the k-th dimension, we distinguishtwo ases:1. dS
k = 0. Sine no tile dependene is enfored in this ase, no limitation for j′k is de�ned.So it holds 0 ≤ j′k ≤ vkk − 1.2. dS
k = 1. In this ase, there must exist a data dependene in the TTIS ~d′ ∈ D′ suh, thatthe k-th omponent of ~j′ + ~d′ exeeds the respetive bound of the TTIS, thus inurringneed for ommuniation aording to the k-th dimension. Aording to the above, itmust hold

j′k + d′k > vkk − 1 ⇒ j′k + d′k ≥ vkk ⇒ j′k ≥ vkk − d′k

84 Automati parallel ode generation for tiled nested loops
for some ~d′ ∈ D′ or equivalently

j′k ≥ vkk − max
~d′∈D′

{d′k}The uni�ation of both ases leads to the given ondition. ⊣Thus, it is advantageous to identify the ommuniation data in the TTIS, as opposed to theother possible alternatives (e.g. the initial iteration spae, the TIS et.) whih would ompliatethe ommuniation proedure. Also, note that the o�sets in LDS referened in §3.3.3 an easilyarise as follows:
offk = ⌈max

~d′∈D′

{d′k}/h̃
′
kk⌉, ∀k = 1, . . . , n (3.20)The instanes of LDS orresponding to the ommuniation points, as de�ned by Lemma 3.7,an be alulated by the expression:

j′′k ≥ mkvkk/h̃′kk (3.21)for eah tile dependene ~dS with dS
k 6= 0.Example 3.5: Continuing Example 3.4, we onsider that the tiled nested loops will beexeuted by a luster of SMP nodes with 4 proessors eah. Aording to Figure 3.2, themaximum total length orresponds to dimension jS

1 . Thus, aording to §3.3.2, jS
1 should beseleted as the mapping dimension of this example.Sine D′ = H ′D =

[
2 −1

−1 3

][
3 1

1 2

]
=

[
5 0

0 5

], the o�set parameters of LDS aregiven by formula (3.20) as follows:
off1 = ⌈max

~d′∈D′

{d′1}/h̃
′
11⌉ = ⌈5/1⌉ = 5

off2 = ⌈max
~d′∈D′

{d′2}/h̃
′
22⌉ = ⌈5/5⌉ = 1Aording to De�nition 3.1, as depited in Figure 3.12, the loal data spae LDS is de�ned asfollows:

LDS = {~j′′ ∈ Zn|0 ≤ j′′1 < 5 + |t|10/1 = 5 + 10|t| ∧ 0 ≤ j′′2 < 1 + 4 · 20/5 = 17}where |t| denotes the maximum number of tiles assigned to a proessor of the partiular node.Aording to formula (3.21), as indiated in Figure 3.12, the data that are omputed in this

3.3 Parallelization 85
node and should be transferred to a neighboring one, reside in the positions of LDS with
j′′2 ≥ m2v22/h̃′22 = 4 · 20/5 = 16.

86 Automati parallel ode generation for tiled nested loops

4Exeution of tiles onto lusters ofSymmetri Multiproessors (SMPnodes)
In this hapter, the exeution poliies of non-overlapping and overlapping ommu-niation with omputation, are generalized, in order to be applied onto PC lusterswith more than one CPUs eah. In order to ahieve this generalization, we introduethe tehnique of grouping, whih is a tiling transformation applied onto tiles. Af-terwards, we produe a linear time sheduling of groups, whih seems to be optimal,while any linear sheduling of tiles would be suboptimal, sine the ommuniation re-quirements among tiles are di�erent. We also indiate how omputation tasks shouldbe alloated to the proessors and we determine the guidelines for the seletion ofthe grouping parameters. Finally, we theoretially and experimentally validate thetehniques proposed.

88 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)4.1 An Intuitive ApproahBefore starting with the full demonstration of the proposed tehniques, we will intuitively illus-trate the basi onepts of our method, using an example. Let us onsider the following senario:A 2-dimensional nested loop is to be exeuted onto a luster of 3 idential single CPU nodes.We tile the iteration spae of the ode segment and assign eah row of tiles to a CPU node. Inorder to ahieve an easy alloation of tiles to CPUs, the size and shape of tiles should be seletedso that the iteration spae is partitioned into 3 rows of tiles (sine 3 CPUs are available). Then,the tiles an be omputed using either the overlapping, or the non-overlapping sheme presentedin §2.7.
Sj1

Sj2

node 0

node 1

node 2

Figure 4.1: Exeution of tiles on single-CPU nodes.If the luster onsists of 3 single-CPU nodes, the initial iteration spae is partitioned into 3 rowsof tiles.In the sequene, eah single CPU node is replaed by an SMP node, with 2 CPUs. The�rst solution one may think of, is tiling the initial iteration spae from srath, seleting thetile size so as to get six rows of tiles. Then, a row of tiles may be assigned to eah CPU andexeuted as if there were six single CPU nodes. This would mean that even CPUs inside thesame SMP node should ommuniate with eah other via message passing, in order to exhangethe data needed. The result of suh a onsideration may be unneessary transfers from theproessing unit to the network ard and vie versa, whih will onsume a portion of the intra-node ommuniation bandwidth. In the best ase, when the ompiler an detet and preventsuh unneessary ommuniation between the proessor and the network ard, it will not evitunneessary transfers among the shared and private spae of threads inside the same SMP node[DK04℄. In fat, they an simply write and read the data needed diretly to and from sharedmemory. Then, they should only synhronize with eah other using a barrier or a semaphore.The above onsideration leads to the onlusion that iterations assigned to the same SMPnode should be more tightly onneted to eah other, than simply being mapped to neighboringtiles. Maybe they an belong to the same tile, or to an entity inheriting some properties oftiling.In order to adjust the tile spae of Figure 4.1 to this omputing arhiteture, we an spliteah tile into two subtiles and assign eah subtile to one of the CPUs of the orresponding SMPnode, as indiated in Figure 4.2. Then, one may shedule tiles as if they were unsplit and take

4.1 An Intuitive Approah 89
are so as to exeute subtiles of a tile at the same time.

Sj1

Sj 2

node 0

node 1

node 2

Figure 4.2: Exeution of tiles on SMP nodes with 2 CPUs eah.Eah tile of Figure 4.1 is divided into 2 subtiles and eah CPU undertakes a subtile during eahtime step.Equivalently, the initial iteration spae may be tiled from srath, seleting the size of tilesso as to form six rows of tiles. Then, one row of tiles is assigned to eah CPU of the SMPnodes neighboring tiles, assigned to the same SMP node, are grouped together, as in Figure 4.3.Beause of tile dependenes, the tiles grouped together by this sheme annot be simultaneouslyexeuted, unless they are split into subtiles. Thus, additional synhronization overhead is ne-essary due to dependenes among subtiles, whih have been assigned to di�erent CPUs of thesame node, but should be exeuted during the same time step.
Sj1

Sj2

node 0

node 1

node 2

CPU0
CPU1

CPU0

CPU1

CPU0

CPU1

Figure 4.3: Vertial grouping.Neighboring tiles should be exeuted at the same time by CPUs of the same node. There aredependenes among tiles exeuted during the same time step.A more eÆient sheme an be obtained if the tiles assigned to the same SMP nodes aregrouped as indiated in Figure 4.4. Then, both tiles belonging to the same group an besimultaneously exeuted by the CPUs of an SMP node, without a need for ommuniation orsynhronization. Only one synhronization per tile is required, in order to ertify that the dataneeded are loated in the shared memory. This synhronization (implemented by a barrier or asemaphore) an be ontemporary with the ommuniation with CPUs of di�erent SMP nodes.In the rest of this thesis, we shall all this grouping sheme as hyperplane grouping.On the ontrary, any other grouping sheme along a spei� dimension, suh as the one pre-

90 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)

Sj1

Sj2

node 0

node 1

node 2

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

Figure 4.4: Hyperplane grouping.There are no dependenes among tiles exeuted during the same time step.sented in Figure 4.3, will be alled vertial grouping. Vertial grouping imposes additionalsynhronization overhead, due to dependenes among tiles of the same group.4.2 Grouping TransformationAs shown in §4.1, eÆient sheduling of tiled iteration spaes onto a parallel arhiteture on-sisting of SMP nodes, is not a straightforward task. In order to generate an appropriate timeshedule, we need to group together the tiles of JS that an be onurrently exeuted by theCPUs of the same SMP node. It an be ahieved by applying an additional supernode, or tilingtransformation to the tile spae JS . We name this supernode transformation as groupingtransformation.Thus, from the tile spae JS we produe the group spae
JG = { ~jG| ~jG = ⌊HG ~jS⌋, ~jS ∈ JS} (4.1)in orrespondene to formula (2.4) for tiling. This grouping transformation is de�ned by the

n × n non-singular matrix HG (similarly to matrix H de�ning tiling transformation). In or-respondene to the tiling matrix H, the n × n matrix HG is alled grouping matrix. Eahrow-vetor of HG is perpendiular to one of the families of hyperplanes that de�ne the bound-aries of the groups in JS . The n×n matrix PG = (HG)−1 is alled inverse grouping matrix.The matrix PG should onsist only of integer elements and its olumn-vetors are parallel andequal in size to the edges of a group-hyperparallelepiped in JS .In order to be valid, a grouping transformation should preserve the onstraint of atomiityof groups (HGDS ≥ 0 in orrespondene to HD ≥ 0 for tiling). In addition, sine within agroup all tiles are onurrently exeuted by the CPUs of an SMP node, in order to preservedata onsisteny, there should be no diret or indiret dependene among them. Equivalently,

4.3 Intuition of our algorithm 91
for eah dependene vetor ~dS

i in the tile spae, vetor HG ~dS
i should have at least one elementgreater than or equal to 1.4.3 Intuition of our algorithmThus, just as tiling transformation is used to summon iteration points into tiles, grouping trans-formation is applied after tiling transformation, in order to form suitable groups of tiles. Adesirable tiling transformation is the one that minimizes ommuniation overhead [Xue97a℄,[AKN95℄, [RR02℄, [RS92℄, [BDRR94℄, or total exeution time [HCF97℄, [HCF99℄, [DDRR97℄[XC02℄. Respetively, in the following paragraphs, we shall de�ne the riteria for an eÆientgrouping transformation and we shall propose a theory for determining it.Let us onsider a 3-dimensional tile spae JS . We want to assign all tiles along dimension

jS
1 to the same CPU of an SMP node. Sine all CPUs within a node have aess to the sharedmemory, neighboring rows of tiles, whih exhange data, are assigned to the CPUs of the samenode. In this way, the part of the tile spae assigned to a node will be of a retangular shape,as depited in Figure 4.5.

Sj 2

Sj1

Sj3

� 	 � � �

� 	 � � �

Figure 4.5: Set of tiles assigned to an SMP node.All dots along a grey arrow orrespond to tiles, whih are assigned to the same CPU of the SMPnode. They are exeuted one after the other, during onseutive time steps.We seek for an appropriate transformation matrix that will group together the tiles of Fig-ure 4.5, whih an be exeuted simultaneously by di�erent CPUs. The exeution of the portionof the tile spae, whih has been assigned to an SMP node, resembles the exeution of a UETgrid, as desribed in [AKPT99℄. Aording to [AKPT99℄, the optimal valid linear shedulingvetor for an iteration spae (or tile spae) with unitary dependene vetors (as imposed by
§B.5), is (1, 1, 1), when the time required for ommuniation is minimal. In our example, theommuniation among CPUs of a node reoils to a synhronization. Thus, it may be onsidered

92 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
onformal to the UET ommuniation model. So, we shall group together the tiles that belongto the same plane whih is perpendiular to the vetor (1, 1, 1), as indiated in Figure 4.6.

Sj 2

Sj1

Sj3

Sj 2

Sj1

Sj3

Sj2

Sj1

Sj3

Sj 2

Sj1

Sj 3

Figure 4.6: Groups of tiles exeuted simultaneously in an SMP node.The tiles of the same grey plane belong to the same group and will be exeuted at the same timeby di�erent CPUs of the same node. Sub�gures orrespond to onseutive time steps.The olumn-vetors of the inverse grouping matrix PG de�ne a hyper-parallelepiped (ingeneral) that ontains the tiles of a group, similar to the way the olumns of P de�ne a tile.Thus, vetors ~pG
2 and ~pG

3 should be parallel to the plane jS
1 + jS

2 + jS
3 = const and, at the sametime, they should be parallel to one of the planes de�ning the bounds of the set alloated tothis SMP node. That is, they should be parallel to the planes jS

3 = 0 and jS
2 = 0 respetively.Therefore, the appropriate vetors are

~pG
2 = λ(−1, 1, 0) and ~pG

3 = µ(−1, 0, 1)(In Figures 4.5-4.7 it holds λ = 4, µ = 2.) In addition, in order to over exatly the part of thetile spae alloated to an SMP node using a series of suessive groups, vetor ~pG
1 should beonstruted parallel to both the planes jS

2 = 0 and jS
3 = 0. Therefore, the appropriate vetor is

~pG
1 = (1, 0, 0)

4.4 Determining P G aording to the number of CPUs within an SMP node 93
Thus, the appropriate inverse grouping matrix is

PG =

1 −λ −µ

0 λ 0

0 0 µ

where λ, µ ∈ N . The maximum number of tiles grouped together will be det(PG) = λµ and thisprodut must be equal to the number of CPUs inside a node, so as to assign one tile to eahCPU during eah time step.

Sj2

Sj1

Sj3

Gp2

Gp3

Gp1Figure 4.7: Construting the inverse grouping matrix.Vetors pG
i should be parallel to the edges of a group-parallelepiped. Their norm should be equalto the length of the orresponding edge.4.4 Determining PG aording to the number of CPUs withinan SMP nodeConsider now the general ase: We have an n-dimensional tiled iteration spae and an homoge-neous luster of idential SMP nodes, eah with m proessors inside. Our objetive is to assignthe tiles of JS along the �rst dimension to the same CPU of an SMP node. The natural number

m an be written asm = m2×m3×· · ·×mn, wherem2,m3, . . . ,mn ∈ N . The grouping matriesare seleted to be
PG =

1 −m2 . . . −mn

0 m2 . . . 0...
0 0 . . . mn

and HG = (PG)−1 =

1 1 . . . 1

0 1
m2

. . . 0...
0 0 . . . 1

mn

(4.2)

94 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
The maximum number of tiles ontained inside a group is det(PG) = m, exatly equal to thenumber of CPUs inside eah SMP node.Theorem 4.1 In the algorithmi model, whih is summarized in Appendix B, matrix HG, de-�ned by formula (4.2), de�nes a legal grouping transformation.Proof: In order to prove that HG de�nes a legal grouping transformation, it suÆes toprove that1. HGDS ≥ 0, where DS is the dependene matrix of the tile spae JS2. any two tiles ~jS , ~jS ′ within the same group are independent.We have assumed (see §2.6.3 and restrition B.5) that the dependene matrix DS ontainsonly 0's and 1's. Consequently, the �rst ondition is apparently valid.In order to prove the seond ondition, we assume that the dependene matrix DS is equalto the unitary matrix. Even if there is a dependene vetor with more than one 1's, it is thesum of more than one unitary dependene vetors. So it will be inluded in the followingproof as an indiret dependene:If tiles ~jS , ~jS ′

∈ JS belong to the same group ~jG, then it holds that:
⌊HG ~jS⌋ = ⌊HG ~jS ′

⌋ ⇒

jS
1 + jS

2 + · · · + jS
n

⌊
jS
2

m2
⌋...

⌊
jS
n

mn
⌋

=

jS
1
′
+ jS

2
′
+ · · · + jS

n

′

⌊
jS
2

′

m2
⌋...

⌊
jS
n

′

mn
⌋

⇒

jS
1 + jS

2 + · · · + jS
n−1 + jS

n = jS
1

′
+ jS

2

′
+ · · · + jS

n−1

′
+ jS

n

′In addition, if there is a diret or an indiret dependene from ~jS to ~jS ′, it holds that
~jS ′

= ~jS +
n∑

i=1

λi
~di,where λi ∈ N and ~di is a unitary dependene vetor. The previous equality an be rewrittenas follows: ~jS ′

= ~jS + ~λ, where ~λ = (λ1, . . . , λn). Thus,
jS
i

′
= jS

i + λi, i = 1, . . . , nTherefore, the equality jS
1 +jS

2 + · · ·+jS
n−1 +jS

n = jS
1
′
+jS

2
′
+ · · ·+jS

n−1
′
+jS

n

′ an be rewrittenas follows:
λ1 + λ2 + · · · + λn = 0As λ1, . . . , λn ∈ N , it holds that
λ1 = · · · = λn = 0Consequently, there is no diret or indiret dependene between two tiles belonging to thesame group ~jG ∈ JG and all tiles of a group in JG an be omputed simultaneously by theCPUs of an SMP node. Thus, the above grouping transformation is valid aording to ouralgorithmi model. ⊣

4.4 Determining P G aording to the number of CPUs within an SMP node 95
Example 4.1: We a�ord a luster of SMP nodes with 2 CPUs and one NIC (NetworkInterfae Card) eah. The NICs provide the faility of Diret Memory Aess (DMA). Thus, theoverlapping exeution poliy an be implemented. We assume a 2-dimensional retangular tilespae JS . Let us assign the tiles along dimension jS

1 to the same CPU, as indiated in Figure 4.8by the grey arrows. The CPUs of the same SMP node will proess two neighboring rows of tiles.Then, during the time step t=0, CPU 0 of SMP node 0 omputes tile (0, 0). During the timestep t = 1, CPU 0 of node 0 omputes tile (1, 0), while CPU 1 of the same SMP node omputestile (0, 1). Similarly, during the time step t = 2, CPU 0 omputes tile (2, 0), while CPU 1omputes tile (1, 1). At the same time, the data omputed in tile (0, 1), whih are neessary forthe omputation of tile (0, 2), an be sent to node 1. During the time step t=3, the CPUs ofnode 0 an ontinue the exeution as above, while the CPUs of node 1 start exeuting the sameroutine with the rows of tiles (•, 2) and (•, 3).
Sj2

Sj1

0

3

1 2 3 4 5 6

4 5 6 7 8 9

10

node0

node1

tile(2,1) tile(3,0)
group(3,0)

tile(0,3)
tile(1,2)

group(3,1)

7

CPU0

CPU1

CPU0

CPU1

2 3 4 5 6 7 8

Figure 4.8: Example 4.1 - Tile spae.Grey dots orrespond to tiles. Tiles along the same grey arrow will be exeuted by the same CPUduring onseutive time steps. The grey rounded retangles indiate whih tiles will be exeutesby the CPUs of the same SMP node. The ovals indiate tiles that are grouped together andwill be exeuted by di�erent CPUs of the same node, during the same time step. The blakarrows indiate dependenes between tiles that will be exeuted in di�erent SMP nodes and,thus, require a data transfer. The labels in the ovals-groups or besides blak arrows-dependenesindiate during whih time step eah group will be exeuted and eah data transfer will takeplae, aording to the overlapping exeution poliy.In order to onstrut a time shedule for this example, we group together the tiles thatshould be onurrently exeuted by the same SMP node. In partiular, we apply grouping tothe tile spae JS , as indiated in Figure 4.8 and derive the group spae JG (Figure 4.9). Theappropriate grouping matries, aording to formula (4.2), for this ase are
PG =

[
1 −2

0 2

] and HG = (PG)−1 =

[
1 1

0 1
2

]

96 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
Gj2

Gj1

node0

node1

0 1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9 10

group(3,1)

group(3,0)Figure 4.9: Example 4.1 - Group spae.Grey dots orrespond to groups arising when applying the seleted grouping transformation tothe tile spae of Figure 4.8. Groups along the same grey arrow will be exeuted in the same SMPnode during onseutive time steps. As in Figure 4.8, the blak arrows indiate dependenesbetween groups that will be exeuted in di�erent SMP nodes and, thus, require a data transfer.The labels besides the dots-groups or blak arrows-dependenes indiate during whih time stepeah group will be exeuted and eah data transfer will take plae, aording to the overlappingexeution poliy.In this way, tiles (1, 0) and (0, 1) whih, as we have already mentioned, are simultaneouslyexeuted by the same SMP node, are grouped together in ~jG = ⌊HG(1, 0)T ⌋ = ⌊HG(0, 1)T ⌋ =

(1, 0)T . Similarly, tiles (2, 0) and (1, 1) are grouped together in ~jG = (2, 0)T . In Figures 4.8-4.9,the time step, when eah group will be omputed, is shown, together with the time step, wheneah data transfer will take plae.Table 4.1: Example 4.1The olumns labelled as \CPU x" indiate whih tile will be exeuted by eah CPU of an SMPnode during eah time step, aording to the overlapping exeution poliy. The olumns labelledas \group" indiate the group orresponding to the tiles exeuted by both CPUs of an SMP nodeat the same time.Time node 0 node 1Step CPU 0 CPU 1 group CPU 0 CPU 1 group0 �
0
0

� �
0
0

�1 �
1
0

� �
0
1

� �
1
0

�2 �
2
0

� �
1
1

� �
2
0

�3 �
3
0

� �
2
1

� �
3
0

� �
0
2

� �
2
1

�4 �
4
0

� �
3
1

� �
4
0

� �
1
2

� �
0
3

� �
3
1

�5 �
5
0

� �
4
1

� �
5
0

� �
2
2

� �
1
3

� �
4
1

�6 �
6
0

� �
5
1

� �
6
0

� �
3
2

� �
2
3

� �
5
1

�In Table 4.1, we indiate the tiles of the tile spae JS that will be exeuted by eah CPUof the �rst 2 SMP nodes during a time step and their orresponding group oordinates. Itan be easily dedued that a group ~jG = (jG
1 , j

G
2) ∈ JG will be exeuted during the time step

t(~jG) = jG
1 + jG

2 in the SMP node jG
2 . Therefore, the linear time sheduling vetor for this

4.4 Determining P G aording to the number of CPUs within an SMP node 97
example is ΠG = (1, 1).
Example 4.2: In ase the NICs of our luster do not support DMA, then Example 4.1 shouldbe modi�ed as follows: During the time step t=0, CPU 0 of the SMP node 0 omputes tile (0, 0).During the time step t = 1, CPU 0 of node 0 omputes tile (1, 0), while CPU 1 of the same SMPnode omputes tile (0, 1). Just when the omputation of both tiles is ompleted, data neededfor the omputation of tile (2, 0), whih have just been omputed in node 0 are transferred tonode 1. During the time step t = 2, the CPUs of node 0 an ontinue the exeution as above,while the CPUs of node 1 start exeuting the same routine with the rows of tiles (•, 2) and (•, 3).

Sj 2

Sj1
0

2

1 2 3 4 5 6

3 4 5 6 7 8
9

node0

node1

tile(2,1) tile(3,0)group(3,0)

tile(0,3) tile(1,2)
group(3,1)

7
CPU0

CPU1

CPU0
CPU1

1 2 3 4 5 6 7

Figure 4.10: Example 4.2 - Tile spae.As in Figure 4.8, the labels in the ovals-groups or besides blak arrows-dependenes indiateduring whih time step eah group will be exeuted and eah data transfer will take plae,aording to the non-overlapping exeution poliy.
Gj2

Gj1
node0

node1

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7
2 3 4 5 6 7 8 9
group(3,1)

group(3,0)Figure 4.11: Example 4.2 - Group spae.As in Figure 4.9, the labels besides the dots-groups or blak arrows-dependenes indiate duringwhih time step eah group will be exeuted and eah data transfer will take plae, aording tothe non-overlapping exeution poliy.In order to onstrut a time shedule for this example, as in Example 4.1, we group to-gether the tiles that should be onurrently exeuted by the same SMP node. In partiular,we apply grouping to the tile spae JS , as indiated in Figure 4.10 and derive the group spae

98 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
JG (Figure 4.11). The grouping matries are idential to the ones used in Example 4.1. InFigures 4.10-4.11, the time step, when eah group will be omputed, is shown, together with thetime step, when eah data transfer will take plae.Table 4.2: Example 4.2As in Table 4.1, the olumns labelled as \CPU x" indiate whih tile will be exeuted by eahCPU of an SMP node during eah time step, aording to the non-overlapping exeution poliy.The olumns labelled as \group" indiate the group orresponding to the tiles exeuted by bothCPUs of an SMP node at the same time.Time node 0 node 1Step CPU 0 CPU 1 group CPU 0 CPU 1 group0 �

0
0

� �
0
0

�1 �
1
0

� �
0
1

� �
1
0

�2 �
2
0

� �
1
1

� �
2
0

� �
0
2

� �
2
1

�3 �
3
0

� �
2
1

� �
3
0

� �
1
2

� �
0
3

� �
3
1

�4 �
4
0

� �
3
1

� �
4
0

� �
2
2

� �
1
3

� �
4
1

�3 �
5
0

� �
4
1

� �
5
0

� �
3
2

� �
2
3

� �
5
1

�In Table 4.2, we indiate the tiles of the tile spae JS that will be exeuted by eah CPUof the �rst 2 SMP nodes during a time step and their orresponding group oordinates. Itan be easily dedued that a group ~jG = (jG
1 , j

G
2) ∈ JG will be exeuted during the time step

t(~jG) = jG
1 in the SMP node jG

2 . Therefore, the linear time sheduling vetor for this example is
ΠG = (1, 0). Thus, we may equivalently shedule tiles, instead of groups, using the linear timesheduling vetor Π = (1, 1).
4.4.1 Linear time sheduleTheorem 4.2 When applying the overlapping exeution poliy, the appropriate linear timesheduling vetor for the group spae derived by grouping, as de�ned in formula (4.2), is ΠG =

(1, 1, . . . , 1).Proof: Applying the grouping transformation de�ned by formula (4.2), the 1-st olumn-vetor of the dependene matrix DS = I is transformed to the vetor ~
dG
1
′

= HG ~dS
1 =

(1, 0, . . . , 0)T . In addition, the j-th olumn-vetor of the dependene matrix DS = I, j =

2, . . . , n, is transformed to the vetor
HG ~dS

j = (1, 0, . . . , 0,
1

mj

, 0, . . . , 0)T .

4.4 Determining P G aording to the number of CPUs within an SMP node 99
Thus, it imposes group dependenes

(1, 0, . . . , 0, ⌊
1

mi

⌋, 0, . . . , 0)T = (1, 0, . . . , 0, 0, 0, . . . , 0)Tand
(1, 0, . . . , 0, ⌈

1

mj

⌉, 0, . . . , 0)T = (1, 0, . . . , 0, 1, 0, . . . , 0)TThus, the dependene matrix of the group spae an be written as:
DG =

1 1 . . . 1 1

0 1 . . . 0 0...
0 0 . . . 1 0

0 0 . . . 0 1

.We are searhing for an appropriate linear time sheduling vetor ΠG = (πG

1 , . . . , π
G
n)suh that eah group ~jG ∈ JG is omputed during the time step t = ΠG ~jG. Consider thelast (n− 1) oordinates of a group indiating whih SMP node of the luster will exeute thisgroup. Then, groups ~jG = (jG

1 , . . . , j
G
n) and ~jG′

= (jG
1 + 1, jG

2 , . . . , j
G
n) will be suessivelyomputed within the same SMP node. There is a dependene between them, as indiated bythe �rst olumn of DG, but there is no need for a ommuniation step between their suessiveomputation steps, beause the neessary data are already loated in the loal shared memoryof the SMP node. Consequently, their time distane ΠG ~jG′

− ΠG ~jG = πG
1 may be equal to

1. Thus, πG
1 = 1. In addition, the i-th olumn of DG (i = 2, . . . n) imposes a dependenebetween groups ~jG = (jG

1 , . . . , j
G
n) and ~jG′

= (jG
1 +1, jG

2 , . . . , j
G
i−1, j

G
i +1, jG

i+1, . . . , j
G
n). Thesegroups are exeuted in neighboring SMP nodes, thus a ommuniation step is required betweentheir omputation steps. It means that their time distane ΠG ~jG′

−ΠG ~jG = πG
1 +πG

i must beequal to 2. Consequently, πG
i = 1, i = 2, . . . , n. So, the vetor ΠG = (1, 1, . . . , 1) is seletedfor the linear time sheduling of our group spae JG. ⊣Notie that, in [GSK01℄, [STK02℄, for the single CPU pipelined shedule, Π was (1, 2, . . . , 2)aording to the UET-UCT theory [AKPT99℄. In other words, the optimal overlapping sheduleould be ahieved when we had equal omputation to ommuniation times, so that all ommu-niation ould be hidden (overlapped) with the omputation phase. Nevertheless, in the SMPase presented here, the labeling of oordinates of groups, that is the grouping transformation

PG, slightly skews the spae (see Figure 4.8 and the resulting group spae in Figure 4.9, therelative positions of groups (3, 0) and (3, 1)). So the optimal overlapping shedule is ahievedby (1, 1, . . . , 1). Notie, also, that this sheduling vetor is not the same with Hodzi's [HS98℄sheduling vetor, sine we are now referring to groups, while Hodzi was sheduling tiles.Theorem 4.3 When applying the non-overlapping exeution poliy, the appropriate linear timesheduling vetor for the group spae derived by grouping, as de�ned in formula (4.2), is ΠG =

(1, 0, . . . , 0).

100 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
Proof: As in the proof of Theorem 4.2, the dependene matrix of the group spae is:

DG =

1 1 . . . 1 1

0 1 . . . 0 0...
0 0 . . . 1 0

0 0 . . . 0 1

.We are searhing, again, for an appropriate linear time sheduling vetor ΠG = (πG

1 , . . . , π
G
n)suh that eah group ~jG ∈ JG is omputed during the time step t = ΠG ~jG. Consider the last

(n−1) oordinates of a group indiating whih SMP node of the luster will exeute this group.Then, groups ~jG = (jG
1 , . . . , j

G
n) and ~jG′

= (jG
1 + 1, jG

2 , . . . , j
G
n) will be suessively omputedwithin the same SMP node. Consequently, their time distane ΠG ~jG′

− ΠG ~jG = πG
1 may beequal to 1. Thus πG

1 = 1. In addition, the i-th olumn of DG (i = 2, . . . n) imposes a depen-dene between groups ~jG = (jG
1 , . . . , j

G
n) and ~jG′

= (jG
1 +1, jG

2 , . . . , j
G
i−1, j

G
i +1, jG

i+1, . . . , j
G
n).These groups are exeuted in neighboring SMP nodes, thus a data transfer should take plaebetween the respetive omputations. In ontrast to the overlapping exeution poliy, thisdata transfer may take plae during the time step, when data are omputed, just after theompletion of omputation. Thus, their time distane ΠG ~jG′

− ΠG ~jG = πG
1 + πG

i may beequal to 1. Consequently, πG
i = 0, i = 2, . . . , n. So, the vetor ΠG = (1, 0, . . . , 0) is seletedfor the linear time sheduling of our group spae JG. ⊣As in Example 4.2, notie that linear sheduling of groups, using vetor ΠG = (1, 0, . . . , 0),is equivalent to linear sheduling of tiles, using vetor Π = (1, 1, . . . , 1). Thus, the only reasonsfor grouping tiles, when an overlapping exeution is not possible, or not desired, are1. omparison with the overlapping exeution2. emphasizing the fat that data originating in the same group, albeit in di�erent tiles, maybe transferred in a single message.Example 4.3: Consider a retangular n-dimensional tile spae JS : 0 ≤ jS

i ≤ uS
i , i = 1, . . . , nand uS

1 ≥ uS
i , i = 2, . . . , n. We apply grouping transformation, aording to the formula (4.2).Thus, tile ~jS belongs to group ~jG = (

n∑
i=1

jS
i , ⌊

jS
2

m2
⌋, . . . , ⌊ jS

n

mn
⌋)T .Aording to the overlapping exeution poliy, it will be exeuted during the time step

t(~jG) =
n∑

i=1
jG
i =

n∑
i=1

jS
i +

n∑
i=2

⌊
jS
i

mi
⌋ (aording to the linear time sheduling vetor ΠG =

(1, 1, . . . , 1)). Group (0, 0, 0) will be exeuted during the �rst time step tmin = 0. Group
(

n∑
i=1

uS
i , ⌊

uS
2

m2
⌋, . . . , ⌊ uS

n

mn
⌋) will be omputed during the last time step tmax =

n∑
i=1

uS
i +

n∑
i=2

⌊
uS

i

mi
⌋.Thus, the number of time steps required for the ompletion of the exeution (makespan), is:

4.4 Determining P G aording to the number of CPUs within an SMP node 101
℘

overlap = 1 + tmax − tmin =
n∑

i=1
uS

i +
n∑

i=2
⌊

uS
i

mi
⌋ + 1 =

n∑
i=1

(wS
i − 1) +

n∑
i=2

⌊
wS

i −1
mi

⌋ + 1
(C.4)
⇒

℘
overlap =

n∑

i=1

wS
i +

n∑

i=2

⌈
wS

i

mi
⌉ − 2n+ 2 (4.3)where ws

i = us
i + 1, i = 1, . . . , n is the width of the tile spae along dimension i.Similarly, following the non-overlapping exeution poliy, group

~jG = (
n∑

i=1

jS
i , ⌊

jS
2

m2
⌋, . . . , ⌊

jS
n

mn
⌋)Twill be exeuted during the time step t(~jG) = jG

1 =
n∑

i=1
jS
i (aording to the linear time shedulingvetor ΠG = (1, 0, . . . , 0)). Group (0, 0, 0) will be exeuted during the �rst time step tmin = 0.Group (

n∑
i=1

uS
i , ⌊

uS
2

m2
⌋, . . . , ⌊ uS

n

mn
⌋) will be omputed during the last time step tmax =

n∑
i=1

uS
i .Thus, the number of time steps required for the ompletion of the exeution (makespan), is:

℘
nonoverlap = 1 + tmax − tmin =

n∑
i=1

uS
i + 1 ⇒

℘
nonoverlap =

n∑

i=1

wS
i − n+ 1 (4.4)

4.4.2 Assigning Tiles to CPUsFor node labelling reasons, onsider that the available SMP nodes form a virtual (n − 1)-dimensional mesh. Thus, eah node is identi�ed by a (n−1)-dimensional vetor. Note, however,that it is not a physial layout restrition, but a onvention to give eah node a unique tag. Then,the last (n − 1) oordinates of a group indiate the SMP into whih it will be exeuted. The�rst oordinate a�ets only the time of its exeution. Thus, a tile ~jS = (jS
1 , . . . , j

S
n), belongingto group ~jG = (jG

1 , . . . , j
G
n), will be exeuted in node (jG

2 , . . . , j
G
n) = (⌊

jS
2

m2
⌋, . . . , ⌊ jS

n

mn
⌋).Similarly, inside eah SMP node we onsider a (n − 1)-dimensional CPU virtual mesh on-taining labels { ~cpu ∈ Zn−1|0 ≤ cpux < mx+1, 1 ≤ x ≤ n − 1}. Then, a tile ~jS = (jS

1 , . . . , j
S
n)will be exeuted by CPU (jS

2 %m2, . . . , j
S
n %mn) of SMP node (⌊

jS
2

m2
⌋, . . . , ⌊ jS

n

mn
⌋). So, apparently,only tiles with the same oordinate jS

1 will be assigned to the same CPU of the same node.In addition, note that, if one of the diagonal elements of the inverse grouping matrix mxequals to 1, then the orresponding oordinate of the CPU identi�ation vetor an be omitted,

102 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
as it will always equal 0.
4.4.3 Generalization: Grouping tiles along an arbitrary dimension of JSIf we want to assign the iterations along the i-th dimension of JS to the same CPU of an SMPnode, then it an be similarly proven that the appropriate grouping matries are

PG =

m1 . . . 0 0 0 . . . 0...
0 . . . mi−1 0 0 . . . 0

−m1 . . . −mi−1 1 −mi+1 . . . −mn

0 . . . 0 0 mi+1 . . . 0...
0 . . . 0 0 0 . . . mn

HG = (PG)−1 =

1
m1

. . . 0 0 0 . . . 0...
0 . . . 1

mi−1
0 0 . . . 0

1 . . . 1 1 1 . . . 1

0 . . . 0 0 1
mi+1

. . . 0...
0 . . . 0 0 0 . . . 1

mn

(4.5)
where m1 × · · · ×mi−1 ×mi+1 × · · · ×mn = m. As previously, the time sheduling vetor is

ΠG = (1, . . . , 1) if the overlapping exeution poliy is followed, or ΠG = (0, . . . , 0, 1, 0, . . . , 0)otherwise. In addition, tile ~jS = (jS
1 , . . . , j

S
n) belonging to group ~jG = (jG

1 , . . . , j
G
n), will beexeuted within node (jG

1 , . . . , j
G
i−1, j

G
i+1, . . . , j

G
n) by CPU (jS

1 %m1, . . . , j
S
i−1%mi−1, j

S
i+1%mi+1,

. . . , jS
n %mn). As previously, if one of the diagonal elements of the inverse grouping matrix

mx = 1, x 6= i, then the orresponding oordinate of the CPU identi�ation vetor an beomitted.Example 4.4: We have a luster of SMP nodes with 2 CPUs and a NIC eah. We assume a
3-dimensional retangular tile spae JS . Let us assign the tiles along dimension jS

3 to the sameCPU, as indiated in Figure 4.12 by the grey arrows. The CPUs of the same SMP node willexeute two neighboring rows of tiles, whih belong to the same jS
1 − jS

3 plane. In respet to theformula (4.5), we hoose the grouping matries to be:

4.4 Determining P G aording to the number of CPUs within an SMP node 103
PG =

2 0 0

0 1 0

−2 −1 1

 and HG = (PG)−1 =

1
2 0 0

0 1 0

1 1 1

 .

Sj1

Sj3

Sj2

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
	
��

��� ��
� � � �

��
�
 �� �� ��

Figure 4.12: Example 4.4 - 2 × 1 CPUs per SMP node - Overlapping exeution.All tiles along the same grey arrow will be exeuted by the same CPU during onseutive timesteps. The grey areas indiate whih tiles will be exeutes by the CPUs of the same SMP node.The ovals indiate tiles that are grouped together and will be exeuted by di�erent CPUs of thesame node, during the same time step. The blak arrows indiate dependenes between tilesthat will be exeuted in di�erent SMP nodes and, thus, require a data transfer. The labels inthe ovals-groups or besides blak arrows-dependenes indiate during whih time step eah groupwill be exeuted and eah data transfer will take plae, aording to the overlapping exeutionpoliy.In Figure 4.12 we show the grouping of tiles and when eah omputation step and eahommuniation step will take plae, aording to the overlapping exeution poliy. In Table 4.3,we indiate the tiles of JS that will be exeuted by eah CPU of the 3 neighboring SMP nodes
(0, 1), (0, 0), (1, 0) during eah time step. It an be easily dedued that a group (jG

1 , j
G
2 , j

G
3) ∈ JGwill be exeuted in node (jG

1 , j
G
2) during the time step t(~jG) = jG

1 + jG
2 + jG

3 . Therefore, asexpeted, the linear time sheduling vetor for this example is ΠG = (1, 1, 1).Similarly, in Figure 4.13, we show the grouping of tiles and when eah omputation step andeah ommuniation step will be exeuted, aording to the non-overlapping exeution poliy.In Table 4.4, we indiate the tiles of JS that will be exeuted by eah CPU of the 3 neighboringSMP nodes (0, 1), (0, 0), (1, 0) during eah time step. It an be easily dedued that a group
(jG

1 , j
G
2 , j

G
3) ∈ JG will be exeuted in node (jG

1 , j
G
2) during the time step t(~jG) = jG

3 . Therefore,as expeted, the linear time sheduling vetor for this example is ΠG = (0, 0, 1).

104 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
Table 4.3: Example 4.4 - 2 × 1 CPUs per SMP node - Overlapping exeutionTime node (0,1) node (0,0) node (1,0)Step CPU 0 CPU 1 group CPU 0 CPU 1 group CPU 0 CPU 1 group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
0
1

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
1
0

1A 0� 0
1
1

1A 0� 0
0
2

1A 0� 1
0
1

1A 0� 0
0
2

1A3 0� 0
1
1

1A 0� 1
1
0

1A 0� 0
1
2

1A 0� 0
0
3

1A 0� 1
0
2

1A 0� 0
0
3

1A 0� 2
0
0

1A 0� 1
0
2

1A4 0� 0
1
2

1A 0� 1
1
1

1A 0� 0
1
3

1A 0� 0
0
4

1A 0� 1
0
3

1A 0� 0
0
4

1A 0� 2
0
1

1A 0� 3
0
0

1A 0� 1
0
3

1A5 0� 0
1
3

1A 0� 1
1
2

1A 0� 0
1
4

1A 0� 0
0
5

1A 0� 1
0
4

1A 0� 0
0
5

1A 0� 2
0
2

1A 0� 3
0
1

1A 0� 1
0
4

1A
Sj1

Sj3

Sj2

node(0,0) node(1,0)

node(0,1) node(1,1)

0
1

2

3

4

2
3

4

5
6

1

1
2

3

3

4

2

3

4

2

3

0
2

1

3

2

2 3
3

Figure 4.13: Example 4.4 - 2 × 1 CPUs per SMP node - Non-overlapping exeutionExample 4.5: We have a luster of SMP nodes with 4 CPUs and a NIC eah. As previously,we assume a 3-dimensional retangular tile spae JS . Let us assign the tiles along dimension jS
3to the same CPU, as indiated in Figure 4.14 by the grey arrows. The CPUs of the same SMPnode will undertake 4 neighboring lines of tiles whih belong to the same jS

1 − jS
3 plane.Aording to formula (4.5), we hoose the grouping matries to be

PG =

4 0 0

0 1 0

−4 −1 1

 and HG = (PG)−1 =

1
4 0 0

0 1 0

1 1 1

In Figure 4.14 we indiate the grouping of tiles and during whih time step eah omputation

4.4 Determining P G aording to the number of CPUs within an SMP node 105
Table 4.4: Example 4.4 - 2 × 1 CPUs per SMP node - Non-overlapping exeutionTime node (0,1) node (0,0) node (1,0)Step CPU 0 CPU 1 group CPU 0 CPU 1 group CPU 0 CPU 1 group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
1
0

1A 0� 0
1
1

1A 0� 0
0
1

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
1
1

1A 0� 1
1
0

1A 0� 0
1
2

1A 0� 0
0
2

1A 0� 1
0
1

1A 0� 0
0
2

1A 0� 2
0
0

1A 0� 1
0
2

1A3 0� 0
1
2

1A 0� 1
1
1

1A 0� 0
1
3

1A 0� 0
0
3

1A 0� 1
0
2

1A 0� 0
0
3

1A 0� 2
0
1

1A 0� 3
0
0

1A 0� 1
0
3

1A4 0� 0
1
3

1A 0� 1
1
2

1A 0� 0
1
4

1A 0� 0
0
4

1A 0� 1
0
3

1A 0� 0
0
4

1A 0� 2
0
2

1A 0� 3
0
1

1A 0� 1
0
4

1A
step and eah ommuniation step will take plae, following the overlapping exeution poliy. InTable 4.5 we indiate whih tiles of the tile spae JS will be exeuted by eah CPU of the �rst 3SMP nodes of our luster during a time step. In addition, we indiate whih is the orrespondinggroup of JG. It an be easily dedued from Table 4.5 that a group (jG

1 , j
G
2 , j

G
3) ∈ JG will beexeuted in the SMP node (jG

1 , j
G
2) during the time step t(~jG) = jG

1 + jG
2 + jG

3 . Therefore, thelinear time sheduling vetor for this example is ΠG = (1, 1, 1).Similarly, in Figure 4.15 we indiate the grouping of tiles and during whih time step eahomputation step and eah ommuniation step will take plae, following the non-overlappingexeution poliy. In Table 4.6 we indiate whih tiles of the tile spae JS will be exeutedby eah CPU of the �rst 3 SMP nodes of our luster during a time step. In addition, weindiate whih is the orresponding group of JG. It an be easily dedued from Table 4.6 thata group (jG
1 , j

G
2 , j

G
3) ∈ JG will be exeuted in the SMP node (jG

1 , j
G
2) during the time step

t(~jG) = jG
3 = jS

1 + jS
2 + jS

3 . Therefore, the linear time sheduling vetor for this example is
ΠG = (0, 0, 1).
Example 4.6: We have a luster of SMP nodes with 4 CPUs and a NIC eah. As previously,we assume a 3-dimensional retangular tile spae JS . The CPUs of the same SMP node under-take 4 neighboring lines of tiles whose projetion on the jS

1 − jS
2 plane forms a square. Thus,

106 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
Sj1

Sj3

Sj2

node(0,0) node(1,0)

node(0,1)

0

1 2

3

4

5

6

7

8 9

10

5

6 7

8

9

10

11

12

13 14

15

2

3

4

1
2

2

3
3

3
4

5

6

7

8

9

10

11Figure 4.14: Example 4.5 - 4 × 1 CPUs per SMP node - Overlapping exeution.As in Figure 4.12, the labels in the ovals-groups or besides blak arrows-dependenes indiateduring whih time step eah group will be exeuted and eah data transfer will take plae,aording to the overlapping exeution poliy.aording to formula (4.5), the grouping matries are
PG =

2 0 0

0 2 0

−2 −2 1

 and HG = (PG)−1 =

1
2 0 0

0 1
2 0

1 1 1

In Figure 4.16, we indiate whih tiles of JS will be undertaken by eah SMP node. InFigure 4.17, we have zoomed to the part of JS assigned to an SMP node and we indiate whihtiles of this part will be exeuted simultaneously by di�erent CPUs. These tiles belong to thesame grey plane. In Table 4.7 we indiate whih tiles of the tile spae JS will be exeuted byeah CPU of the �rst 3 SMP nodes of our luster during a time step, following the overlappingexeution poliy. In addition, we indiate whih is the orresponding group of JG. As inExamples 4.4 and 4.5, it an be dedued that a group (jG

1 , j
G
2 , j

G
3) ∈ JG will be exeuted inSMP node (jG

1 , j
G
2) during the time step t(~jG) = jG

1 + jG
2 + jG

3 . Therefore, the linear timesheduling vetor for this example is ΠG = (1, 1, 1).Similarly, in Table 4.8 we indiate whih tiles of the tile spae JS will be exeuted by eahCPU of the �rst 3 SMP nodes of our luster during a time step, following the non-overlapping

4.4 Determining P G aording to the number of CPUs within an SMP node 107
Table 4.5: Example 4.5 - 4 × 1 CPUs per SMP node - Overlapping exeution.Sine CPUs inside an SMP node form a 4×1 mesh, we have omitted the seond dimension whenlabelling CPUs. It would be always equal to 0, as explained in page 102.Time node (0,0)Step CPU 0 CPU 1 CPU 2 CPU 3 group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
0
1

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
0
2

1A 0� 1
0
1

1A 0� 2
0
0

1A 0� 0
0
2

1A3 0� 0
0
3

1A 0� 1
0
2

1A 0� 2
0
1

1A 0� 3
0
0

1A 0� 0
0
3

1A4 0� 0
0
4

1A 0� 1
0
3

1A 0� 2
0
2

1A 0� 3
0
1

1A 0� 0
0
4

1A5 0� 0
0
5

1A 0� 1
0
4

1A 0� 2
0
3

1A 0� 3
0
2

1A 0� 0
0
5

1ATime node (0,1)Step CPU 0 CPU 1 CPU 2 CPU 3 group2 0� 0
1
0

1A 0� 0
1
1

1A3 0� 0
1
1

1A 0� 1
1
0

1A 0� 0
1
2

1A4 0� 0
1
2

1A 0� 1
1
1

1A 0� 2
1
0

1A 0� 0
1
3

1A5 0� 0
1
3

1A 0� 1
1
2

1A 0� 2
1
1

1A 0� 3
1
0

1A 0� 0
1
4

1ATime node (1,0)Step CPU 0 CPU 1 CPU 2 CPU 3 group5 0� 4
0
0

1A 0� 1
0
4

1A
exeution poliy. One again, it an be dedued that a group (jG

1 , j
G
2 , j

G
3) ∈ JG will be exeutedin SMP node (jG

1 , j
G
2) during the time step t(~jG) = jG

3 = jS
1 + jS

2 + jS
3 . Therefore, the lineartime sheduling vetor for this example is ΠG = (0, 0, 1).

108 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
Sj1

Sj3

Sj2

node(0,0) node(1,0)

node(0,1)

0

1 2

3

4

5

6

7

8 9

10

4

5 6

7

8

9

10

11

12 13

14

1

2

3

0
1

1

2
3

2
3

4

5

6

7

8

9

10Figure 4.15: Example 4.5 - 4 × 1 CPUs per SMP node - Non-overlapping exeution4.4.4 Optimal seletion of mksConsidering the minimization of the makespanLet us onsider (as in Example 4.3) a retangular tile spae JS : ∀jS ∈ JS it holds 0 ≤ jS
i ≤ uS

i ,
0 ≤ i ≤ n. We apply grouping transformation, aording to formula (4.5). Similarly to formula(4.3), it an be proven that the makespan of the exeution will be

℘
overlap =

n∑

k=1

wS
k +

∑

k 6=i

⌈
wS

k

mk
⌉ − 2n+ 2 (4.6)where ws

i = us
i + 1, i = 1, . . . , n is the width of the tile spae along dimension i.In order to minimize the total ompletion time, we should apparently hoose the i-th dimen-sion, along whih we alloate the tiles to the same CPU, so that it holds wS

i ≥ wS
k ,∀k = 1, . . . , n,as wS

i is the only dimension of JS whih is involved in (4.6) only one.After the seletion of the i-th dimension, the eiling funtions involved in the expression(4.6) an be eliminated as follows:
n∑

k=1

wS
k +

∑

k 6=i

wS
k

mk
− 2n+ 2 ≤ ℘

overlap <

n∑

k=1

wS
k +

∑

k 6=i

wS
k

mk
− n+ 1Thus, we an assert that the ompletion time of the algorithm is approximately minimum when

4.4 Determining P G aording to the number of CPUs within an SMP node 109
Table 4.6: Example 4.5 - 4 × 1 CPUs per SMP node - Non-overlapping exeutionTime node (0,0)Step CPU 0 CPU 1 CPU 2 CPU 3 group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
0
1

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
0
2

1A 0� 1
0
1

1A 0� 2
0
0

1A 0� 0
0
2

1A3 0� 0
0
3

1A 0� 1
0
2

1A 0� 2
0
1

1A 0� 3
0
0

1A 0� 0
0
3

1A4 0� 0
0
4

1A 0� 1
0
3

1A 0� 2
0
2

1A 0� 3
0
1

1A 0� 0
0
4

1A5 0� 0
0
5

1A 0� 1
0
4

1A 0� 2
0
3

1A 0� 3
0
2

1A 0� 0
0
5

1ATime node (0,1)Step CPU 0 CPU 1 CPU 2 CPU 3 group1 0� 0
1
0

1A 0� 0
1
1

1A2 0� 0
1
1

1A 0� 1
1
0

1A 0� 0
1
2

1A3 0� 0
1
2

1A 0� 1
1
1

1A 0� 2
1
0

1A 0� 0
1
3

1A4 0� 0
1
3

1A 0� 1
1
2

1A 0� 2
1
1

1A 0� 3
1
0

1A 0� 0
1
4

1ATime node (1,0)Step CPU 0 CPU 1 CPU 2 CPU 3 group4 0� 4
0
0

1A 0� 1
0
4

1Athe expression ∑
k 6=i

wS
k

mk
is minimized. Aording to Lemma C.3, this ondition is valid when

mk = wS
k

(
m

wS
1 . . . w

S
i−1w

S
i+1 . . . w

S
n

) 1
n−1

, k = 1, . . . , n, k 6= i (4.7)Of ourse, it is not always feasible beause the numbers mi should be natural. But it alwaysapplies an approximate riterion for the seletion of parameters mk. Intuitively, it means thatparameters mk should be hosen so that ratios wS
k

mk
are as lose to eah other as possible.Example 4.7: Let us onsider a luster of SMP nodes with m = 4 CPUs eah and a 3-dimensional spae JS with size 20 × 100 × 20. It means that wS

1 = 20, wS
2 = 100, wS

3 = 20.

110 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)

Sj1

Sj2

Sj3 node(0,0) node(1,0) node(2,0)

node(0,1) node(1,1)

Figure 4.16: Example 4.6 - 2 × 2 CPUs per SMP node.Neighboring tiles depited using dots of the same olor are assigned to the same SMP node.Then, aording to our previous analysis, the best hoie will be: i = 2, m1 = 20
(

4
20×20

) 1
2

= 2,
m3 = m

m1
= 2. If we apply these values in expression (4.6), we get that the number of stepsrequired for the ompletion of the exeution will be ℘

overlap = 156. In ontrast, if we hose
m1 = 4, m3 = 1, then the expression (4.6) would get the value ℘

overlap = 161 > 156.If the size of JS is 20 × 120 × 150 (wS
1 = 20, wS

2 = 120, wS
3 = 150), then, aording toour previous analysis, the best hoie will be: i = 3, m1 = 20

(
4

20×120

) 1
2

= 0.816. The losestnatural number whih divides m = 4 is m1 = 1. Thus m2 = m
m1

= 4. If we apply these values inthe expression (4.6), we get that the number of steps required for the ompletion of the exeutionwill be ℘
overlap = 336. In ontrast, if we hose m1 = m2 = 2, then the expression (4.6) wouldget the value ℘

overlap = 356 > 336.When the non-overlapping exeution poliy is followed, as dedued from formula (4.4), the

4.4 Determining P G aording to the number of CPUs within an SMP node 111
Sj1

Sj2

Sj3

Sj1

Sj2

Sj3

Sj1

Sj2

Sj3Figure 4.17: Example 4.6 - 2 × 2 CPUs per SMP node.Eah sub-�gure depits the tiles assigned to an SMP node. Tiles aross a grey plane, are exeutedsimultaneously by di�erent CPUs of the SMP node.seletion of parameters mk does no matter for the omputation of the makespan.Considering the minimization of the ommuniation overheadAs one an easily observe in Example 4.7, when the overlapping exeution poliy is followed,the signi�ane of the seletion of parameters mk, as it has just been desribed, is less when themaximum dimension wS
i is muh longer than dimensions wS

1 , . . . , w
S
i−1, w

S
i+1, . . . , w

S
n . So, it maybe preferable to hoose the values of parameters mk taking into onsideration the minimizationof the ommuniation requirements among the SMP nodes. This need is apparent when om-muniation is not overlapped with omputations. In that ase, the less the ommuniation loadis, the faster the exeution is ompleted.

1j

2l

1l

2j

Figure 4.18: Communiation load of a tile.Communiation load along dimension x is de�ned to be the number of dependene vetors, whihross the respetive tile boundary line (or, generally, for n dimensions, hyperplane).

112 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
Table 4.7: Example 4.6 - 2 × 2 CPUs per SMP node - Overlapping exeutionUnlike Examples 4.4 and 4.5, in this example we should label CPUs of an SMP node using bothdimensions of the 2 × 2 virtual mesh.Time node (0,0)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
0
1

1A 0� 0
1
0

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
0
2

1A 0� 0
1
1

1A 0� 1
0
1

1A 0� 1
1
0

1A 0� 0
0
2

1A3 0� 0
0
3

1A 0� 0
1
2

1A 0� 1
0
2

1A 0� 1
1
1

1A 0� 0
0
3

1A4 0� 0
0
4

1A 0� 0
1
3

1A 0� 1
0
3

1A 0� 1
1
2

1A 0� 0
0
4

1A5 0� 0
0
5

1A 0� 0
1
4

1A 0� 1
0
4

1A 0� 1
1
3

1A 0� 0
0
5

1ATime node (0,1)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group3 0� 0
2
0

1A 0� 0
1
2

1A4 0� 0
2
1

1A 0� 0
3
0

1A 0� 1
2
0

1A 0� 0
1
3

1A5 0� 0
2
2

1A 0� 0
3
1

1A 0� 1
2
1

1A 0� 1
3
0

1A 0� 0
1
4

1ATime node (1,0)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group3 0� 2
0
0

1A 0� 1
0
2

1A4 0� 2
0
1

1A 0� 2
1
0

1A 0� 3
0
0

1A 0� 1
0
3

1A5 0� 2
0
2

1A 0� 2
1
1

1A 0� 3
0
1

1A 0� 3
1
0

1A 0� 1
0
4

1ALet us represent with lk the ommuniation load of a tile along the k-th dimension, asindiated in Figure 4.18. If we group together m1m2 tiles, then the ommuniation loads amongthe SMP nodes will be l1m2 = m
m1
l1 and l2m1 = m

m2
l2, as indiated in Figure 4.19. Similarly,if we group together m1 · · ·mi−1mi+1 · · ·mn tiles, then the ommuniation loads among thenodes of the luster will be m

mk
lk. Thus the total ommuniation load of a group will be ltotal =

m
(

l1
m1

+ · · · + li−1

mi−1
+ li+1

mi+1
+ · · · + ln

mn

). Aording to Lemma C.3, it is minimized when mk =

lk

(
m

l1···li−1li+1···ln

) 1
n−1 , k = 1, . . . , n, k 6= i. Of ourse, as numbers mk should be natural, thisriterion is also approximative.

4.4 Determining P G aording to the number of CPUs within an SMP node 113
Table 4.8: Example 4.6 - 2 × 2 CPUs per SMP node - Non-overlapping exeutionTime node (0,0)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
0
1

1A 0� 0
1
0

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
0
2

1A 0� 0
1
1

1A 0� 1
0
1

1A 0� 1
1
0

1A 0� 0
0
2

1A3 0� 0
0
3

1A 0� 0
1
2

1A 0� 1
0
2

1A 0� 1
1
1

1A 0� 0
0
3

1A4 0� 0
0
4

1A 0� 0
1
3

1A 0� 1
0
3

1A 0� 1
1
2

1A 0� 0
0
4

1A5 0� 0
0
5

1A 0� 0
1
4

1A 0� 1
0
4

1A 0� 1
1
3

1A 0� 0
0
5

1ATime node (0,1)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group2 0� 0
2
0

1A 0� 0
1
2

1A3 0� 0
2
1

1A 0� 0
3
0

1A 0� 1
2
0

1A 0� 0
1
3

1A4 0� 0
2
2

1A 0� 0
3
1

1A 0� 1
2
1

1A 0� 1
3
0

1A 0� 0
1
4

1ATime node (1,0)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group2 0� 2
0
0

1A 0� 1
0
2

1A3 0� 2
0
1

1A 0� 2
1
0

1A 0� 3
0
0

1A 0� 1
0
3

1A4 0� 2
0
2

1A 0� 2
1
1

1A 0� 3
0
1

1A 0� 3
1
0

1A 0� 1
0
4

1A
In the rest of this hapter, we shall theoretially and experimentally ompare the proposedmethods with eah other. Although our above theoretial results an be applied to any onvextile spae, as explained in §2.2, we shall go on using only retangular tile spaes, as in ourprevious examples. We onsider that this simpli�ation is onvenient for learly expressingsome ideas and it does not onstrain any of the advantages or disadvantages of the proposedmethods.

114 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)

Sj1

Sj2
21lm

12lm

Figure 4.19: Communiation load of a group.Communiation load along dimension x is de�ned to be the produt of the ommuniation loadof a tile along dimension x, and the number of tiles, whih touh the respetive group boundaryline (or, generally, for n dimensions, hyperplane).4.5 Theoretial ComparisonIn this setion we shall ompare vertial grouping, whih is indiated in Figure 4.3, with theproposed sheme of hyperplane grouping, whih is shown in Figures 4.4 and 4.8, in the ase ofa 2-dimensional algorithm and a luster of SMPs with 2 CPUs eah.
�� ���� � �

� �� �� � �	
 � 	�� 	 �
�� �� �� �� ��

Figure 4.20: In order to exeute at the same time tiles grouped together by a vertialgrouping sheme, we should further divide them into sub-tiles and exeute some of them inparallel, aording to an intra-tile hyperplane sheduling.As we have already mentioned, vertial grouping annot exploit the omputational powerof both CPUs of our SMPs unless we split eah tile into smaller subtiles and ompute someof them in parallel, as shown in Figure 4.20. Let us assume that a CPU needs time α for theomputation of a tile with dimensions x, y (Figure 4.20a). Consequently, it will need time α
Nfor the omputation of a respetive subtile with dimensions x

N , y (Figure 4.20). The subtileswhih are reated an be omputed by 2 CPUs in N + 1 omputational steps, interleaved with
N synhronization steps, following an optimal linear time shedule (1, 1) as in Figure 4.20. Ifthe average time onsumed for the synhronization of 2 CPUs of an SMP node is tsynch in, then

4.5 Theoretial Comparison 115
the total time required for the omputation of a pair of initial tiles is

β = α
N + 1

N
+Ntsynch in. (4.8)

β is minimized when
N =

√
α

tsynch in
. (4.9)Therefore, the minimum value of β is βmin = α+ 2
√
αtsynch in > α.If we onsider an iteration spae of size X × Y , tiled with retangular tiles of size xy, (forexample in Figures 4.3, 4.4 we have X

x = 10, Y
y = 6), then we have the following options:1. Following the non-overlapping sheme (whih an be implemented using bloking alls)in ombination with vertial grouping, the number of time steps required for the omple-tion of the exeution is ℘ = X

x + Y
2y − 1. The minimum duration of a time step (aordingto formula (2.10)) is βmin +tcomm, where tcomm is the time required for the ommuniationbetween two SMP nodes. Thus, the total time required is

Tblocking,vertical = ℘(βmin + tcomm) ≃ (
X

x
+
Y

2y
)(βmin + tcomm)2. Following the overlapping sheme (whih an be implemented using non-bloking alls) inombination with vertial grouping, the number of time steps required for the ompletionof the exeution is ℘= X

x + Y
y − 2. Aording to formula (2.11), if we set tcomp = βmin,the minimum duration of a time step is tstart dma +max(βmin, tcomm dma)+ tsynchro. Thus,the total time required is

Tnon−blocking,vertical = ℘(tstart dma +max(βmin, tcomm dma) + tsynchro) ≃

≃ (X
x + Y

y)(tstart dma +max(βmin, tcomm dma) + tsynchro)If βmin ≥ tcomm dma, then
Tnon−blocking,vertical ≃ (

X

x
+
Y

y
)(tstart dma + βmin + tsynchro)3. Following the overlapping sheme in ombination with hyperplane grouping, the num-ber of time steps required for the ompletion of the exeution is ℘= X

x + 3Y
2y − 2. A-ording to formula (2.11), if we set tcomp = α, the minimum duration of a time step is

116 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
tstart dma +max(α, tcomm dma) + tsynchro. Thus, the total time required is

Tnon−blocking,hyperplane = ℘(tstart dma +max(α, tcomm dma) + tsynchro) ≃

≃ (X
x + 3Y

2y)(tstart dma +max(α, tcomm dma) + tsynchro)If α ≥ tcomm dma, then
Tnon−blocking,hyperplane ≃ (

X

x
+

3Y

2y
)(tstart dma + α+ tsynchro)In most real problems it holds that Y/y

X/x = λ ≪ 1. Therefore, in ase that βmin ≥

tcomm, the overlapping sheme in ombination with vertial grouping is more eÆient thanthe non-overlapping sheme, when tcomm dma > (tstart dma + βmin + tsynchro)
Y
2y

X
x

+ Y
2y

⇔ tcomm >

λ
2 (tstart dma + βmin + tsynchro). In addition, the overlapping sheme, in ombination with hyper-plane grouping, is more eÆient than the overlapping sheme, in ombination with vertial group-ing, when (X

x + 3Y
2y)(tstart dma+α+tsynchro) < (X

x + Y
y)(tstart dma+α+2

√
αtsynch in+tsynchro). Ifwe onsider tstart dma + tsynchro ≪ α, then, we get 2

√
tsynch in

α > λ/2
1+λ ≃ λ

2 ⇒ tsynch in > α
(

λ
4

)2.This is due to the fat that, using vertial grouping, the pipeline �lling is faster, while, usinghyperplane grouping, the pipeline throughput is faster. So, hyperplane grouping is preferablewhen the mapping dimension of the tile spae is long enough in omparison to the rest dimen-sions. However, in any ase, the hyperplane grouping has the advantage that it needs no extratiling inside eah tile in order to exploit the omputational fore of the CPUs.Consequently, whih ommuniation and grouping poliy is optimal, depends on the hard-ware harateristis. One should estimate the time parameters involved in the model (ompu-tation, transfer initialization overhead, atual transfer overhead) and determine whih shemeis going to give the peak performane. In general, the purpose of the overlapping sheme, inombination with hyperplane grouping, is exploiting all modern arhitetural harateristis ofNICs, suh as DMA, RDMA, Zero Copy, or even NICs with embedded proessors. Thus, thissheme will be optimal when these harateristis are atually available.4.6 Experimental Veri�ation4.6.1 Experimental platform and algorithmIn [STK02℄, the pipelined shedule proposed in [GSK01℄ was applied, using a luster of singleCPU nodes with PCI-SCI NICs. In this thesis, as in [AST+05℄, [ASTK02a℄, [ASTK02b℄, inorder to evaluate the proposed methods, we ran our experiments on a Linux SMP luster with 8idential nodes. Eah node had 128MB of RAM and 2 Pentium III 800 MHz CPUs. The lusternodes were interonneted with an SCI ring, using SCI Dolphin's PCI-SCI D330 ards. SCI

4.6 Experimental Veri�ation 117
NICs support shared memory programming, either through PIO (Programmed-IO) messaging,or through DMA. We are using their kernel-level DMA support for messaging. Invoking kernelsystem alls, auses extra CPU yles overhead. However, we an avoid extra opying from userspae to kernel spae (physial memory) when using DMA. We alloate user level pages, whihorrespond to physially ontiguous pre-reserved memory regions, for DMA ommuniations.Our test appliation was the following ode:for(i=1; i<=X; i++)for(j=1; j<=Y; j++)for(k=1; k<=Z; k++)A[i℄[j℄[k℄=fun(A[i-1℄[j℄[k℄,A[i℄[j-1℄[k℄,A[i℄[j℄[k-1℄);where A is an array of X × Y × Z oats and X = Y << Z. Without lak of generality, weselet as a tile a retangle with ij, ik and jk sides. The dimension k is the largest one, so alltiles along k-axis are mapped onto the same proessor, as proposed in §4.4.4. Eah tile has i, jdimensions equal to x and the tile's \height" along k-axis equal to z. There are X

x tiles alongdimensions i and j and Z
z tiles along dimension k. Tile's volume is equal to g = x2z, and sinethe number of available proessors is initially known, the only unknown parameter is z.We applied both vertial and hyperplane grouping, using both bloking and non-blokingommuniation primitives. Sine both vertial and hyperplane grouping an be ombined withboth overlapping and non-overlapping ommuniation, we experimented with all four ombina-tions. For eah exemplary iteration spae and eah possible tile height, we alulated the totalexeution time for the above shemes. In order to implement these shemes, we used LinuxPOSIX threads with semaphores for the synhronization among the proessors of an SMP nodeand the SISCI driver and libraries for the ommuniation among the SMP nodes.4.6.2 Tuning ParametersFirst of all, as far as the implementation of vertial grouping is onerned, we experimentallyveri�ed formula (4.9), in order to alulate the optimal exeution time for a ouple of tiles byan SMP node. We assigned the omputation of two tiles to the two proessors of an SMP nodeand measured their exeution time in respet to the number of subtiles into whih eah tile wasut, in order not to violate the iteration dependenes. The experimental results, along with thetheoretially expeted urve, are plotted in Figure 4.21. The theoretial plot was alulated usingthe formula (4.8) with α ≃ 69msec and tsynch in ≃ 11µsec. These values were experimentallymeasured by running a simple ode fragment thousands of times and alulating the averageexeution time. If we �nd the Nbest,theoretical, that is the point N where the theoretial minimumis ahieved and for thisN we �nd the orresponding experimental overall time, then the di�erenebetween this value and the experimental minimum is less than 0, 15%. This is learly shown inFigure 4.22, whih has zoomed in the minimum of the diagram of Figure 4.21. So we an safelyuse Nbest,theoretical as Nbest.

118 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
This an be simply justi�ed as follows: If we onsider a shift δN of N , then the shift of

β will be δβ = −α δN
N(N+δN) + tsynch inδN . If, in this formula, we set N = Nbest,theoretical weget that: δβ

βmin
=

(δN
Nbest,theoretical

)2

1+ δN
Nbest,theoretical

1
2+
q

α
tsynch in

. Therefore, the less the parameter tsynch in is inomparison to α, the less important the exat seletion of N is. Intuitively, in the extreme ase,where tsynch in is 0, we ould always ahieve the same results, no matter how �ne grained theparallelism is (i.e. for very large N 's). However, tsynch in is always onsiderable and annot beignored for real life SMP arhitetures.

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0 50 100 150 200 250 300 350 400 450 500

T
ile

 E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of pieces

practical
theoretical

Figure 4.21: Vertial grouping - Tile exeution time in respet to the number of slies atile is ut

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0 50 100 150 200 250

T
ile

 E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of pieces

Practical Minimun:(58, 0.0693)

Theoretical Minimun:(79, 0.0705)

(79, 0.0694)

practical
theoretical

Figure 4.22: Vertial grouping - Zoom in the minimum area of the plot of Figure 4.214.6.3 Experimental ResultsOne vertial grouping had been implemented and approximated with a theoretial formula, weimplemented both bloking and non-bloking ommuniation shemes. As far as the bloking

4.6 Experimental Veri�ation 119
Table 4.9: Implementation of the non-overlapping shemeThread 0: Thread 1:foreah group assigned to node(i,j) do{ foreah group assigned to node(i,j) do{reeive from node(i-1,j)reeive from node(i,j-1) reeive from node(i,j-1)ompute tile(i,j,k,CPU0) ompute tile(i,j,k,CPU1)send to node(i+1,j)send to node(i,j+1) send to node(i,j+1)semaphore post(sem s1) semaphore post(sem s2)semaphore wait(sem s2) semaphore wait(sem s1)

} }Table 4.10: Implementation of the overlapping shemeThread 0: Thread 1: Explanationforeah group assigned to node(i,j) do{ foreah group assigned to node(i,j) do{trigger interrupt to node(i-1,j) Inform \previous" nodes:trigger interrupt to node(i,j-1) trigger interrupt to node(i,j-1) \I am ready to aept data"wait interrupt from node(i+1,j) Wait until \next" nodeswait interrupt from node(i,j+1) wait interrupt from node(i,j+1) are ready to aept datasend dma(node(i+1,j),data) Initialization of DMA transfersend dma(node(i,j+1),data) send dma(node(i,j+1),data) to neighboring nodesompute tile(i,j,k,CPU0) ompute tile(i,j,k,CPU1)wait dma() Wait for DMA to ompletewait dma() wait dma()trigger interrupt to node(i+1,j) Inform \next" nodes:trigger interrupt to node(i,j+1) trigger interrupt to node(i,j+1) \Your data has arrived"wait interrupt from node(i-1,j) Wait until \previous" nodeswait interrupt from node(i,j-1) wait interrupt from node(i,j-1) have �nished sending datasemaphore post(sem s1) semaphore post(sem s2)semaphore wait(sem s2) semaphore wait(sem s1) Implementation of a barrier
} }Table 4.11: Implementation of the vertial vs. hyperplane grouping

Vertical groupingompute tile(i,j,k,CPU0): ompute tile(i,j,k,CPU1):foreah subtile of this tile do{ foreah subtile of this tile do{ompute eah iteration of this subtilesemaphore post(sem1) semaphore post(sem2)semaphore wait(sem2) semaphore wait(sem1)ompute eah iteration of this subtile
} }

Hyperplane groupingompute tile(i,j,k,CPU0): ompute tile(i,j,k,CPU1):ompute eah iteration of this tile ompute eah iteration of this tileommuniation sheme is onerned, it was implemented using the pseudo-ode of Table 4.9. Onthe other hand, the non-bloking sheme was implemented using the pseudo-ode of Table 4.10.Notie that during eah time step every SMP node in the ij plane with oordinates (i, j) reeivesfrom neighboring nodes (i− 1, j) and (i, j − 1), omputes and sends to nodes (i+ 1, j),(i, j + 1)(Figure 4.23). Sine the send dma() all is not bloking, the omputation of the tiles will beperformed onurrently with the transferring of data among the SMP nodes. After the exeutionof wait dma(), it is assured that both omputation and ommuniation are already ompleted.The implementation of vertial and hyperplane grouping was ahieved by a proper proe-dure ompute tile(i, j, k, CPUx). In order to implement vertial grouping, we used thepseudoode of Table 4.11. The number of subtiles inside a tile was seleted aording to formula(4.9). Notie that, the implementation of hyperplane grouping was muh simpler, as shown in

120 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)
Table 4.11.

i

j

(i,j-1) (i,j-1)

(i,j+1) (i,j+1)

(i+1,j)(i-1,j)

CPU 0 CPU 1

SMP node(i,j)Figure 4.23: Diretions and soure/destination nodes of message exhanges for an SMPnode with 2 CPUs

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
(s

ec
)

Tile Height

Total Execution Time
 for 16x16x1024k Iteration Space

hyperplane grouping - nonblocking communication
hyperplane grouping - nonblocking communication (theoretical)

hyperplane grouping - blocking communication
vertical grouping - nonblocking communication

vertical grouping - blocking communication

Figure 4.24: Experimental Results: 16 × 16 × 1024k iteration spaeThe problem was solved using various values of X = Y and Z. For eah shedule, we areinterested in the overall minimum exeution time ahieved at an optimally seleted tile height(see [GSK01℄, [STK02℄, [HS98℄). The experimental results, shown in Figures 4.24-4.28, illustratethat, in every ase, non-bloking ommuniation is preferable to bloking ommuniation andhyperplane grouping is preferable to vertial grouping. The lowest minimum is learly ahievedwhen using hyperplane grouping, in ombination with non-bloking ommuniation, in all ases.As far as hyperplane grouping, in ombination with non-bloking ommuniation, is onerned,aording to our sheduling theory (formula (4.6)), the number of time steps required for theompletion of an experiment is ℘(x, y, z) = 3X
2x + 2Y

y + Z
z − 4. The minimum duration of atime step, as mentioned in §4.5, is (tstart dma + tcomp + tsynchro). Thus, Tnon−blocking,hyperplane =

(3X
2x + 2Y

y + Z
z −4)(tstart dma + tcomp + tsynchro). This formula was used to produe the theoretialurves of Figures 4.24-4.26 with values tstart dma + tsynchro = 100µsec and tcomp = x2ztcomp1,where tcomp1 is the exeution time of a single iteration and it was measured equal to 39, 6nsec.One an easily verify from Figures 4.24-4.28 that the graphs of the theoretial model are verylose to the orresponding experimental graphs, not only at the desired minimum, but along thewhole graph. Thus, the theoretial model of sheduling is strongly veri�ed by the experimental

4.6 Experimental Veri�ation 121

1.5

2

2.5

3

3.5

4

4.5

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
(s

ec
)

Tile Height

Total Execution Time
 for 24x24x1024k Iteration Space

hyperplane grouping - nonblocking communication
hyperplane grouping - nonblocking communication (theoretical)

hyperplane grouping - blocking communication
vertical grouping - nonblocking communication

vertical grouping - blocking communication

Figure 4.25: Experimental Results: 24 × 24 × 1024k iteration spae

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
(s

ec
)

Tile Height

Total Execution Time
 for 32x32x1024k Iteration Space

hyperplane grouping - nonblocking communication
hyperplane grouping - nonblocking communication (theoretical)

hyperplane grouping - blocking communication
vertical grouping - nonblocking communication

vertical grouping - blocking communication

Figure 4.26: Experimental Results: 32 × 32 × 1024k iteration spaeresults.4.6.4 Salability IssuesThe theoretial model presented in this hapter is general enough, so as not to be di�erentiatedwhen saling up the underlying hardware arhiteture. However, in this setion, we shall examinesome pratial problems, whih may rise.For example, if we add more SMP nodes, the initial iteration spae may be ut into smallertiles. Thus, the omputation to ommuniation ratio of eah tile tcomp

tcomm dma
may redue beauseof two reasons:1. Less omputations are assigned to eah SMP node, while the amount of data transferrequired is not proportionally redued.2. If the network is saturated (by more SMP nodes trying to send more data in more messages

122 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)

1

1.5

2

2.5

3

3.5

4

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
(s

ec
)

Tile Height

Total Execution Time
 for 32x32x512k Iteration Space

hyperplane grouping - nonblocking communication
hyperplane grouping - nonblocking communication (theoretical)

hyperplane grouping - blocking communication
vertical grouping - nonblocking communication

vertical grouping - blocking communication

Figure 4.27: Experimental Results: 32 × 32 × 512 iteration spae

3

3.5

4

4.5

5

5.5

6

6.5

7

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
(s

ec
)

Tile Height

Total Execution Time
 for 48x48x512k Iteration Space

hyperplane grouping - nonblocking communication
hyperplane grouping - nonblocking communication (theoretical)

hyperplane grouping - blocking communication
vertical grouping - nonblocking communication

vertical grouping - blocking communication

Figure 4.28: Experimental Results: 48 × 48 × 512 iteration spaeto eah other), the inrease in tcomm dma will be more than relative to the inrease in thevolume of data transmitted.However, onsidering an appliation with uniform dependenes, as desribed in the algorithmimodel in §2.2, and a torus interonnetion topology, suh as the one used for our experiments,the network will be never saturated due to the inrease of SMP nodes. This is beause eah nodeneed to ommuniate only with its neighbors, thus there are no shared resoures among di�erentommuniation hannels. Thus, only the �rst reason mentioned above an potentially ausesome trouble when adding more SMP nodes. But, if it still holds tcomp ≥ tcomm dma, nothingwill hange in the implementation of our model. In the opposite ase (tcomp < tcomm dma), theuse of even more nodes will not be eÆient. This problem will not onern our sheduling, but itwill mean that the ommuniation arhiteture is too slow to exploit all the omputation powerof the omputing system. Then, it would be better not to use all the nodes available, as impliedin [HS98℄. However, regarding the speed and eÆieny of modern interonnetion networks, like

4.6 Experimental Veri�ation 123
the SCI based interonnet, or the Myrinet interonnet used for the experimentation of thisthesis, it is not possible to enounter suh a situation, espeially when omputing large iterationspaes of real problems.If we add more CPUs inside eah SMP node, we may again ut the initial iteration spae intosmaller tiles. The omputation to ommuniation ratio of eah tile tcomp

tcomm dma
will be dereasedagain, but only for one reason: Less omputations are assigned to eah CPU. In partiular,

tcomp

tcomm dma
will be onversely proportional to the number of CPUs inside eah SMP node. In thisase, no more data need to be sent through the interonnetion network, sine the additionalCPUs ommuniate with eah other and with the preexisting CPUs through the shared memoryof the SMP node. However, tsynchro and tstart dma will slightly inrease, beause, �rst, more CPUsneed to initialize their DMA sends and reeives and, seond, these operations an not be exeutedat the same time by di�erent threads of the same node (no thread-safe environment { see theimplementation ode of Table 4.10). This problem an be solved by assigning all ommuniationoverhead to one thread only and at the same time reduing the omputation overhead of thisthread. Following that tehnique, CPUs do not remain idle waiting to synhronize with eahother, sine the amount of omputations assigned to the ommuniating thread may be properlyalulated, so as the total ommuniation+omputation overhead to be evenly distributed amongthe CPUs of eah node. The exat solution of this problem onerns the researh onduted byNikolaos Drosinos in Computing Systems Laboratory.Another aspet of salability (onerning the sheduling algorithm, not the hardware) ishaving so large iteration spaes that we annot ut them into so few tiles. That is, applyinga tile seletion tehnique, suh as the ones presented in [BDRR94℄, [Xue97a℄, [Xue00℄, [RR04℄,[KRC99℄, [LRW91℄, [WL91a℄, [PHP03℄, [MHCF98℄, we may get more rows of tiles than the CPUsavailable. Then we should apply a more ompliated tehnique for assigning tiles to SMP nodesand CPUs as desribed in [AKK04℄ and in Chapter 5 of this thesis.

124 Exeution of tiles onto lusters of Symmetri Multiproessors (SMP nodes)

5Sheduling onto a fixed number ofhomogeneous SMP nodes

In this hapter, we assume that the number of SMP nodes of the available luster maybe less than the number of SMP nodes needed for the appliation of a time shedulingprodued by the tehniques proposed in Chapter 4. Thus, we need to alloate morethan one of the tasks produed to eah CPU. Whih of them will be assigned to thesame CPU? This hapter answers the above question by proposing �ve alternativeshedules. Eah one seems to be preferable for a spei� form of tile spaes or for aset of arhitetural harateristis.

126 Sheduling onto a fixed number of homogeneous SMP nodes5.1 IntrodutionThe shedule proposed in Chapter 4 assumes the availability of an unlimited number of SMPnodes or that the tile size has been seleted so as the SMP nodes required do not exeed theavailable SMP nodes. However, it annot be always true, sine the tile size is often seleted soas to minimize ommuniation load [BDRR94℄, [Xue97a℄, [Xue00℄, [RR04℄, or to ahieve loalityin memory data referenes [KRC99℄, [LRW91℄, [WL91a℄, [PHP03℄, [MHCF98℄. In [AKPT00℄Andronikos et al. have proposed an assignment sheme onto a �xed number of nodes. It mightbe generalized, for assigning tiles onto a �xed number of nodes, however the omplexity ofevaluating whih tiles should be assigned to whih node is too high. Suh an alloation shememay be optimal, but it will be impratial if we want to inorporate it into an automati odegeneration tool [GDAK02a℄. On the other hand, automati ode generation without taking areof proessor alloation and sheduling has ertain drawbaks:1. A lot of preesses are generated, whih are not atually needed, sine they may outnumberthe proessors available. As a result, the proesses generation time may unneessarily beomparable to the proesses exeution time, as we found out during our experimentationin [GDAK02a℄.2. In addition, we are obliged to have on�dene in the operating system to shedule proesses.For example, MPI automatially alloates proesses to proessors ylially, whih may befar from optimal.3. Finally, in ase more than one proesses are alloated to a CPU, optimizing tile sizeand shape aording to ahe loality riteria [KRC99℄, [LRW91℄, [WL91a℄, [PHP03℄,[MHCF98℄, will not have the desired results, as ontext-swithing frequently between themmight not allow them to build suÆient ontext in the ahe.For this purpose, a regular, periodi alloation sheme is needed, even if it is suboptimal. In[BDRV99℄, [CDR97℄ Boulet et al. and Calland et al. have theoretially proven the optimalityof a yli assignment of 2-dimensional tiles onto a �xed number of single CPU nodes. On theother hand, Manjikian and Abdelrahman have presented in [MA01℄ an alternative method forsheduling tiled iteration spaes onto a �xed number of SMP nodes, without taking into aountthat there is no need for ommuniation among CPUs of the same SMP node, sine the datarequired are loated in the node's shared memory.In this hapter, we propose some methods for sheduling tiled iteration spaes onto anexisting luster with a �xed number of SMP nodes. All following formulas, whih refer tothe alloation of tiles or groups to the nodes of the luster or to the orresponding exeutionsteps are valid for any onvex tile spae, as de�ned in §2.2. However, when alulating thenumber of time steps required for the ompletion of the exeution (makespan), we onsider aretangular tile spae, as in formulas (4.3), (4.4), (4.6). We use this simpli�ation in order

5.2 Cyli assignment to SMPs 127
to point out the basi onepts onerning eah one of the proposed methods, without tooompliated mathematial formulas. Anyway, it does not onstrain any of the advantages ordisadvantages of the methods proposed, apart from those onerning load balaning. In orderto further simplify the mathematial formulas, we assume that the longest dimension of the tilespae is the �rst one. Thus, aording to §3.3.2, §4.4.4, tiles along the �rst dimension will beassigned to the same proessor. This assumption an be easily anelled by simply interhangingthe �rst dimension with anyone else.5.2 Cyli assignment to SMPsIn [BDRV99℄, [CDR97℄ the optimality of the yli assignment of 2-dimensional tiles onto a �xednumber of proessors was theoretially proven. However, the alulations in [BDRV99℄, [CDR97℄did not take into aount the ommuniation overhead involved. Generalizing this approah for
n-dimensional tiles and for lusters of SMP nodes, we onsider that the available SMP nodesform a virtual (n−1)-dimensional mesh of p2×· · ·×pn = p SMP nodes. We ylially assign thegroups to the SMP nodes. That is, we assign group ~jG to the SMP node (jG

2 %p2, . . . , j
G
n %pn),as indiated in Figure 5.1.

time scheduling on 2
SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0
CPU1

CPU0
CPU1

CPU0
CPU1

CPU0
CPU1

j1S

j2S

SMP0

SMP1

CPU0
CPU1

CPU0
CPU1

chunk origins
j1S

j2S

allocation of tiles to SMPs assuming
as many nodes as needed

This chunk of tiles will be assigned on
the 2 existing SMPs & executed after

the first chunk execution finishes

Figure 5.1: Cyli assignment to SMP nodes.Groups are ylially assigned to SMP nodes. Equivalently, tiles are ylially assigned to CPUs.Tile spae areas, whih an �t the existing arhiteture, are named as \hunks". Chunks of tilesare exeuted one after the other, in lexiographi order.
Theorem 5.1 The makespan of ylially assigning a retangular tile spae to SMP nodes,

128 Sheduling onto a fixed number of homogeneous SMP nodes
assuming overlapping ommuniation with omputation is:

℘
cyclic−overlap =

n∑
i=2

[
(wS

i − 1)%mipi + (⌈
wS

i

mi
⌉ − 1)%pi

]
+ wS

1

n∏
i=2

⌈
wS

i

mipi
⌉ ≤

≤
n∑

i=2
[(mi + 1)pi] − 2n+ 2 + wS

1

n∏
i=2

⌈
wS

i

mipi
⌉

(5.1)
Proof: Eah SMP node will exeute ⌈

wS
2

m2p2
⌉ × · · · × ⌈

wS
n

mnpn
⌉ rows of groups. If the rows ofgroups assigned to an SMP node, are exeuted in lexiographi order, row (•, jG

2 , . . . , j
G
n) willbe exeuted in SMP node (jG

2 %p2, . . . , j
G
n %pn) after n∑

i=2

[
⌊

jG
i

pi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

] rows, imposinga lateny of wS
1 time steps eah. Thus, there is a total lateny of wS

1

n∑
i=2

[
⌊

jG
i

pi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]time steps. In addition, as dedued from Figure 5.1, the loation of a group, relatively to theorresponding hunk origin, is (jG
1

′
, jG

2 %p2, . . . , j
G
n %pn), where jG

1
′
= jS

1 +
n∑

i=2

jS
i %mipi.Therefore, if the underlying arhiteture allows for onurrent exeution of omputationsand ommuniation, following the overlapping exeution sheme, group ~jG will be omputedduring the time step

t(~jG) = jG
1

′
+

n∑

i=2

jG
i %pi + wS

1

n∑

i=2

[
⌊
jG
i

pi

⌋

n∏

k=i+1

⌈
wS

k

mkpk

⌉

]
. (5.2)Thus, the number of time steps required for the ompletion of the exeution will be

℘
cyclic−overlap = max t(~jG) − min t(~jG) + 1 =

(C.3)
= uS

1 +
n∑

i=2

[
uS

i %mipi + ⌊
uS

i

mi
⌋%pi

]
+ wS

1

n∑
i=2

[
⌊

uS
i

mipi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
+ 1 =

(C.4)
=

n∑
i=2

[
(wS

i − 1)%mipi + (⌈
wS

i

mi
⌉ − 1)%pi

]
+ wS

1 + wS
1

n∑
i=2

[
(⌈

wS
i

mipi
⌉ − 1)

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
=

(C.7)
=

n∑
i=2

[
(wS

i − 1)%mipi + (⌈
wS

i

mi
⌉ − 1)%pi

]
+ wS

1

n∏
i=2

⌈
wS

i

mipi
⌉

⊣The �rst term of the right-hand part in formula (5.1) represents the time required for �llingthe pipeline (that is, the initial idle time needed for the last proessor to start omputing), whilethe seond term orresponds to the time eah proessor is busy exeuting alulations.Lemma 5.1 This shedule is valid i�
wS

1

n∏

k=l+1

⌈
wS

k

mkpk
⌉ ≥ (ml + 1)pl,

∀l = 2, . . . , n suh that wS
l > mlpl.

5.2 Cyli assignment to SMPs 129
Proof: In order to prove the validity of this shedule, it suÆes to prove that the data neededfor the omputation of a tile are available during the desired time step. If the neessary dataare available for the omputation of the hunk origins, they will be also available for everyinner tile. We assume that tiles are big enough to inlude all dependene vetors. Thus,eah tile depends only on neighboring tiles. A hunk origin has oordinates of the form:
~jS

origin = (0, x2m2p2, . . . , xnmnpn), where xi ∈ N (i = 2, . . . , n). Thus, it will be exeuted inthe SMP node (0, . . . , 0) during the time step torigin = wS
1

n∑
i=2

[
xi

n∏
k=i+1

⌈
wS

k

mkpk
⌉

] (see formula(5.2)). If xl ≥ 1 (whih presupposes wS
l > mlpl), this hunk origin will be dependent from tile

~jS
dependence = (0, x2m2p2, . . . , xl−1ml−1pl−1, xlmlpl − 1, xl+1ml+1pl+1, . . . , xnmnpn), whihwill be exeuted in the SMP node (0, . . . , 0, pl − 1, 0, . . . , 0) during the time step tdependence =

(ml+1)pl−2+wS
1 [

n∑
i=2

[xi

n∏
k=i+1

⌈
wS

k

mkpk
⌉]−

n∏
k=l+1

⌈
wS

k

mkpk
⌉]. Sine these two tiles will be exeuted indi�erent SMP nodes, for the neessary data to be available, it must hold torigin−tdependence ≥

2 ⇔ wS
1

n∏
k=l+1

⌈
wS

k

mkpk
⌉ ≥ (ml + 1)pl. This inequality should be valid ∀l = 2, . . . , n suh that

wS
l > mlpl. ⊣If the ondition, de�ned by Lemma 5.1, is not valid, then there is not an atual shortage ofproessors along dimension l. Thus, we an shedule along this dimension as if there were asmany proessors as needed. For example, see the di�erene between Figures 5.2 and 5.3.

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j1
S

j2
S

equivalent
schedulings

P

tscheduling on a fixed number of processors

empty pipeline waiting for the necessary
data to become available

t

P

scheduling on an unlimited number of processors

Figure 5.2: Cyli sheduling when there is not atual lak of proessors.When there are only 2 SMP nodes available, the time steps, when eah tile will be omputed,do not hange at all.If we should do with a onventional ommuniation arhiteture as node interonnet (i.e.without NIC support for relieving the CPU from the ommuniation burden):

130 Sheduling onto a fixed number of homogeneous SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j1
S

j2
S

t

P

scheduling on a fixed number of processors

t

P

scheduling on an unlimited number of
processors

Figure 5.3: Cyli sheduling when there is lak of proessors.The omputation of the seond hunk of tiles starts at time step t = 8, instead of t = 6, aordingto formula (5.2).
Theorem 5.2 The makespan of ylially assigning a retangular tile spae to SMP nodes,following the non-overlapping exeution sheme, is:

℘
cyclic−nonoverlap =

n∑
i=2

[
(wS

i − 1)%mipi

]
+ wS

1

n∏
i=2

⌈
wS

i

mipi
⌉ ≤

≤
n∑

i=2
mipi − n+ 1 + wS

1

n∏
i=2

⌈
wS

i

mipi
⌉

(5.3)
Proof: As in the proof of theorem 5.1, the lateny before the omputation of a group onsistsof the lateny imposed by lexiographially previous rows assigned to the same proessor, plusthe lateny imposed by previous groups of the same row. Consequently, group ~jG will beomputed during the time step

t(~jG) = jG
1

′
+ wS

1

n∑

i=2

[
⌊
jG
i

pi

⌋

n∏

k=i+1

⌈
wS

k

mkpk

⌉

] (5.4)

5.3 Mirror assignment to SMPs 131
Thus, the makespan of the exeution will be

℘
cyclic−nonoverlap = max t(~jG) − min t(~jG) + 1 =

(C.3)
= uS

1 +
n∑

i=2

[
uS

i %mipi

]
+ wS

1

n∑
i=2

[
⌊

uS
i

mipi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
+ 1 =

(C.4)
=

n∑
i=2

[
(wS

i − 1)%mipi

]
+ wS

1 + wS
1

n∑
i=2

[
(⌈

wS
i

mipi
⌉ − 1)

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
=

(C.7)
=

n∑
i=2

[
(wS

i − 1)%mipi

]
+ wS

1

n∏
i=2

⌈
wS

i

mipi
⌉

⊣Lemma 5.2 The shedule of Theorem 5.2 is always valid, assuming wS
1 ≥ wS

i , i = 2, . . . , n.Proof: As in the proof of Lemma 5.1, in order for this shedule to be valid, the dataneeded for the omputation of a tile should be available during the orresponding time step.A hunk origin ~jS
origin = (0, x2m2p2, . . . , xnmnpn) (xi ∈ N (i = 2, . . . , n)), will be exeutedduring the time step torigin = wS

1

n∑
i=2

[
xi

n∏
k=i+1

⌈
wS

k

mkpk
⌉

] (see formula (5.4)). If xl ≥ 1 (whihpresupposes wS
l > mlpl), this hunk origin will be dependent from tile ~jS

dependence = (0,

x2m2p2, . . . , xl−1ml−1pl−1, xlmlpl − 1, xl+1ml+1pl+1, . . . , xnmnpn), whih will be exeutedduring the time step tdependence = mlpl − 1 + wS
1 [

n∑
i=2

[xi

n∏
k=i+1

⌈
wS

k

mkpk
⌉] −

n∏
k=l+1

⌈
wS

k

mkpk
⌉]. Sine,in the non-overlapping exeution sheme, the data are transferred among SMPs during thetime step of their omputation, for the neessary data to be available, it must hold torigin −

tdependence ≥ 1 ⇔ wS
1

n∏
k=l+1

⌈
wS

k

mkpk
⌉ ≥ mlpl. This inequality is valid ∀l = 2, . . . , n suh that

wS
l > mlpl, beause: wS

1

n∏
k=l+1

⌈
wS

k

mkpk
⌉ ≥ wS

1 ≥ wS
l > mlpl. ⊣5.3 Mirror assignment to SMPsLet us onsider another shedule, if we assign the tiles to SMP nodes as indiated in Figure 5.4.That is, we assign group ~jG to the SMP node

(
jG
2 %p2 if even(jG

2 /p2)
(p2 − 1) − jG

2 %p2 if odd(jG
2 /p2)

, . . . ,
jG
n %pn if even(jG

n /pn)
(pn − 1) − jG

n %pn if odd(jG
n /pn)

).This shedule has the advantage that there is no need for data transfer along the boundaries ofhunks of tiles, thus less time is wasted for ommuniation.Theorem 5.3 When following the mirror assignment shedule, in ombination with the over-

132 Sheduling onto a fixed number of homogeneous SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j1
S

j2
S

t

P

scheduling on a fixed number of processors
following the mirror mapping scheme

t

P

scheduling on an unlimited number of
processors

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

idle time steps for some of the processorsFigure 5.4: Mirror assignment to SMP nodes.As in the yli assignment sheme, the tile spae is divided into hunks, whih �t the existingproessing arhiteture. The di�erene is that tiles along the same hunk boundary are assignedto the same SMP node. Thus, there is no need for ommuniation aross hunk boundaries.
lapping exeution sheme, the makespan is:

℘
mirror−overlap =

n∑
i=2

[
(wS

i − 1)%mipi + (⌈
wS

i

mi
⌉ − 1)%pi

]
−

n∑
i=2

[(mi + 1)pi] + 2n− 2+

+

[
wS

1 +
n∑

i=2
[(mi + 1)pi] − 2n+ 2

]
n∏

i=2
⌈

wS
i

mipi
⌉ ≤

≤

[
wS

1 +
n∑

i=2
[(mi + 1)pi] − 2n+ 2

]
n∏

i=2
⌈

wS
i

mipi
⌉

(5.5)
Proof: As in the yli assignment shedule, if the hunks of groups are exeuted in lexio-graphi order, the hunk ontaining row (•, jG

2 , . . . , j
G
n) will be exeuted after

n∑

i=2

[
⌊
jG
i

pi

⌋
n∏

k=i+1

⌈
ws

k

mkpk

⌉

]hunks. The lateny imposed by eah of the previous hunks, is greater than the respetiveone when applying the yli assignment shedule. It equals to wS
1 +

n∑
i=2

[(mi + 1)pi]−2n+2,sine the omputation of a whole hunk should be �nished before the omputation of the nexthunk starts. In addition, as dedued from Figure 5.4, the position of a group, relatively tothe orresponding hunk origin, is (jG
1

′
, jG

2 %p2, . . . , j
G
n %pn), where jG

1
′
= jS

1 +
n∑

i=2

jS
i %mipi.

5.3 Mirror assignment to SMPs 133
Therefore, group ~jG will be omputed during the time step
t(~jG) = jG

1

′
+

n∑

i=2

jG
i %pi +

[
wS

1 +

n∑

i=2

[(mi + 1)pi] − 2n+ 2

]
n∑

i=2

[
⌊
jG
i

pi

⌋

n∏

k=i+1

⌈
wS

k

mkpk

⌉

]Thus, the makespan will be
℘

mirror−overlap = max t(~jG) − min t(~jG) + 1 =
(C.3)
= uS

1 +
n∑

i=2

[
uS

i %mipi + ⌊
uS

i

mi
⌋%pi

]
+

+

[
wS

1 +
n∑

i=2

[(mi + 1)pi] − 2n+ 2

]
n∑

i=2

[
⌊

uS
i

mipi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
+ 1 =

(C.4),(C.7)
=

n∑
i=2

[
(wS

i − 1)%mipi + (⌈
wS

i

mi
⌉ − 1)%pi

]
−

n∑
i=2

[(mi + 1)pi] + 2n− 2+

+

[
wS

1 +
n∑

i=2

[(mi + 1)pi] − 2n+ 2

]
n∏

i=2

⌈
wS

i

mipi
⌉.

⊣Following this shedule, there is no need to prove that the data required will be availableduring the omputation of a tile, sine,1. the tiles of a hunk are dependent only on tiles of the same or of a lexiographiallyprevious hunk and,2. there is no possibility to overlap the omputations of di�erent hunks.If there is no shortage of proessors (wS
i ≤ mipi, ∀i = 2, . . . , n), the proposed shedules areequivalent. Otherwise, it an be easily dedued from formulas (5.1), (5.5) that ℘

cyclic−overlap

< ℘
mirror−overlap. Their di�erene is due to the fat that, following the mirror assignmentshedule, every time the omputation of a hunk �nishes and the omputation of the next onestarts, there are some idle time steps for some of the proessors, as indiated in Figure 5.4by white dots. Thus, when a time step for the yli shedule is equal to a time step for themirror one, the yli shedule is preferable to the mirror one. In fat, this is the ase for theoverlapping exeution sheme.Theorem 5.4 Following the mirror assignment shedule, in ombination to the non-overlappingexeution sheme, the makespan of the exeution is:

℘
mirror−nonoverlap =

=
n∑

i=2

[
(wS

i − 1)%mipi

]
−

n∑
i=2

mipi + n− 1 +

[
wS

1 +
n∑

i=2
mipi − n+ 1

]
n∏

i=2
⌈

wS
i

mipi
⌉ ≤

≤

[
wS

1 +
n∑

i=2
mipi − n+ 1

]
n∏

i=2
⌈

wS
i

mipi
⌉

(5.6)

134 Sheduling onto a fixed number of homogeneous SMP nodes
Proof: The lateny imposed by eah one of the previous hunks is wS

1 +
n∑

i=2

mipi − n+ 1.Consequently, group ~jG will be omputed during the time step t(~jG) = jG
1

′
+(wS

1 +
n∑

i=2

mipi−

n+ 1)
n∑

i=2

[
⌊

jG
i

pi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]. Thus, the makespan of the exeution will be
℘

mirror−nonoverlap = max t(~jG) − min t(~jG) + 1 =

(C.3)
= uS

1 +
n∑

i=2

[
uS

i %mipi

]
+

[
wS

1 +
n∑

i=2

mipi − n+ 1

]
n∑

i=2

[
⌊

uS
i

mipi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
+ 1 =

(C.7)
=

n∑
i=2

[
(wS

i − 1)%mipi

]
−

n∑
i=2

mipi + n− 1 +

[
wS

1 +
n∑

i=2

mipi − n+ 1

]
n∏

i=2

⌈
wS

i

mipi
⌉

⊣It an be dedued from formulas (5.3), (5.6) that Pcyclic−nonoverlap ≤ Pmirror−nonoverlap.(They are equivalent only in ase there is no lak of proessors.) However, sine the ommuni-ation overhead is not hidden under the omputation time, this shedule may sometimes resultin a shorter total exeution time, due to better exploitation of the available bandwidth. Inpartiular, if there are only two SMP nodes along a dimension, no SMP node should both sendand reeive data along that dimension. Thus, the ommuniation overhead will be halved.5.4 Cluster assignment to SMPsAlternatively, following the approah of [MA01℄, generalizing it for n-dimensional spaes andtaking into aount that there is no need for ommuniation among proessors of the same SMPnode, we may assign neighboring rows of tiles to the same CPU, as indiated in Figure 5.5.
time scheduling
on 2 SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j1
S

j2
S

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j1
S

j2
S

"GROUPS" "TILES"

Figure 5.5: Cluster assignment to SMP nodes.Neighboring tiles, lustered together to TILES, are assigned to the same CPU. Time shedulingdoes not any more onern tiles or groups, but TILES or GROUPS.

5.4 Cluster assignment to SMPs 135
Theorem 5.5 When following the luster assignment shedule, in ombination to the overlap-ping exeution sheme, the makespan of the exeution is:

℘
cluster−overlap =

n∏
i=2

⌈
wS

i

mipi
⌉

(
wS

1 − 2n+ 2 +
n∑

i=2
⌈

wS
i

⌈
wS

i
mipi

⌉
⌉ +

n∑
i=2

⌈
wS

i

mi⌈
wS

i
mipi

⌉
⌉

) (5.7)Proof: In order to ahieve this shedule, we luster together neighboring tiles (jS
1 , j

S
2 , . . . , j

S
n),mapping them to a \supertile", or TILE, labelled as (jS

1 , ⌊
jS
2

⌈
wS

2
m2p2

⌉
⌋, . . . , ⌊

jS
n

⌈
wS

n
mnpn

⌉
⌋). Thus, theorresponding GROUP will be ~jG = (jS

1 +
n∑

i=2

⌊
jS
i

⌈
wS

i
mipi

⌉
⌋, ⌊

jS
2

m2⌈
wS

2
m2p2

⌉
⌋, . . . , ⌊

jS
n

mn⌈
wS

n
mnpn

⌉
⌋) andit will be exeuted during the time STEP t(~jS) = jS

1 +
n∑

i=2

⌊
jS
i

⌈
wS

i
mipi

⌉
⌋ +

n∑
i=2

⌊
jS
i

mi⌈
wS

i
mipi

⌉
⌋. Conse-quently, the MAKESPAN of the algorithm is

℘CLUSTER-OVERLAP = max t(~jS) − min t(~jS) + 1 =
(C.4)
= wS

1 − 2n+ 2 +
n∑

i=2

⌈
wS

i

⌈
wS

i
mipi

⌉
⌉ +

n∑
i=2

⌈
wS

i

mi⌈
wS

i
mipi

⌉
⌉As a TILE onsists of n∏

i=2

⌈
wS

i

mipi
⌉ tiles, assuming that the duration of a time step is mainlydetermined by the omputation time tcomp, a STEP will be equivalent to n∏

i=2

⌈
wS

i

mipi
⌉ time steps(exluding the DMA initialization and synhronization time). Thus, the total number of stepsrequired for the ompletion of the exeution will be

℘
cluster−overlap =

n∏
i=2

⌈
wS

i

mipi
⌉℘CLUSTER-OVERLAP =

=
n∏

i=2

⌈
wS

i

mipi
⌉

(
wS

1 − 2n+ 2 +
n∑

i=2

⌈
wS

i

⌈
wS

i
mipi

⌉
⌉ +

n∑
i=2

⌈
wS

i

mi⌈
wS

i
mipi

⌉
⌉

)

⊣Lemma 5.3 It holds that ℘
cyclic−overlap ≤℘

cluster−overlap.Proof: When there is no lak of proessors (wS
i ≤ mipi, ∀i = 2, . . . , n), the proposedshemes are equivalent and it an be easily proven from (5.1), (5.7) that

℘
cyclic−overlap = ℘

cluster−overlapOtherwise, (5.7) ⇒

℘
cluster−overlap >

n∑

i=2

⌈ wS

i

⌈
wS

i

mipi
⌉
⌉ − 1 + ⌈

wS
i

mi⌈
wS

i

mipi
⌉
⌉ − 1

+ wS

1

n∏

i=2

⌈
wS

i

mipi

⌉.If we write wS
i = ximipi−yi, where xi, yi are integer numbers and xi ≥ 1, 0 ≤ yi < mipi−1,

136 Sheduling onto a fixed number of homogeneous SMP nodes
then it holds that:

(wS
i − 1)%mipi = mipi − yi − 1

⌈
wS

i

⌈
wS

i
mipi

⌉
⌉ − 1

(C.5)
= mipi − ⌊ yi

xi
⌋ − 1

⇒ (wS

i − 1)%mipi ≤ ⌈
wS

i

⌈
wS

i
mipi

⌉
⌉ − 1

(⌈
wS

i

mi
⌉ − 1)%pi

(C.5)
= pi − ⌊ yi

mi
⌋ − 1

⌈
wS

i

mi⌈
wS

i
mipi

⌉
⌉ − 1

(C.5)
= pi − ⌊ yi

mixi
⌋ − 1

⇒ (⌈
wS

i

mi
⌉ − 1)%pi ≤ ⌈

wS
i

mi⌈
wS

i
mipi

⌉
⌉ − 1

⇒

⇒ ℘
cyclic−overlap < ℘

cluster−overlap.

⊣Thus, this shedule results to a worse makespan than the yli one. Their di�erene is dueto the fat that, in this shedule, the �lling of the pipeline is slower (that is, the last proessorstarts exeuting omputations later). In ase wS
1 >> wS

i (i = 2, . . . , n), the time eah proessoris busy, outanks the pipeline �ling time and it holds that Pcyclic−overlap ≃ Pcluster−overlap.However, the previous mathematial lemma has not taken into onsideration the time requiredfor the initialization of messages and for synhronization. Sine the luster assignment shedulerequires less messages to be sent and less synhronization, in some ases it may be pratiallyproven more eÆient.Theorem 5.6 Following the luster assignment shedule, in ombination to the non-overlappingexeution sheme, the makespan of the exeution is:
℘

cluster−nonoverlap = C

(
wS

1 − n+ 1 +
n∑

i=2
⌈

wS
i

⌈
wS

i
mipi

⌉
⌉

)
≤ C

(
wS

1 − n+ 1 +
n∑

i=2
mipi

) (5.8)where 1 ≤ C ≤
n∏

i=2
⌈

wS
i

mipi
⌉Proof: Tile (jS

1 , j
S
2 , . . . , j

S
n), orresponding to GROUP

~jG = (jS
1 +

n∑

i=2

⌊
jS
i

⌈
wS

i

mipi
⌉
⌋, ⌊

jS
2

m2⌈
wS

2

m2p2
⌉
⌋, . . . , ⌊

jS
n

mn⌈
wS

n

mnpn
⌉
⌋)is exeuted during the time STEP t(~jS) = jS

1 +
n∑

i=2

⌊
jS
i

⌈
wS

i
mipi

⌉
⌋. Consequently, the MAKESPANof the exeution is

℘CLUSTER-NONOVERLAP = max t(~jS) − min t(~jS) + 1
(C.4)
= wS

1 − n+ 1 +

n∑

i=2

⌈
wS

i

⌈
wS

i

mipi
⌉
⌉.A omputation subSTEP is equivalent to n∏

i=2

⌈
wS

i

mipi
⌉ omputation substeps, but a ommuni-ation subSTEP is equivalent to less than n∏

i=2

⌈
wS

i

mipi
⌉ ommuniation substeps. In partiular,

5.5 Retiling 137
if the ommuniation load is equal along all ommuniation dimensions (as resulted by themethod proposed in [Xue97a℄), the amount of data to be transferred, as indiated in Fig-ure 5.6, is n∏

i=2

⌈
wS

i

mipi
⌉

n∑
i=2

1

(n−1)⌈
wS

i
mipi

⌉
≤

n∏
i=2

⌈
wS

i

mipi
⌉ times the ommuniation load of a tile.Thus, the makespan of the algorithm will be

℘
cluster−nonoverlap = C℘CLUSTER-NONOVERLAP (where 1 ≤ C ≤

n∏
i=2

⌈
wS

i

mipi
⌉) ⇒

℘
cluster−nonoverlap = C

(
wS

1 − n+ 1 +
n∑

i=2

⌈
wS

i

⌈
wi

mipi
⌉
⌉

)

⊣

clusteringFigure 5.6: Clustering ommuniationIn onlusion, omparing to the yli assignment shedule, this method has the drawbakof slower pipeline �lling. However, it results to less ommuniation overhead, whih signi�-antly redues the total exeution time, espeially when the non-overlapping exeution shemeis applied.5.5 RetilingA more eÆient shedule an be obtained, if we adapt the size of tiles to the available numberof SMPs (Figure 5.7). That is, we retile the initial iteration spae, so as to get wS
i
′
= mipi,

(i = 2, . . . , n) and wS
1
′

= wS
1

n∏
i=2

wS
i

mipi
. Then, the size of a \new" tile will be equal to thesize of an \old" tile and, onsequently, a \new" omputation step will be equivalent to an\old" omputation step. Following the overlapping exeution sheme, the number of time stepsrequired for the ompletion of the exeution, aording to formula (4.3), will be ℘

retile−overlap =
n∑

i=1
wS

i
′
+

n∑
i=2

⌈
wS

i

′

mi
⌉ − 2n+ 2 ⇒

℘
retile−overlap =

n∑
i=2

[(mi + 1) pi] − 2n+ 2 + wS
1

n∏
i=2

wS
i

mipi
(5.9)In ase wS

i %mipi = 0 (i = 2, . . . , n), it holds that ℘
retile−overlap =℘

cyclic−overlap. Otherwise,
℘

retile−overlap < ℘
cyclic−overlap. Their di�erene is due to the fat that the yli shedule doesnot assign exatly the same number of tiles to eah proessor, resulting to a slight load imbalane.

138 Sheduling onto a fixed number of homogeneous SMP nodes

time scheduling
on 2 SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j1
S

j2
S

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j1
S

j2
S

Figure 5.7: Retiling.The tile spae is re-onstruted from srath, so as to �t the existing proessing arhiteture.
Using the non-overlapping exeution sheme, the number of time steps required for theompletion of the exeution, aording to formula (4.4), will be ℘

retile−nonoverlap =
n∑

i=1
wS

i
′
−

n+ 1 ⇒

℘
retile−nonoverlap =

n∑
i=2

mipi − n+ 1 + wS
1

n∏
i=2

wS
i

mipi
(5.10)From (5.3), (5.10), we an dedue that ℘

retile−nonoverlap ≤℘
cyclic−nonoverlap. In addition, a\new" omputation substep is equivalent to an \old" omputation substep, but a \new" om-muniation substep is equivalent to less than an \old" ommuniation substep. In partiular,as in Theorem 5.6, if the ommuniation load is equal along all ommuniation dimensions, theamount of data to be transferred is n∑

i=2

1

(n−1)
wS

i
mipi

≤ 1 times the ommuniation load of an \old"tile.In onlusion, when the tile spae is retangular, this shedule is preferable to previouslyproposed ones, assuming that there are no fators onstraining the tile shape, suh as falsesharing, or ahe loality [KRC99℄, [LRW91℄, [WL91a℄, [MHCF98℄, [PHP03℄. It an fully exploitthe omputational power of all the SMP nodes and it ahieves a perfet load balane, withoutimposing any additional omplexity to the initial shedule, at least when a retangular tile spaeis onerned. But if, apart from parallel sheduling, there are other fators onstraining the tilesize and shape, this shedule may prove to be ineÆient, sine it totally reorganizes the exeutionorder of iterations.

5.6 Experimental Results 1395.6 Experimental Results5.6.1 Experimental PlatformIn order to evaluate the proposed methods, we use a Linux SMP luster with 2 idential nodes.Eah node has 1GB of RAM and 2 Pentium III � 1266 MHz CPUs. The luster nodes om-muniate through a Myrinet high performane interonnet, using the GM low level messagepassing system.In order to utilize the available proessors in eah SMP node as eÆiently as possible, ourimplementation uses one multi-threaded proess per SMP, with the number of threads equal tothe number of CPUs. Multithreading support is based on the LinuxThreads library. Threadsexeuting on the same SMP ommuniate using shared memory, eliminating the need for messagepassing. For the data exhange between proesses exeuting on di�erent SMPs, Myriom's GMversion 1.6.3 is used [Myr02℄. GM is a low-level message passing library for Myrinet. It omprisesa library used by userspae programs, an OS driver (in our ase, a Linux kernel module) anda Myrinet Control Program (MCP), whih is exeuted on the LANai, the embedded RISCmiroproessor on the Myrinet NIC. The GM driver is used during the exeution of a userspaeproess to open and lose ports and to alloate and free memory suitable for DMA transfers. Aport is a ommuniation endpoint, used as the interfae between a userspae proess and theNIC. Having opened a port, a proess an ommuniate diretly with the NIC, without the needfor system alls, bypassing the operating system. Thus, all data exhange is performed diretlyto and from userspae bu�ers.To provide ow ontrol between the host and the NIC, sending and reeiving messages isregulated by tokens. Initially, a proess possesses a �nite number of send and reeive tokens.To be able to reeive a message, the proess must provide GM with a bu�er in DMAablememory, relinquishing a reeive token. When a message is reeived, the DMA engine on theMyrinet NIC plaes it diretly into the userspae bu�er. The proess polls for new messages andretrieves the reeive token when a message arrives. The same applies to sending messages: Theproess relinquishes a send token by requesting the transmission of a message from a userspaebu�er, then retrieves it when the send operation ompletes and an appropriate send ompletionallbak funtion is exeuted by GM. As the data exhange between the host memory and theNIC is undertaken by the DMA engine on the NIC, without involving the CPU, overlapping ofommuniation with omputation is possible.5.6.2 Experimental Data: Retangular Tile SpaesWe performed several series of experiments in order to evaluate and ompare the pratialspeedups obtained using eah one of the four alternative shedules, ombined with both thealternative exeution shemes. Our test appliation ode was the following:

140 Sheduling onto a fixed number of homogeneous SMP nodes
for(i=1; i<=X; i++)for(j=1; j<=Y; j++)for(k=1; k<=Z; k++)A[i℄[j℄[k℄=fun(A[i-1℄[j℄[k℄,A[i℄[j-1℄[k℄,A[i℄[j℄[k-1℄);where A is an array of X × Y × Z oats and X = Y << Z. Without lak of generality, weonsider, as a tile, a retangle with ij, ik and jk sides. The dimension k is the largest one, so alltiles along the k-axis are mapped onto the same proessor, as proposed in [AKPT99℄, [GSK01℄.Eah tile has i, j, k dimensions equal to x. Thus, there are X

x tiles along dimensions i, j and
Z
x tiles along dimension k. Tile's volume is equal to g = x3. As desribed in [HS98℄, g hasbeen seleted, so that tcomp = tcomm, after experimentally measuring the omputation time periteration, the time required per data item to be transferred and the ommuniation initializationand �nalization overhead.After implementing all four shedules in ombination with both exeution shemes, as de-sribed by the pseudo-ode of Tables 5.1, 5.2, we measured the performane of all shedulesand ompared it with their theoretially expeted performane. For various tile sizes, we haveonduted a series of experiments for eah shedule+exeution sheme ombination, varying theiteration spae size. In Figures 5.8-5.10 we have plotted our experimental results along withthe respetive theoretial urves. As a measure of performane, we have used the ratio of thespeedup obtained to the best possible speedup. That is, we have depited the ratio of thespeedup obtained to the number of proessors used. Thus, the loser a plot is to 1, the moreeÆient a shedule is. As an be seen in Figures 5.8-5.10, the pratial ompletion times of ourexperiments di�er to our theoretial preditions by at most 3%. For the overlapping ommuni-ation shedules, this an be attributed to both the DMA engine on the Myrinet NIC and theCPU trying to aess data in memory.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 500 1000 1500 2000 2500 3000 3500

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
retile - overlapping (theoretical)

cluster - overlapping
cluster - overlapping (theoretical)

mirror - overlapping
mirror - overlapping (theoretical)

cyclic - overlapping
cyclic - overlapping (theoretical)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 500 1000 1500 2000 2500 3000 3500

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
retile - non-overlapping (theoretical)

cluster - non-overlapping
cluster - non-overlapping (theoretical)

mirror - non-overlapping
mirror - non-overlapping (theoretical)

cyclic - non-overlapping
cyclic - non-overlapping (theoretical)

Figure 5.8: Experimental Data: Tile Size 32 × 32 × 32One an easily dedue that in almost all ases, the retiling shedule ahieves the best per-formane, both theoretially and experimentally. This result was expeted, sine the retilingshedule absolutely adjusts tiles to the existing on�guration of a luster. However, in our ex-

5.6 Experimental Results 141
Table 5.1: Implementation of shedules (yli assignment, mirror assignment, lusterassignment to SMP nodes) when the tile spae is retangular

Cyclic Assignment - Rectangular Tile SpaceFOREACH CPU with oordinates (cpu id2, . . . , cpu idn)in SMP node with oordinates (smp id2, . . . , smp idn) DOFOR (t2 = smp id2 ∗ m2 + cpu id2; t2 < wS
2 ; t2+ = m2 ∗ p2)FOR (t3 = smp id3 ∗ m3 + cpu id3; t3 < wS

3 ; t3+ = m3 ∗ p3)FOR (t1 = 0; t1 < wS
1 ; t1 + +){Exeute pre-omputation part of CommuniationExeute Computation of tile (t1, t2, t3)Exeute post-omputation part of Communiation

}

Mirror Assignment - Rectangular Tile SpaceFOREACH CPU with oordinates (cpu id2, . . . , cpu idn)in SMP node with oordinates (smp id2, . . . , smp idn) DOFOR (x2 = 0; x2 < ⌈
wS

2

m2∗p2
⌉; x2 + +){

t2 = x2 ∗ m2 ∗ p2 + (1 − x2%2) ∗ (smp id2 ∗ m2 + cpu id2) + (x2%2) ∗ (m2 ∗ p2 − 1 − smp id2 ∗ m2 − cpu id2);IF (t2 < wS
2)FOR (x3 = 0; x3 < ⌈

wS
3

m3∗p3
⌉; x3 + +){

t3 = x3 ∗ m3 ∗ p3 + (1 − x3%2) ∗ (smp id3 ∗ m3 + cpu id3) + (x3%2) ∗ (m3 ∗ p3 − 1 − smp id3 ∗ m3 − cpu id3);IF (t3 < wS
3){Exeute pre-omputation part of CommuniationExeute Computation of tile (t1, t2, t3)Exeute post-omputation part of Communiation

}
}

}

Cluster Assignment - Rectangular Tile SpaceFOREACH CPU with oordinates (cpu id2, . . . , cpu idn)in SMP node with oordinates (smp id2, . . . , smp idn) DOFOR (t1 = 0; t1 < wS
1 ; t1 + +){Exeute pre-omputation part of CommuniationFOR (t2 = (smp id2 ∗ m2 + cpu id2) ∗ ⌈

wS
2

m2∗p2
⌉;

t2 < min(wS
2 , (smp id2 ∗ m2 + cpu id2 + 1) ∗ ⌈

wS
2

m2∗p2
⌉); t2 + +)FOR (t3 = (smp id3 ∗ m3 + cpu id3) ∗ ⌈

wS
3

m3∗p3
⌉;

t3 < min(wS
3 , (smp id3 ∗ m3 + cpu id3 + 1) ∗ ⌈

wS
3

m3∗p3
⌉); t3 + +){Exeute Computation of tile (t1, t2, t3)

}Exeute post-omputation part of Communiation
}

Retiling - Rectangular Tile Space

wS
1 ∗ =

wS
2

m2∗p2
∗

wS
3

m3∗p3

wS
2 = m2 ∗ p2

wS
3 = m3 ∗ p3FOREACH CPU with oordinates (cpu id2, . . . , cpu idn)in SMP node with oordinates (smp id2, . . . , smp idn) DO{

t2 = smp id2 ∗ m2 + cpu id2;
t3 = smp id3 ∗ m3 + cpu id3;FOR (t1 = 0; t1 < wS

1 ; t1 + +){Exeute pre-omputation part of CommuniationExeute Computation of tile (t1, t2, t3)Exeute post-omputation part of Communiation
}

}

142 Sheduling onto a fixed number of homogeneous SMP nodes
Table 5.2: Exeution shemes implementation (overlapping vs. non-overlapping) usingthe GM low level message passing system

Non Overlapping Execution Scheme Overlapping Execution SchemePre-omputation Part of Communiationgm provide reeive buffer() If on first tiledo Exeute a non-overlapping reeivepoll the GM event queue gm provide reeive buffer() for tile (t1 + 1, t2, t3)proess the event gm send with allbak() for tile (t1 − 1, t2, t3)until data reeived Post-omputation Part of Communiationgm send with allbak() dodo poll the GM event queuepoll the GM event queue proess the eventproess the event until send & reeive ompleteduntil data sent Barrier for Threads in SMPBarrier for Threads in SMP If on last tileExeute a non-overlapping send

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 500 1000 1500 2000 2500 3000 3500

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
retile - overlapping (theoretical)

cluster - overlapping
cluster - overlapping (theoretical)

mirror - overlapping
mirror - overlapping (theoretical)

cyclic - overlapping
cyclic - overlapping (theoretical)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 500 1000 1500 2000 2500 3000 3500

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
retile - non-overlapping (theoretical)

cluster - non-overlapping
cluster - non-overlapping (theoretical)

mirror - non-overlapping
mirror - non-overlapping (theoretical)

cyclic - non-overlapping
cyclic - non-overlapping (theoretical)

Figure 5.9: Experimental Data: Tile Size 128 × 32 × 32periments we have eliminated the e�et of ahe miss penalties by using small iteration spaewidths. If our iteration spae dimensions, whih are not assigned to the same proessor, were toolong, the retiling shedule ould have destroyed the data loality ahieved by optimally seletedsmall tiles.Note also that in the above examples the luster assignment shedule, using tile size x, isequivalent to the retiling shedule, using tile size 4x. This was expeted, onsidering that byonstrution the iterations exeuted and the data sent in these two ases are the same. Whatdi�ers is the exeution order of iterations but here we have eliminated the ahe misses overhead,in order to test the optimality of our shedules and not data loality.When following the non-overlapping exeution sheme, the di�erene among the performaneof the four shedules is mainly due to the volume of the data to be transferred. As depitedin Figure 5.11, the mirror assignment shedule involves double the ommuniation of retilingand luster assignment shedule, while the yli assignment shedule involves 6 times the sameommuniation volume.

5.6 Experimental Results 143

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
retile - overlapping (theoretical)

cluster - overlapping
cluster - overlapping (theoretical)

mirror - overlapping
mirror - overlapping (theoretical)

cyclic - overlapping
cyclic - overlapping (theoretical)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
retile - non-overlapping (theoretical)

cluster - non-overlapping
cluster - non-overlapping (theoretical)

mirror - non-overlapping
mirror - non-overlapping (theoretical)

cyclic - non-overlapping
cyclic - non-overlapping (theoretical)

Figure 5.10: Experimental Data: Tile Size 256 × 32 × 32

SMP node0

SMP node1

Retiling or
Cluster assignment scheme

SMP node0

SMP node1

Mirror assignment scheme

SMP node0

SMP node1

Cyclic assignment scheme

Figure 5.11: Communiation among SMPsWhen following the overlapping exeution sheme, sine the ommuniation volume is hiddenunder omputation, their di�erene is due to the time steps that eah SMP has to stall waiting forthe required data to arrive. The number of these time steps are equal regarding the retiling andthe yli assignment shedules. However, using the luster or the mirror assignment shedule,the number of idle time steps (see Figures 5.3, 5.4) is multiplied by the number of tiles lusteredtogether, or, equivalently, the number of lunks of tiles, whih �t the proessing arhiteture.In addition, note that all shedules ahieve better performane for long iteration spaes.This is due to the fat that, when the mapping dimension of the iteration spae is omparativelyshort, the time required for the last proessor to start omputing after the �rst data have arrived,is not minor in omparison to the total exeution time.5.6.3 Simulation DataThe previous experimental data have been obtained on a luster of 2 SMP nodes with 2 CPUseah. Note in Figure 5.11 that in the retiling and the luster assignment shedule there isno SMP node that should both send and reeive data. Thus, we expet that the relativeperformane of the four shedules would hange when saling up our underlying arhiteture.In order to evaluate the merits of the proposed shedules, using bigger lusters than the one wehad available, we performed a number of simulations, whose results are depited in Figures 5.12-

144 Sheduling onto a fixed number of homogeneous SMP nodes
5.14. The performane of all four shedules has been simulated assuming that the initializationof DMA and synhronization overhead is negligible, as dedued from mirobenhmarking in ourplatform.In partiular, all measurements of time intervals have been based on the rdts (ReadTimeStamp Counter) instrution, whih is available on all Intel proessors beyond Pentium.This instrution returns the value of a 64-bit register whih is inremented every lok yle.Sine rdts an be alled diretly by a userspae proess, we do not inur the overhead of thegettimeofday system all. Thus, we have measured: 400 yles for the send with allbakfuntion, whih is 0.316µsec on a PIII�1266MHz, 800 yles for gm provide reeive buffer,whih is 0.632µsec and 5598 yles for a barrier, whih is 4.421µsec. Thus, the total non-overlappable ommuniation lateny imposed to eah tile is less than 6µsec in the worst ase.This overhead is negligible in omparison to a tile omputation, whih, in all ases, needed morethan 24msec.Similar to Figures 5.8-5.10, the values plotted in Figures 5.12-5.14 express, for eah proposedshedule, the speedup obtained, divided by the number of CPUs used: Speedup

Number of Processors Used .Therefore, the losest a plot is to 1, the more eÆient the orresponding shedule will be.
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
cluster - overlapping
mirror - overlapping
cyclic - overlapping

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
cluster - non-overlapping
mirror - non-overlapping
cyclic - non-overlapping

Figure 5.12: Simulation Data: Tile Spae · · · × 16 × 16 on a grid of 4 × 4 nodes with
2 × 2 CPUs eahIt an be easily seen that when we are not interested in possible ahe miss penalties imposedby reorganizing the tile spae, the retiling shedule is again the most eÆient one, due to thefat that it an fully exploit the omputational power of all the SMP nodes and by de�nition itahieves a perfet load balane.As far as the luster assignment shedule is onerned, for small tile spaes, it is ineÆientdue to its slow pipeline �lling. However, when the mapping dimension of the tile spae is longenough, this shedule ahieves high speedups, due to the fat that it minimizes the volume of datato be transferred. In fat, as explained in §5.6.2, the plot representing the luster assignmentshedule will fall onto the plot representing the retiling shedule if we shift it parallely to thex-axis (see Figures 5.12, 5.14). The luster assignment shedule is less eÆient than the retiling

5.6 Experimental Results 145

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
cluster - overlapping
mirror - overlapping
cyclic - overlapping

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
cluster - non-overlapping
mirror - non-overlapping
cyclic - non-overlapping

Figure 5.13: Simulation Data: Tile Spae · · · × 22 × 22 on a grid of 4 × 4 nodes with
2 × 2 CPUs eah

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
cluster - overlapping
mirror - overlapping
cyclic - overlapping

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
cluster - non-overlapping
mirror - non-overlapping
cyclic - non-overlapping

Figure 5.14: Simulation Data: Tile Spae · · · × 16 × 16 on a grid of 2 × 2 nodes with
4 × 4 CPUs eahshedule, only in ase wS

i is not a multiple of mipi (see Figure 5.13), due to load imbalane.We also dedue that the yli assignment shedule is equivalent to the retiling shedule,when the number of tiles along eah dimension i is a multiple of mipi and the overlappingexeution sheme is used. Otherwise, if wS
i is not a multiple of mipi, their di�erene is dueto the fat that the yli shedule does not ahieve a perfet load balane. Using the non-overlapping exeution sheme, the di�erene is due to the fat that, as analyzed in Figure 5.6and §5.5, the yli shedule results to more ommuniation load, whih is not hidden under theomputation load. In addition, it an be more eÆient than the luster assignment shedule,only in ase we use the overlapping ommuniation sheme. This is due to the fat that in thisase the extra ommuniation overhead of the yli shedule is hidden under the omputationload.The mirror assignment shedule is almost always the least eÆient, apart from the ase ofusing the non-overlapping exeution sheme on a grid of 2× 2 SMP nodes. Even then, it is notmore eÆient than the luster assignment shedule. This is due to the fat that it ombines thedisadvantages of the yli shedule with the disadvantages of the luster assignment shedule.

146 Sheduling onto a fixed number of homogeneous SMP nodes
That is, there is at least one node, whih has both to send and to reeive data (unless there areat most two nodes along eah dimension of the grid, as in Figures 5.8-5.10 and Figure 5.14), thusthe duration of a time step is equal to the one of the yli shedule and the improvement in theexploitation of the existing bandwidth is minor. In addition, after all SMP nodes have startedtheir exeution, there are some idle time steps for some of them (see Figure 5.4), orrespondingto the slower pipeline �lling of the luster assignment shedule.5.7 Blok-yli assignment to SMPsSine, as shown in §5.6.2-§5.6.3, apart from retiling, the best performane is given by either theyli or the luster assignment shedule, we also designed a ombination of these shedules:blok-yli assignment shedule. So, we hope to ahieve the happy medium between them.Espeially when dealing with non-retangular tile spaes, blok-yli shedule is supposed toahieve low ommuniation overhead (as the luster assignment shedule does), and at the sametime relatively good load balane (as the yli assignment shedule does).As shown in Figure 5.15, blok-yli shedule is formed by lustering together some neigh-boring tiles, as we did in the luster assignment shedule. For example, in Figure 5.15, we lustertogether b2 = 2 tiles. The di�erene, in omparison to the luster shedule, lies in the fat thatnow we do not luster together so many tiles, as to get a number of rows of TILES equal to thenumber of CPUs available. In the sequel, we ylially shedule TILES, or GROUPS, similarlyto sheduling tiles or groups aording to the yli assignment shedule.Theorem 5.7 The makespan of blok-ylially assigning a retangular tile spae to SMP nodes,assuming overlapping ommuniation with omputation is:
℘

block−cyclic−overlap =

[
n∑

i=2

[
(⌈

wS
i

bi
⌉ − 1)%mipi + (⌈

wS
i

bimi
⌉ − 1)%pi

]
+ wS

1

n∏
i=2

⌈
wS

i

bimipi
⌉

]
n∏

i=2
bi(5.11)

Proof: In order to ahieve this shedule, we luster together b2 × · · · × bn neighboring tiles
(jS

1 , j
S
2 , . . . , j

S
n), mapping them to TILE labelled as (jS

1 , ⌊
jS
2

b2
⌋, . . . , ⌊

jS
n

bn
⌋). The boundaries ofthe onsequent TILE Spae are 0..uS

1 = wS
1 −1 for the �rst dimension and 0..⌊

uS
i

bi
⌋ = ⌈

wS
i

bi
⌉−1for i = 2, . . . , n.Thus, replaing wS

i with ⌈
wS

i

bi
⌉, i = 2, . . . , n in formula (5.1) and taking into aountformula (C.2), we get:

℘BLOCK-CYCLIC-NONOVERLAP =

n∑

i=2

[
(⌈
wS

i

bi
⌉ − 1)%mipi + (⌈

wS
i

bimi

⌉ − 1)%pi

]
+wS

1

n∏

i=2

⌈
wS

i

bimipi

⌉In addition, as a TILE onsists of n∏
i=2

bi tiles, assuming that the duration of a time step

5.7 Blok-yli assignment to SMPs 147

Clustering 2 tiles
together

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j1S

j2S

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j1S

j2S
"GROUPS" "TILES"

SMP4

SMP5

SMP6

SMP7

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j1S

j2S
Cyclically schedulling

on 2 SMP nodes

Figure 5.15: Blok-yli assignment to SMP nodes.Firstly, tiles are lustered together, so as to form TILES. Then, TILES are ylially assigned toCPUs. Chunks of TILES are exeuted one after the other, in lexiographi order.
is mainly determined by the omputation time tcomp, a STEP will be equivalent to n∏

i=2

bi timesteps (exluding the DMA initialization and synhronization time). Thus, the total number

148 Sheduling onto a fixed number of homogeneous SMP nodes
of steps required for the ompletion of the exeution will be

℘
block−cyclic−overlap = ℘BLOCK-CYCLIC-OVERLAP n∏

i=2

bi =

=

[
n∑

i=2

[
(⌈

wS
i

bi
⌉ − 1)%mipi + (⌈

wS
i

bimi
⌉ − 1)%pi

]
+ wS

1

n∏
i=2

⌈
wS

i

bimipi
⌉

]
n∏

i=2

bi

⊣Theorem 5.8 The makespan of blok-ylially assigning a retangular tile spae to SMP nodes,following the non-overlapping exeution sheme, is:
℘

block−cyclic−nonoverlap = C

(
n∑

i=2

[
(⌈

wS
i

bi
⌉ − 1)%mipi

]
+ wS

1

n∏
i=2

⌈
wS

i

bimipi
⌉

) (5.12)where 1 ≤ C ≤
n∏

i=2
bi.Proof: As in the proof of theorem 5.7, in formula (5.3) we replae wS

i with ⌈
wS

i

bi
⌉, i =

2, . . . , n. Thus, we get:
℘BLOCK-CYCLIC-NONOVERLAP =

n∑
i=2

[
(⌈

wS
i

bi
⌉ − 1)%mipi

]
+ wS

1

n∏
i=2

⌈
wS

i

bimipi
⌉In addition, as in the proof of theorem 5.6, a omputation subSTEP is equivalent to n∏

i=2

biomputation substeps, but a ommuniation subSTEP is equivalent to less than n∏
i=2

bi ommu-niation substeps. In partiular, if the ommuniation load is equal along all ommuniationdimensions (as resulted by the method proposed in [Xue97a℄), the amount of data to be trans-ferred, as indiated in Figure 5.6, is n∏
i=2

bi
n∑

i=2

1
(n−1)bi

≤
n∏

i=2

bi times the ommuniation loadof a tile. Thus, the makespan of the exeution will be
℘

block−cyclic−nonoverlap = C℘BLOCK-CYCLIC-NONOVERLAP (where 1 ≤ C ≤
n∏

i=2

bi) ⇒

℘
block−cyclic−nonoverlap = C

(
n∑

i=2

[
(⌈

wS
i

bi
⌉ − 1)%mipi

]
+ wS

1

n∏
i=2

⌈
wS

i

bimipi
⌉

)

⊣When the tile spae is retangular, the blok yli assignment shedule an be implementedby the pseudoode of Table 5.3.5.8 Implementation issues for non-retangular tile spaesAs dedued from Tables 5.1, 5.3, the implementation of the proposed shedules onto a retangulartile spae spae is quite simple and straightforward. However, onerning a non-retangular tile

5.8 Implementation issues for non-retangular tile spaes 149
Table 5.3: Implementation of the blok-yli assignment shedule when the tile spae isretangular

Block-Cyclic Assignment - Rectangular Tile SpaceFOREACH CPU with oordinates (cpu id2, . . . , cpu idn)in SMP node with oordinates (smp id2, . . . , smp idn) DOFOR (tt2 = smp id2 ∗ b2 ∗ m2 + cpu id2 ∗ b2; tt2 < wS
2 ; tt2+ = b2 ∗ m2 ∗ p2)FOR (tt3 = smp id3 ∗ b3 ∗ m3 + cpu id3 ∗ b3; tt3 < wS

3 ; tt3+ = b3 ∗ m3 ∗ p3)FOR (t1 = 0; t1 < wS
1 ; t1 + +){Exeute pre-omputation part of CommuniationFOR (t2 = tt2; t2 < min(wS

2 , tt2 + b2); t2 + +)FOR (t3 = tt3; t3 < min(wS
3 , tt3 + b3); t3 + +){Exeute Computation of tile (t1, t2, t3)

}Exeute post-omputation part of Communiation
}spae, an eventual implementation may be ineÆient or rush, if some details are not taken intoaount.5.8.1 Assigning as many neighboring tiles as possible to the same SMP nodeAording to the pseudoode of Table 5.1 for the yli assignment shedule, or of Table 5.3for the blok-yli one, we may assume that, when a non retangular tile spae is involved,formulas

t2 = lS2 + smp id2m2 + cpu id2 and t3 = lS3 + smp id3m3 + cpu id3or
tt2 = lS2 + smp id2b2m2 + cpu id2b2 and tt3 = lS3 + smp id3b2m3 + cpu id3b3respetively, should be employed for the alulation of the lower loop bounds. However, thisalloation sheme would result to non-retangular parts of the tile spae being assigned to eahSMP node. It would inrease the ommuniation load of the �nal parallel exeution, as depitedin Figure 5.16(a).In order to evit suh an ineÆient utilization of the bandwidth, we propose the use offuntion

adjust mod(l, α, β, b) =

{
⌊ l

α⌋α+ β if ⌊ l
α⌋α+ β + b− 1 ≥ l

⌈ l
α⌉α+ β else (5.13)whih results to the alloation sheme of Figure 5.16(b), if we replae the lower bounds of therespetive loop indies by:

t2 = adjust mod(lS2 ,m2p2, smp id2m2 + cpu id2, 1)

t3 = adjust mod(lS3 ,m3p3, smp id3m3 + cpu id3, 1)

150 Sheduling onto a fixed number of homogeneous SMP nodes

Tile Space: 0 <= j1S <= 100
 0 <= j2S <= 7
 j2S <= j3S <= 7

j2S

j3S

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (1,0)

smp (1,0) - cpu (0,0)

smp (1,0) - cpu (1,0)

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (1,0)

smp (1,0) - cpu (0,0)

smp (1,0) - cpu (1,0)

smp (0,0) - cpu (0,1)

smp (0,1) - cpu (0,0)

smp (0,1) - cpu (0,1)

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (0,1)

smp (0,1) - cpu (0,0)

smp (0,1) - cpu (0,1)

j2S

j3S

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (1,1)

smp (1,1) - cpu (0,0)

smp (1,1) - cpu (1,1)

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (1,1)

smp (1,1) - cpu (0,0)

smp (1,1) - cpu (1,1)

smp (0,0) - cpu (0,1)

smp (0,1) - cpu (0,0)

smp (0,1) - cpu (0,1)

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (0,1)

smp (0,1) - cpu (0,0)

smp (0,1) - cpu (0,1)

(a) Allocating tiles to CPUs
according to their distance from the
lower bound of the tile space

(b) Allocating tiles to CPUs so as to
assign neighboring tiles to the
same SMP node

Figure 5.16: Alloating a non-retangular tile spae to proessors.In this �gure we have represented the projetion of the tile spae onto axis plane jS
2 − jS

3 . Weindiate whih proessors undertake the boundary tiles, if we have a luster of 2× 2 SMP nodes,ontaining 2 × 2 proessors eah. Tiles, whih are assigned to the same SMP node have beendepited using the same grey tone. We have also indiated the subsequent ommuniation amongtiles assigned to di�erent SMP nodes, using blak arrows. In sub�gure (a) more data transfersare implied. Some neighboring tiles, whih should exhange data are unneessarily assigned todi�erent SMP nodes.or
tt2 = adjust mod(lS2 , b2m2p2, smp id2b2m2 + cpu id2b2, b2)

tt3 = adjust mod(lS3 , b3m3p3, smp id3b3m3 + cpu id3b3, b3)It an be inorporated in the pseudoode as indiated in Tables 5.4 and 5.7.5.8.2 Eviting deadloksIn this setion, we shall analyze the problem of deadloks in ase the Myrinet platform is usedfor the implementation, as in §5.6.1. Similar onsiderations should be taken when parallelizingin most platforms. Some of them may not imply the use of tokens, however, they will not beable to support an unlimited number of messages to be pending among proessors.

5.8 Implementation issues for non-retangular tile spaes 151
Table 5.4: Implementation of the yli assignment shedule when the tile spae is notretangular

Cyclic Assignment - Non Rectangular Tile SpaceFOREACH CPU with oordinates (cpu id2, . . . , cpu idn)in SMP node with oordinates (smp id2, . . . , smp idn) DOFOR (t2 = adjust mod(lS2 , m2 ∗ p2, smp id2 ∗ m2 + cpu id2, 1); t2 ≤ uS
2 ; t2+ = m2 ∗ p2)FOR (t3 = adjust mod(lS3 , m3 ∗ p3, smp id3 ∗ m3 + cpu id3, 1); t3 ≤ uS

3 ; t3+ = m3 ∗ p3)FOR (t1 = lS1 ; t1 ≤ uS
1 ; t1 + +){Exeute pre-omputation part of CommuniationExeute Computation of tile (t1, t2, t3)Exeute post-omputation part of Communiation

}where we have assumed that loop bounds lS2 , uS
2 , lS3 , uS

3 , lS1 , uS
1 , have been realulated, using Fourier MotzkinElimination method [BW95℄, [Ban93℄, so as to be expressed in the order t2, t3, t1

Table 5.5: Implementation of the luster assignment shedule when the tile spae is notretangular
Cluster Assignment - Non Rectangular Tile SpaceFOREACH CPU with oordinates (cpu id2, . . . , cpu idn)in SMP node with oordinates (smp id2, . . . , smp idn) DOFOR (t1 = lS1 ; t1 ≤ uS

1 ; t1 + +){Exeute pre-omputation part of CommuniationFOR (t2 = max(lS2 , min lS2 + (smp id2 ∗ m2 + cpu id2) ∗ ⌈
max uS

2 −min lS2 +1

m2∗p2
⌉);

t2 ≤ min(uS
2 , min lS2 + (smp id2 ∗ m2 + cpu id2 + 1) ∗ ⌈

max uS
2 −min lS2 +1

m2∗p2
⌉ − 1); t2 + +)FOR (t3 = max(lS3 , min lS3 + (smp id3 ∗ m3 + cpu id3) ∗ ⌈

max uS
3 −min lS3 +1

m3∗p3
⌉;

t3 ≤ min(uS
3 , min lS3 + (smp id3 ∗ m3 + cpu id3 + 1) ∗ ⌈

max uS
3 −min lS3 +1

m3∗p3
⌉ − 1); t3 + +){Exeute Computation of tile (t1, t2, t3)

}Exeute post-omputation part of Communiation
}wheremin l2 = min(l2(t1)) andmax u2 = max(u2(t1)). Similarly,min l3 = min(l3(t1, t2)) andmax u3 =

max(u3(t1, t2)). These values an be alulated by applying Fourier Motzkin Elimination method [BW95℄,[Ban93℄ to the tile spae boundaries, onsidering that outermost loop indies are t2, t3, respetively.

152 Sheduling onto a fixed number of homogeneous SMP nodes
Table 5.6: Implementation of the mirror assignment shedule when the tile spae is notretangular

Mirror Assignment - Non Rectangular Tile SpaceFOREACH CPU with oordinates (cpu id2, . . . , cpu idn)in SMP node with oordinates (smp id2, . . . , smp idn) DOFOR (x2 = 0; x2 ≤ ⌈
uS
2 −lS2 +1

m2∗p2
⌉ − 1; x2 + +){

t2 = lS2 + x2 ∗ m2 ∗ p2 + (1 − x2%2) ∗ (smp id2 ∗ m2 + cpu id2)+
+(x2%2) ∗ (m2 ∗ p2 − 1 − smp id2 ∗ m2 − cpu id2);IF (lS2 ≤ t2 ≤ uS

2)FOR (x3 = 0; x3 ≤ ⌈
max uS

3 −min l3+1

m3∗p3
⌉ − 1; x3 + +){

t3 = min l3 + x3 ∗ m3 ∗ p3 + (1 − x3%2) ∗ (smp id3 ∗ m3 + cpu id3)+
+(x3%2) ∗ (m3 ∗ p3 − 1 − smp id3 ∗ m3 − cpu id3);IF (l3 ≤ t3 ≤ uS

3)FOR (t1 = lS1 ; t1 ≤ uS
1 ; t1 + +){Exeute pre-omputation part of CommuniationExeute Computation of tile (t1, t2, t3)Exeute post-omputation part of Communiation

}
}

}As in Table 5.4, we have assumed that loop bounds lS2 , uS
2 , lS3 , uS

3 , lS1 , uS
1 , have been realulated, so as tobe expressed in the order t2, t3, t1.

Table 5.7: Implementation of the blok-yli assignment shedule when the tile spae isnot retangular
Block-Cyclic Assignment - Non Rectangular Tile SpaceFOREACH CPU with oordinates (cpu id2, . . . , cpu idn)in SMP node with oordinates (smp id2, . . . , smp idn) DOFOR (tt2 = adjust mod(lS2 , b2 ∗ m2 ∗ p2, smp id2 ∗ b2 ∗ m2 + cpu id2 ∗ b2, b2);
tt2 ≤ uS

2 ; tt2+ = b2 ∗ m2 ∗ p2)FOR (tt3 = adjust mod(llS3 , b3 ∗ m3 ∗ p3, smp id3 ∗ b3 ∗ m3 + cpu id3 ∗ b3, b3);
tt3 ≤ uuS

3 ; tt3+ = b3 ∗ m3 ∗ p3)FOR (t1 = llS1 ; t1 ≤ uuS
1 ; t1 + +){Exeute pre-omputation part of CommuniationFOR (t2 = max(lS2 , tt2); t2 ≤ min(uS

2 , tt2 + b2 − 1); t2 + +)FOR (t3 = max(lS3 , tt3); t3 ≤ min(uS
3 , tt3 + b3 − 1); t3 + +){if lS1 (t2, t3) ≤ t1 ≤ uS

1 (t2, t3) Exeute Computation of tile (t1, t2, t3)
}Exeute post-omputation part of Communiation

}As in Table 5.4, we have assumed that loop bounds lS2 , uS
2 , lS3 , uS

3 , lS1 , uS
1 , have been realulated, so as to beexpressed in the order t2, t3, t1. In addition, bound llS3 (tt2) is alulated by formula giving lS3 (t2), if we replae

t2 with tt2, if its multiplying fator is positive, or with tt2 + b2 − 1, if its multiplying fator is negative. Thatis, we replae eah at2 with max(a, 0)tt2 +min(a, 0)(tt2 + b2 − 1). Similarly, uuS
3 (tt2) is alulated by theformula giving uS

3 (t2), if we replae eah at2 with min(a, 0)tt2 +max(a, 0)(tt2 + b2 − 1). Limits llS1 (tt2, tt3)and uuS
1 (tt2, tt3) are alulated in the same way.

5.8 Implementation issues for non-retangular tile spaes 153
When using Myrinet-GM [Myr02℄, the reeive event queue provides 317 tokens per port,254 for reeive events and 63 for send events. However, when implementing a yli assignmentshedule (or a blok-yli one), as in Figure 5.17, it is strongly possible that more than 254reeive events have arrived before the �rst of them is neessary for the node to go on withomputations. In the ase of a retangular tile spae, this problem an be easily oped with asfollows: Before the omputation of a tile eah CPU may hek for pending events, whether itneeds for data in order to go on, or not.

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j1S

j2S
This chunk of tiles will be assigned on the 2
existing SMPs & executed after the first
chunk execution finishes. Thus, notice the
difference between the time steps data are
received and used.

5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9

0

1 2 3 4 5 6 7 8

3
4 5 6 7 8 9 10 11

8

9 10 11 12 13 14 15Figure 5.17: Time distane between the arrival of an event and the use of data it arries.Sine the mapping diretion of the tile spae is too short in this example, only 3 events willremain pending until time step 8, when the exeution of the seond hunk of tiles starts in SMPnode 0. The longer dimension jS
1 will be, the more events will be pending.In the ase of a non-retangular tile spae, the implementation is not so simple. As shown inFigure 5.18 and argued in the aption below, deadloks in a non-retangular tile spae annotbe oped with by simply heking the event queue before the exeution of a tile. In Figure 5.18,CPU 0 of node 1 is stalled.A possible solution of this problem is as follows: When starting the exeution of a row oftiles, eah thread, whih is possible to reeive data, should reate an assistant thread. It heksfor pending events in the reeive event queue and if it �nds one, the event is proessed and anew reeive token is made available. If there are no reeive events in the queue, the CPU isyielded to the main thread. So, if the assistant thread is useless, as in the ase of a retangulartile spae, it will not onsiderably slow down the exeution of the main thread.5.8.3 Simulation DataIn order to study the behavior of the blok-yli assignment sheme, we have onstruted asimulation program. It really reates so many threads, as the proessors of the luster are

154 Sheduling onto a fixed number of homogeneous SMP nodes

j3S

j2S

smp 0 - cpu 1

smp 0 - cpu 0

smp 1 - cpu 1

smp 1 - cpu 0

smp 0 - cpu 1

smp 0 - cpu 0

A

B
C

D
E

F

Figure 5.18: Deadloks in the exeution of non-retangular tile spae.In this �gure, the projetion of the tile spae onto axis plane jS
2 − jS

3 is presented. While CPU1 of SMP node 1 is omputing the row of tiles labelled as C and �lling in the reeive bu�ers ofnode 0, CPU 0 of the node 1 is stalling on a barrier between rows B and E. At the same time,the data arriving from the neighboring node 0, due to the omputation of row A, are likely to�ll in the reeive bu�ers and use up the reeive tokens of node 1. However, if the omputationof row A does not �nish, the omputation of row F will never start, so as to restore the reeivetokens needed for row C.supposed to be. It ats as if traversing the tile spae, but instead of exeuting omputations, itadds a time interval to the time previous omputations have been omputed and neessary datahave arrived. Instead of exhanging data, threads exhange the time instanes eah tile and itssubsequent ommuniation are supposed to omplete. Thus, we may experiment with all tilespaes and with underlying arhitetures that we do not have really available. We may set theommuniation harateristis to resemble any slow or fast network arhiteture.Alternative Diretion Impliit Integration (ADI)First, we experimented with the Alternative Diretion Impliit Integration (ADI) benhmark.The ode segment whih implies the main omputational load and whih deserves parallelizationis given by the following nested for-loop:for (t=0; t≤T-1; t++)for (i=0; i≤I-1; i++)for (j=0; j≤J-1; j++){X[t,i,j℄=X[t-1,i,j℄+X[t-1,i,j-1℄*A[i,j℄/B[t-1,i,j-1℄-X[t-1,i-1,j℄*A[i,j℄/B[t-1,i-1,j℄;B[t,i,j℄=B[t-1,i,j℄-A[i,j℄*A[i,j℄/B[t-1,i,j-1℄-A[i,j℄*A[i,j℄/B[t-1,i-1,j℄;
}

5.8 Implementation issues for non-retangular tile spaes 155
The dependene matrix of this ode segment is

D =

1 1 1

0 1 0

0 0 1

One of the optimal tiling matries, aording to ommuniation minimization riteria [Xue97a℄,an be proven to be

P =

10 10 10

0 10 0

0 0 10

After applying this tiling transformation, to the initial ode segment with I=J=200 and T=1000,the tiled ode segment an be rewritten as follows:for (ii=0; ii≤19; ii++)for (jj=0; jj≤19; jj++)for (tt=-2-ii-jj; tt≤99-ii-jj; tt++){Work with tile (tt, ii, jj)

}We simulated the exeution of this ode segment on a luster with a �xed number of SMPnodes and a �xed number o CPUs inside eah node. We tested all possible values of parameters
pi, mi, bi, so as to loate those harateristis that give the best performane. In the followingdiagrams (Figures 5.19-5.22(b)) we have used the ratio Speedup

Number of Processors Used as an index ofthe eÆieny of a shedule. The maximum value of this fration may theoretially equal to 1.The loser to 1 ratio Speedup
Number of Processors Used is, the more eÆient the respetive shedule isonsidered.In this benhmark the number of tiles of eah row (ii, jj) is onstant (equal to 102). Thus,the omputation load of the algorithm is evenly distributed to proessors i� the rows of tiles areevenly distributed. As an indiator of load balane along dimension i, we have used funtion

bali =

{
0 if pimi = 1

(wi − ⌊ wi

pimibi
⌋pimibi)bi elseThe outome of this funtion is equal to 0 i� the rows of tiles are evenly distributed to proessors.As a global indiator of load balane, we have used funtion

bal =
∑

baliAs dedued from Figure 5.19, load balane is neessary and suÆient for ahieving the opti-mal performane when we a�ord just one SMP node. Otherwise, as dedues from Figures 5.20(a),

156 Sheduling onto a fixed number of homogeneous SMP nodes
1 SMP node with 2 CPUs

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

1 SMP node with 4 CPUs

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

1 SMP node with 8 CPUs

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60 70 80

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

1 SMP node with 10 CPUs

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60 70

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

Figure 5.19: Simulation Data: Exeution of ADI onto a shared memory multiproessor.Ratio Speedup
Number of Processors Used

is plotted as a funtion of an index indiating load balane. Theoptimal performane is ahieved when this index indiates a perfet load balane.5.21(a), 5.22(a), 5.23(a), 5.24(a), 5.25(a), load balane is neessary, but not suÆient for ahiev-ing the optimal speedup.In order to model the data transfer load along dimension i, we have used funtion
commi = −1 +

{
1 if pi = 1

⌈ wi

pimibi
⌉ elseThe total ommuniation load is modelled by funtion

comm =
∑

(commi

∏

j 6=i

wj)It an be easily dedued from Figures 5.23(b), 5.24(b), 5.25(b) that, when the non-overlappingexeution poliy is followed, it is neessary to minimize the ommuniation load, in order toahieve the optimal speedup. When the overlapping exeution poliy is followed, we did notnotie suh a relation between ommuniation load and speedup.In Figures 5.20(b), 5.21(b), 5.22(b), 5.23(), 5.24(), 5.25(), we have used value 0 for thehorizontal axis when both load balane and ommuniation indies equal to 0 and value 1

5.8 Implementation issues for non-retangular tile spaes 157
2 SMP nodes with 1 CPU each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs
2 SMP nodes with 8 CPUs each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

(a) A perfet load balane is neessary, but not suÆient for ahieving the optimal speedup.
2 SMP nodes with 1 CPUs - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

2 SMP nodes with 8 CPUs - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(b) The optimal speedup is ahieved when the omputation load is evenly distributed among proessors andthe ommuniation load is minimized.Figure 5.20: Simulation Data: Exeution of ADI onto a luster of 2 SMP nodes, followingthe overlapping exeution poliy
otherwise. We onlude that almost always the speedup is optimal when both load balaneand ommuniation riteria are ful�lled. This holds even for the overlapping exeution poliy,although we did not �nd out a diret dependene between ommuniation load and speedup.In Tables 5.8-5.9, we have indiated the maximum values of ratio Speedup

Number of Processors Usedalong with the virtual grid on�guration and the bloking parameters used. Notie that, fora non negligible value of the time needed for synhronization and overlapped ommuniation,the bloking parameters and grid on�guration, that give the optimal performane are almostidential for both the overlapping and the non-overlapping exeution poliies. In suh retangulartile spaes, we should use the luster assignment sheme, at least along dimensions with morethan one SMP nodes. In omparison to the simulations onduted in §5.6.3, notie that now wehave used a non negligible value for the times needed for synhronization and for the initializationof ommuniation, so as to predit the performane of slower than Myrinet interonnetiontehnologies.

158 Sheduling onto a fixed number of homogeneous SMP nodes
4 SMP nodes with 1 CPU each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

4 SMP nodes with 4 CPUs each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

(a)
4 SMP nodes with 1 CPU - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

4 SMP nodes with 4 CPUs -Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(b)Figure 5.21: Simulation Data: Exeution of ADI onto a luster of 4 SMP nodes, followingthe overlapping exeution poliyTable 5.8: ADI - Simulation DataThe maximum values of ratio (Speedup)/(Number of Processors Used) are ahieved whenthe luster assignment sheme is followed.
p2 p3 m2 m3 b2 b3 Speedup/proessors1 SMP × 2 CPUs 1 1 1 2 20 10 0.999961 1 2 2 10 10 0.999871 SMP × 4 CPUs 1 1 1 4 20 5 0.999851 1 4 1 5 20 0.999851 1 2 4 10 5 0.999601 SMP × 8 CPUs 1 1 4 2 5 10 0.999601 1 2 4 5 5 0.999101 1 4 2 5 5 0.999101 1 1 10 20 2 0.999631 SMP × 10 CPUs 1 1 10 1 2 20 0.999631 1 2 5 10 4 0.999501 1 5 2 4 10 0.99950Gauss Suessive Over-Relaxation (SOR)In the sequel, we experimented with the Gauss Suessive Over-Relaxation (SOR) benhmark.The ode segment whih implies the main omputational load and whih deserves parallelization

5.8 Implementation issues for non-retangular tile spaes 159
8 SMP nodes with 1 CPU each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60 70 80
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs
8 SMP nodes with 2 CPUs each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

(a)
8 SMP nodes with 1 CPU - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

8 SMP nodes with 2 CPUs - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(b)Figure 5.22: Simulation Data: Exeution of ADI onto a luster of 8 SMP nodes, followingthe overlapping exeution poliyis given by the following nested for-loop:for (t=0; t≤T-1; t++)for (i=0; i≤I-1; i++)for (j=0; j≤J-1; j++){A[t,i,j℄=w
4 (A[t,i-1,j℄+A[t,i,j-1℄+A[t-1,i+1,j℄+A[t-1,i,j+1℄)+
(1 − w)A[t-1,i,j℄

}The dependene matrix of this ode segment is
D =

1 0 0 1 1

0 1 0 −1 0

0 0 1 0 −1

One of the optimal tiling matries, aording to ommuniation minimization riteria [Xue97a℄,an be proven to be

P =

10 10 −10

−10 0 10

0 −10 10

160 Sheduling onto a fixed number of homogeneous SMP nodes
2 SMP nodes with 1 CPU - Non overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

2 SMP nodes with 8 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

(a) A perfet load balane is neessary, but not suÆient for ahieving the optimal speedup.
2 SMP nodes with 1 CPU - Non overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120 140 160 180 200
inter-node communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

2 SMP nodes with 8 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120 140 160 180 200
inter-node communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(b) The minimization of the ommuniation load is neessary, but not suÆient for ahieving the optimalspeedup.
2 SMP nodes with 1 CPU - Non overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

2 SMP nodes with 8 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

() The optimal speedup is ahieved when the omputation load is evenly distributed among proessors andthe ommuniation load is minimized.Figure 5.23: Simulation Data: Exeution of ADI onto a luster of 2 SMP nodes, followingthe non-overlapping exeution poliyAfter applying this tiling transformation, to the initial ode segment with I=J=200 and T=1000,the tiled ode segment an be rewritten as follows:for (ii=0; ii≤119; ii++)for (jj=ii; jj≤ii+20; jj++)for (tt=max(0, jj-20, -ii+jj-1); tt≤min(119, jj, -ii+jj+100); tt++){Work with tile (tt, ii, jj)
}

5.8 Implementation issues for non-retangular tile spaes 161
4 SMP nodes with 1 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs
4 SMP nodes with 4 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

(a)
4 SMP node with 1 CPU - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250 300 350 400
inter-node communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

4 SMP nodes with 4 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250
inter-node communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(b)
4 SMP nodes with 1 CPU - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

4 SMP nodes with 4 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

()Figure 5.24: Simulation Data: Exeution of ADI onto a luster of 4 SMP nodes, followingthe non-overlapping exeution poliyAs in the ase of the ADI benhmark, we simulated the exeution of this ode segment ona luster with a �xed number of SMP nodes and a �xed number o CPUs inside eah node. Wetested all possible values of parameters pi, mi, bi, so as to loate the on�guration that gives thebest performane. In Tables 5.10, 5.11, 5.12 we have used the ratio Speedup
Number of Processors Used asan index of the eÆieny of a shedule. The maximum value of this fration may theoretiallyequal to 1. The loser to 1 ratio Speedup

Number of Processors Used is, the more eÆient the respetiveshedule is onsidered.For eah luster size, we have denoted the on�guration that gives the best performane.Then, we have indiated the optimal yli on�guration and the optimal luster on�guration.

162 Sheduling onto a fixed number of homogeneous SMP nodes
8 SMP nodes with 1 CPU - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60 70 80
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

8 SMP nodes with 2 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

(a)
8 SMP nodes with 1 CPU - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250 300
inter-node communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

8 SMP nodes with 2 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250
inter-node communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(b)
8 SMP nodes with 1 CPU - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

8 SMP nodes with 2 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

()Figure 5.25: Simulation Data: Exeution of ADI onto a luster of 8 SMP nodes, followingthe non-overlapping exeution poliyIn the last olumn of Tables 5.10, 5.11, 5.12 we have indiated the perent redution in eÆienyof the yli or luster shedule, in omparison to the optimal blok-yli shedule.One an easily dedue that for suh a non-retangular tile spae, the luster assignmentshedule is totally out of a question. This is due to the fat that when a proessor starts exeutingthe tiles assigned to it, the proessors that have previously started exeuting omputations, havealmost �nished with them. Thus, the exeution of the tile spae is almost not parallelized.On the other hand, when the overlapping exeution poliy is followed, the yli assignmentshedule an ahieve an almost optimal performane, as dedued from Table 5.11. When thenon-overlapping exeution sheme is followed, the yli assignment shedule may be up to 26%

5.8 Implementation issues for non-retangular tile spaes 163
Table 5.9: ADI - Simulation DataThe maximum values of ratio (Speedup)/(Number of Processors Used) are ahieved whenthe luster assignment sheme is followed, at least along dimensions with more than one SMPnodes. Speedup/proessors

p2 p3 m2 m3 b2 b3 Non-overlapping Overlapping1 2 1 1 1 10 0.976 0.9982 SMPs × 1 CPU 2 1 1 1 10 1 0.976 0.9981 2 1 1 2 10 0.976 0.9982 1 1 1 10 2 0.976 0.9981 2 2 1 2 10 0.975 0.9972 SMPs × 2 CPUs 2 1 1 2 10 2 0.975 0.9971 2 2 1 5 10 0.975 0.9972 1 1 2 10 5 0.975 0.9971 2 4 1 5 10 0.975 0.9972 SMPs × 4 CPUs 2 1 1 4 10 5 0.975 0.9971 2 4 1 1 10 0.975 0.9962 1 1 4 10 1 0.975 0.9961 2 4 2 5 5 0.950 0.9942 SMPs × 8 CPUs 2 1 2 4 5 5 0.950 0.9941 2 4 2 1 5 0.949 0.9912 1 2 4 5 1 0.949 0.9912 2 1 1 10 10 0.949 0.9911 4 1 1 1 5 0.91 0.994 1 1 1 5 1 0.91 0.994 SMPs × 1 CPU 1 4 1 1 2 5 0.909 0.994 1 1 1 5 2 0.909 0.991 4 1 1 4 5 0.907 0.9894 1 1 1 5 4 0.907 0.9892 2 1 2 10 5 0.926 0.994 SMPs × 2 CPUs 2 2 2 1 5 10 0.926 0.991 4 2 1 2 5 0.908 0.9894 1 1 2 5 2 0.908 0.9891 4 4 1 1 5 0.908 0.9884 1 1 4 5 1 0.908 0.9884 SMPs × 4 CPUs 1 4 4 1 5 5 0.906 0.9882 2 2 2 5 5 0.906 0.9884 1 1 4 5 5 0.906 0.9882 4 1 1 10 5 0.882 0.9834 2 1 1 5 10 0.882 0.9838 SMPs × 1 CPU 2 4 1 1 5 5 0.847 0.9794 2 1 1 5 5 0.847 0.9792 4 1 1 2 5 0.751 0.9644 2 1 1 5 2 0.751 0.9648 SMPs × 2 CPUs 2 4 2 1 5 5 0.866 0.9824 2 1 2 5 5 0.866 0.982

164 Sheduling onto a fixed number of homogeneous SMP nodes
Table 5.10: SOR - Simulation Data

p2 p3 m2 m3 b2 b3 Speedup/proessors EÆieny redution1 1 1 2 120 5 0.9994212711 SMP × 2 CPUs 1 1 2 1 1 1 0.988251853 1.2%1 1 2 1 60 140 0.534139023 47%1 1 4 1 1 140 0.9979856911 SMP × 4 CPUs 1 1 4 1 1 1 0.987554938 1%1 1 4 1 30 140 0.309307308 69%1 1 8 1 1 140 0.9891665341 SMP × 8 CPUs 1 1 8 1 1 1 0.978837276 1%1 1 8 1 15 140 0.216077827 78%1 1 10 1 1 10 0.9809115491 SMP × 10 CPUs 1 1 10 1 1 1 0.971447503 1%1 1 10 1 12 140 0.198010851 80%Table 5.11: SOR - Simulation Data, following the overlapping exeution poliy
p2 p3 m2 m3 b2 b3 Speedup/proessors EÆieny redution2 1 1 1 5 1 0.9877455752 SMPs × 1 CPU 2 1 1 1 1 1 0.954850866 3.3%2 1 1 1 60 140 0.53174481 46%2 1 1 2 6 1 0.9847241652 SMPs × 2 CPUs 2 1 2 1 1 1 0.970604098 1.4%2 1 2 1 30 140 0.308091238 69%2 1 2 2 2 1 0.9720119022 SMPs × 4 CPUs 2 1 4 1 1 1 0.962034972 1%2 1 4 1 15 140 0.215110584 78%2 1 2 4 3 1 0.9235224672 SMPs × 8 CPUs 2 1 4 2 1 1 0.910115457 1.5%2 1 8 1 8 140 0.166069888 82%4 1 1 1 2 1 0.9705757744 SMPs × 1 CPU 4 1 1 1 1 1 0.954196445 1.7%4 1 1 1 30 140 0.305305101 69%4 1 1 2 2 1 0.9637002664 SMPs × 2 CPUs 4 1 2 1 1 1 0.961991687 0.18%4 1 2 1 15 140 0.213112999 78%4 1 1 4 3 1 0.9184727584 SMPs × 4 CPUs 4 1 2 2 1 1 0.910052738 0.92%4 1 4 1 8 140 0.164702948 82%8 1 1 1 1 1 0.9457609278 SMPs × 1 CPU 8 1 1 1 1 1 0.945760927 0%8 1 1 1 15 140 0.208689671 78%8 1 1 2 2 1 0.8959679458 SMPs × 2 CPUs 8 1 1 2 1 1 0.895508695 0.05%8 1 2 1 8 140 0.161913245 82%slower than the blok-yli assignment shedule. This is due to the fat that it imposes a very

5.8 Implementation issues for non-retangular tile spaes 165
Table 5.12: SOR - Simulation Data, following the non-overlapping exeution poliy

p2 p3 m2 m3 b2 b3 Speedup/proessors EÆieny redution2 1 1 1 8 1 0.9334719332 SMPs × 1 CPU 1 2 1 1 1 1 0.687822177 26%1 2 1 1 120 70 0.516923785 45%2 1 1 2 8 1 0.9314154612 SMPs × 2 CPUs 2 1 2 1 1 1 0.804743867 14%2 1 2 1 30 140 0.297544003 68%2 1 1 4 9 1 0.9153420712 SMPs × 4 CPUs 2 1 4 1 1 1 0.797715939 13%2 1 4 1 15 140 0.206804037 77%2 1 2 4 4 1 0.8728208642 SMPs × 8 CPUs 2 1 4 2 1 1 0.761663718 13%2 1 8 1 8 140 0.159950583 82%4 1 1 1 4 1 0.8524776914 SMPs × 1 CPU 4 1 1 1 1 1 0.678914342 20%1 4 1 1 120 35 0.276955342 68%4 1 1 2 4 1 0.8477144284 SMPs × 2 CPUs 4 1 2 1 1 1 0.797329214 5.9%4 1 2 1 15 140 0.18935053 78%4 1 1 4 4 1 0.8322397444 SMPs × 4 CPUs 4 1 2 2 1 1 0.761153699 8.5%4 1 4 1 8 140 0.146127364 82%4 2 1 1 4 4 0.7654800878 SMPs × 1 CPU 8 1 1 1 1 1 0.672901118 12%8 1 1 1 15 140 0.164661875 78%8 1 1 2 2 1 0.7425095838 SMPs × 2 CPUs 8 1 2 1 1 1 0.731556309 1.5%8 1 2 1 8 140 0.130694603 82%dense ommuniation pattern. Thus, the blok-yli assignment sheme ahieves the happymedium between ommuniation load and onurrent exeution on di�erent proessors.

166 Sheduling onto a fixed number of homogeneous SMP nodes

6ConlusionIn this thesis, we have added some notions to the diÆult problem of automati parallelizationof nested for-loops.In [GAK03℄, [GDAK02a℄, [GDAK04℄, a omplete framework for automatially produingparallel SPMD ode has been presented. However, we assumed that there are always as manyproessors as needed, or, that proesses are sheduled by the operating system on the availableproessors. However, as explained in §5.1, this sheduling may not be optimal. Chapter 5 of thisthesis is now presenting a solution to this problem. In addition, we had not taken into aountmulti-level parallel arhitetures. This ase is oped with by Chapter 4 and §3.3 of this thesis.In [Sot04℄, Sotiropoulos has presented an innovating parallel sheduling, whih an exploitadvaned ommuniation features of modern lusters, suh as Diret Memory Aessing andZero-Copy protools [KSG03℄, [GSK01℄. This thesis is now modifying the shedule proposed bySotiropoulos, in order to exploit the proximity of proessors within the same SMP node.Thus, this thesis an be onsidered as the last among realized steps for the parallelization ofnested for-loops:1. First of all, one should ondut a dependene analysis of the ode segment, as desribedin [Ban88℄, [Pug92℄. We assume that this step gives uniform dependenes, as desribed in
§2.3 and in §B.2.2. Then, we selet the optimal tiling, aording to ahe loality or ommuniation overheadminimization riteria, as desribed in [KRC99℄, [LRW91℄, [WL91a℄, [PHP03℄, [MHCF98℄and [AKN95℄, [RR02℄, [BDRR94℄, [Xue97a℄, [Xue00℄, [RR04℄.3. Sequential ode is onverted to serial tiled ode, aording to the tiling transformationseleted in step 2, as desribed in [GAK02b℄, [GAK03℄ and in §3.2 of this thesis. Thisonversion is onsisted of two substeps:

168 Conlusion
(a) Produing the bounds of the tile spae from the bounds of the iteration spae (§3.2.1)and(b) Produing the appropriate boundary expressions for traversing the internal of eahtile, as well as determining the inremental steps of eah loop index (§3.2.2).4. A ommuniation poliy (overlapping or non-overlapping) may be seleted [GSK01℄, [KSG03℄,aording to the hardware tehnology that will be used. If the network interonnetionsupports Diret Memory Aess (DMA) protools, we highly reommend the seletion ofthe overlapping ommuniation poliy. If DMA is not supported by hardware, then over-lapping ommuniation will not be really implemented. Thus, writing ode for overlappingommuniation over this hardware arhiteture will only introdue unneessary delays tothe �nal program.5. If our luster is onsisted by Symmetri Multiproessors (SMPs), then the proximity ofproessors in the same SMP node an be exploited by applying a grouping transformationto the tile spae, produed in step 3a, and then sheduling groups instead of tiles, asdesribed in [ASTK02b℄, [AST+05℄ and in Chapter 4 of this thesis.6. If the number of rows of tiles produed by step 3a exeeds the number of CPUs available,then it is advised to apply a stati sheduling of tiles or groups, as desribed in [AKK04℄and in Chapter 5 of this thesis. If the tile spae (step 3a) is retangular, then we need nottake into aount load balaning issues. Thus, we may selet between the yli assignmentshedule (§5.2) and the luster assignment shedule (§5.4). The yli assignment sheduleis preferable when the overlapping ommuniation poliy has been seleted in step 4, whileluster assignment shedule is preferable when the non-overlapping ommuniation poliyhas been seleted. If the tile spae is not retangular, then the blok-yli assignmentshedule onstitutes a useful ompromise of the advantages and disadvantages of yliand luster assignment shedules.7. Finally, serial tiled ode, produed in step 3, an be onverted into parallel ode, takinginto aount the deisions of steps 4, 5, 6, and alloating data to proesses, as desribedin [GDAK02a℄, [Gou03℄ and in §3.3 of this thesis.Although a lot of researh has been onduted in this area, we annot yet automatiallyprodue optimal parallel tiled ode for the exeution of ode segments with nested for-loopsonto parallel arhitetures.

• First of all, we have not yet investigated the interation among the tile seletion tehniques(step 2) and subsequent steps (4, 5, 6). It is strongly possible that the appliation ofdi�erent ommuniation poliies or assignment shemes will modify the riteria for theseletion of the optimal tiling transformation. Thus, maybe an overall analysis of problemsorresponding to steps 2, 4, 5 and 6 would modify the �nal parallel ode produed in step 7.

169
• In addition, we may inorporate in the previous proedure the data layout and indexingtehniques desribed in [AK04℄, [AKT05℄. In these papers, E. Athanasaki et al. havepresented an alternative array data layout, whih stores array elements in memory in theorder they are fethed in ahe by the tiled nested for-loop ode segment. Then, theombination of parallelization and peak ahe performane is expeted to further boostthe eÆieny of the �nal parallel ode. However, inorporating these tehniques, will addone more parameter in the tile seletion methods applied in step 2.
• Another issue that has not been yet investigated is false sharing inside SMP nodes ([CS99℄,pages 123-156, [TLH94℄, [KCRB03℄). Is there suh a possibility? How an it be evited?Sine tiling has initially been designed for parallelization onto lusters with distributedmemory, or for exploiting ahe loality on single proessing units, these questions havenot been yet addressed in the literature.
• Furthermore, one should �nd out if these tehniques an be applied to ode segments withimperfetly nested for-loops. As desribed in [AMP00b℄, [AMP00a℄, [Xue96℄, [SL99℄,[Kul98℄, [LLL01℄, every imperfetly nested for-loop an be onverted into perfetly nestedfor-loop, using if statements. However, the tehniques desribed in the above papers aremainly aimed for ahe loality optimization, not for parallelism. The omputation load ofiterations will not be equal. Thus, tiling into equal sized tiles will result into omputationload imbalane. On the other hand, the results of this thesis and of referened relatedwork have been based on the assumptions that tiles are idential.
• Similarly, if the omputing system is heterogeneous, tiling into idential tiles will notgive equal omputation times for all of them. This fat will not be onsistent with theunderlying assumptions of this thesis and of referened related work. Then, the tehniquespresented in this thesis might be ombined or enhaned with the ones proposed in [Mor98℄,[KP96℄, [CZL95℄, [CZL97℄. However, the methods proposed by above papers annot replaethe shemes proposed in this thesis, sine, they onern the parallelization of doall loops([CZL95℄, [CZL97℄), or employ a dynami sheduling algorithm ([KP96℄).
• In order to further redue the exeution time of parallel programs on SMP nodes, weshould also query whih CPUs of an SMP node should ommuniate with other SMPnodes. Should eah CPU exhange data that onern only its own work? Or should asingle proessor undertake the ommuniation needed for the whole SMP node? In asethe seond possibility is taken, how shall we balane the omputation+ommuniationload of CPUs?

170 Conlusion

Appendies

ASummary of Notations
Symbol Explanation Page

N set of natural numbers 12
N∗ set of natural numbers, exluding 0, N∗ = N − {0} 12
Z set of integer numbers 12
Z∗ set of integer numbers, exluding 0, Z∗ = Z − {0} 12
n Dimensions of the iteration spae 12
Jn Iteration spae 13

~j = (j1, . . . , jn) Iteration oordinates vetor 12
JS Tile spae 30

~jS = (jS
1 , . . . , j

S
n) Tile oordinates vetor: ~jS = ⌊H~j⌋ 30

TOS Tile origin spae 30
~j0 = (j01, . . . , j0n) Tile origin 30

TIS Tile iteration spae 30
TTIS Transformed tile iteration spae 59

~j′ = (j′1, . . . , j
′
n) Instane of the transformed tile iteration spae 63

~j′ = H ′(~j − ~j0) ⇔ ~j = P ′(V ~jS + ~j′)

DS Data spae DS = {fw(~j)|~j ∈ Jn} 75
LDS Loal data spae 78

LDS =

{
~j′′ ∈ Zn|

0 ≤ j′′k < offk +mkvkk/h̃′kk, k = 1, . . . , n, k 6= i

∧0 ≤ j′′i < offi + |t|vii/h̃′ii

}

~j′′ = (j′′1 , . . . , j
′′
n) Instane of the loal data spae ~j′′ = map(~j′, t) 78

JG Group spae 90
~jG = (jG

1 , . . . , j
G
n) Group oordinates vetor ~jG = ⌊HG ~jS⌋ 90

174 Summary of Notations
Symbol Explanation Page

H Tiling matrix 28
g Smallest natural number suh that gH is an integer matrix 31
P Inverse tiling matrix 28
V Diagonal matrix with vkk the smallest integer suh that 61

vkk
~hk to be integral

H ′ Transformation matrix from TIS to TTIS (H ′ = V H) 59
P ′ Transformation matrix from TTIS to TIS (P ′ = H ′−1) 59
H̃ ′ Hermite normal form of matrix H ′ 61
HG Grouping matrix 90
PG Inverse grouping matrix 90
D Dependene matrix 16
D′ Transformed dependene matrix D′ = H ′D

DS Tile dependene matrix 32
Π Linear time sheduling vetor 19
ΠG Linear time sheduling vetor onerning groups 98

m = m1 × · · · ×mi−1× Number of CPUs inside an SMP node 75, 93
×mi+1 × · · · ×mn

p = p1 × · · · × pi−1× Number of available SMP nodes 127
×pi+1 × · · · × pn

~smp id SMP node identi�ation vetor 75
~cpu id proessor identi�ation vetor inside an SMP node 75
~pid global proessor identi�ation vetor 75

pidx = pidx = cpu idx + smp idxmx ⇔

cpu idx = pidx%mx, smp idx = ⌊pidx/mx⌋

℘ Makespan = Number of time steps needed for the ompletion 20of the exeution
i The longest dimension of the tile spae 76, 108

lk, uk Lower and upper bounds of the iteration spae k = 1, . . . , n 12
lSk , uS

k Lower and upper bounds of the tile spae k = 1, . . . , n 30
wS

k Width of a retangular tile spae along dimension k, 101
ws

k = us
k − lSk + 1, k = 1, . . . , n

BAlgorithmi Model - Summary ofassumptions
B.1: We onsider an n-dimensional perfetly nested for-loop:for (j1=l1; j1 ≤ u1; j1 + +){...for (jn=ln; jn ≤ un; jn + +){Loop Body

}...
}where l1 and u1 are integer parameters, lk and uk (k = 2, . . . , n) are funtions of the outer loopindies. Spei�ally, they may have the form:

lk = max(⌈fk1(j1, . . . , jk−1)⌉, . . . , ⌈fkr(j1, . . . , jk−1)⌉)and
uk = min(⌊gk1(j1, . . . , jk−1)⌋, . . . , ⌊gkr(j1, . . . , jk−1)⌋),where fki and gki are aÆne funtions. (see page 12)B.2: All dependene vetors are uniform, i.e. independent of the indies of omputations. (seepage 16)B.3: There are at least n linearly independent dependene vetors. Thus, the lass of depen-

176 Algorithmi Model - Summary of assumptions
dene matrix D equals to n. (see page 29)B.4: Anti-dependenes and output dependenes have been eliminated using more variables[CDRV98℄. (see page 16)B.5: All dependene vetors are smaller than the tile size, thus they are entirely ontained ineah tile's area. This means that the tile dependene matrix DS ontains only 0's and 1's. (seepage 33)B.6: The proessing arhiteture onsists of an homogeneous luster of single CPU or SMPnodes. (see page 75)

CSimple Mathematial FormulasLemma C.1 If all n points ~yi, i = 1, . . . , n belong to a onvex spae Jn, then every point
~y = a1 ~y1 + · · · + an ~yn (C.1)where ai ∈ [0, 1] and a1 + · · · + an = 1, belongs to Jn.Geometrially, this statement an be expressed as follows: If all points ~yi, i = 1, . . . , n belongto a onvex spae Jn, then all points loated among them belong to Jn.Proof: If all points ~yi, i = 1, . . . , n belong to Jn, then it holds B~yi ≤ ~b for all i = 1, . . . , n.Consequently, B~y =

n∑
i=1

aiB~yi ≤
n∑

i=1

ai
~b = ~b. Thus, point ~y also belongs to Jn. ⊣Lemma C.2 Funtion

f(x1, . . . , xn) = x1 + · · · + xn,where x1 × · · · × xn = c and x1, . . . , xn > 0, is minimized when
x1 = · · · = xn = c

1
nProof: Funtion

f(x1, . . . , xn) = x1 + · · · + xn,where x1 × · · · × xn = c⇒ xn = c
x1×···×xn−1

, an be rewritten as follows:
f(x1, . . . , xn−1) = x1 + · · · + xn−1 +

c

x1 × · · · × xn−1
.Therefore ∂f

∂xn−1
= 1 − c

x1×···×xn−2
x−2

n−1 and ∂2f

∂x2
n−1

> 0, ∀xn−1.

178 Simple Mathematial Formulas
Thus, funtion f(x1, . . . , xn−1) is minimized in respet to the value of xn−1 when ∂f

∂xn−1
=

0 ⇒ xn−1 =
(

c
x1×···×xn−2

) 1
2 . For this value of xn−1 we an write:

f(x1, . . . , xn−2) = x1 + · · · + xn−2 + 2

(
c

x1 × · · · × xn−2

) 1
2

.After we have eliminated variables xn−i+1, . . . , xn this way, we onlude that funtion fan be expressed as
f(x1, . . . , xn−i) = x1 + · · · + xn−i + i

(
c

x1 × · · · × xn−i

) 1
i

.Therefore ∂f
∂xn−i

= 1 −
(

c
x1×···×xn−i−1

) 1
i

x
− i+1

i

n−i and ∂2f

∂x2
n−i

> 0, ∀xn−i. Thus, funtion
f(x1, . . . , xn−i) is minimized in respet to the value of xn−i when ∂f

∂xn−i
= 0 ⇒ xn−i =

(
c

x1×···×xn−i−1

) 1
i+1 . For this value of xn−i we an write that

f(x1, . . . , xn−i−1) = x1 + · · · + xn−i−1 + (i+ 1)

(
c

x1 × · · · × xn−i−1

) 1
i+1

.If we ontinue the elimination of the variables in this way, we onlude that the mini-mization of f is ahieved when x1 = c
1
n . After a bakwards substitution of the variables inthe expressions xn−i =

(
c

x1×···×xn−i−1

) 1
i+1 we onlude that the minimum value of

f(x1, . . . , xn) = x1 + · · · + xnis ahieved when x1 = · · · = xn = c
1
n . ⊣Lemma C.3 Funtion

f(x1, . . . , xn) =
a1

x1
+ · · · +

an

xn
,where x1×· · ·×xn = c, a1, . . . , an are positive onstants and x1, . . . , xn are positive, is minimizedwhen

xi = ai

(
c

a1 × · · · × an

) 1
n

, i = 1, . . . , nProof: It holds that a1

x1
× · · · × an

xn
= a1×···×an

c
=onstant. Thus, aording to Lemma C.2,funtion f(x1, . . . , xn) is minimized when a1

x1
= · · · = an

xn
=
(

a1×···×an

c

) 1
n ⇒ xi = ai

(
c

a1×···×an

) 1
n ,

i = 1, . . . , n. ⊣Lemma C.4 If a ∈ Z and b, c ∈ N∗, it holds that
⌈
⌈a

b ⌉

c
⌉ = ⌈

a

bc
⌉ (C.2)

179
and

⌊
⌊a

b ⌋

c
⌋ = ⌊

a

bc
⌋ (C.3)Proof: There is a pair of x ∈ Z, y ∈ N suh that a = bcx− y and 0 ≤ y ≤ bc− 1. Thus,it holds that

⌈
a

bc
⌉ = ⌈

bcx− y

bc
⌉ = xIn addition, there is a pair of y1, y2 ∈ N suh that y = by1 + y2 and 0 ≤ y1 ≤ c − 1,

0 ≤ y2 ≤ b− 1. Thus, it holds that
⌈
⌈a

b
⌉

c
⌉ = ⌈

⌈ bcx−by1−y2

b
⌉

c
⌉ = ⌈

cx− y1
c

⌉ = xThus, formula (C.2) is valid.Similarly, there is a pair of w ∈ Z, z ∈ N suh that a = bcw + z and 0 ≤ z ≤ bc − 1.Thus, it holds that
⌊
a

bc
⌋ = ⌊

bcw + z

bc
⌋ = wIn addition, there is a pair of z1, z2 ∈ N suh that z = bz1 + z2 and 0 ≤ z1 ≤ c − 1,

0 ≤ z2 ≤ b− 1. Thus, it holds that
⌊
⌊a

b
⌋

c
⌋ = ⌊

⌊ bcw+bz1+z2

b
⌋

c
⌋ = ⌊

cw + z1
c

⌋ = wThus, formula (C.3) is valid. ⊣Lemma C.5 If a ∈ Z and b ∈ N∗, it holds that
⌊
a− 1

b
⌋ = ⌈

a

b
⌉ − 1 (C.4)Proof: There is a pair of x ∈ Z, y ∈ N suh that a = bx− y and 0 ≤ y ≤ b− 1. Thus, itholds that

⌈
a

b
⌉ − 1 = ⌈

bx− y

b
⌉ − 1 = x− 1In addition, sine 0 ≤ b− y − 1 ≤ b− 1, it holds that

⌊
a− 1

b
⌋ = ⌊

bx− y − 1

b
⌋ = ⌊

b(x− 1) + (b− y − 1))

b
⌋ = x− 1

⊣Lemma C.6 If a ∈ Z and b ∈ N∗, it holds that
−⌊

a

b
⌋ = ⌈−

a

b
⌉ (C.5)

180 Simple Mathematial Formulas
Proof: There is a pair of x ∈ Z, y ∈ N suh that a = bx+ y and 0 ≤ y ≤ b− 1. Thus, itholds that

−⌊
a

b
⌋ = −⌊

bx+ y

b
⌋ = −xIn addition, it holds that

⌈−
a

b
⌉ = ⌈

−bx− y

b
⌉ = −x

⊣Lemma C.7 If a, b ∈ N∗, it holds that
⌈
a

⌈a
b ⌉

⌉ ≤ b (C.6)Proof: There is a pair of x, y ∈ N suh that a = bx− y and 0 ≤ y ≤ b− 1. Thus, it holdsthat
⌈
a

⌈a
b
⌉
⌉ = ⌈

a

x
⌉ = b+ ⌈

−y

x
⌉

(C.5)
= b− ⌊

y

x
⌋ ≤ b

⊣Lemma C.8
a1 + a1

n∑

i=2

[
(ai − 1)

n∏

k=i+1

ak

]
=

n∏

i=1

ai (C.7)Proof:
a1 + a1 [(a2 − 1)a3 . . . an + (a3 − 1)a4 . . . an + · · · + (an−2 − 1)an−1an + (an−1 − 1)an + an − 1] =

= a1 + a1 [(a2 − 1)a3 . . . an + (a3 − 1)a4 . . . an + · · · + (an−2 − 1)an−1an + an−1an − 1] =

= a1 + a1 [(a2 − 1)a3 . . . an + (a3 − 1)a4 . . . an + · · · + an−2an−1an − 1] =

= · · · =

= a1 + a1 [a2a3 . . . an − 1] = a1a2 . . . an

⊣

Bibliography
[ABR96℄ R. Andonov, H. Bourzou�, and S. Rajopadhye. Two-Dimensional OrthogonalTiling: from Theory to Pratie. In Proeedings of the 1996 International Con-ferene on High-Performane Computing (HiPC'96), pages 225{231, Trivandrum,India, De. 1996.[ABRY03℄ R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev. Optimal Semi-Oblique Tiling.IEEE Transations on Parallel and Distributed Systems, 14(9):944{960, Sep. 2003.[ACN+00℄ R. Andonov, P. Calland, S. Niar, S. Rajopadhye, and N. Yanev. First Steps TowardsOptimal Oblique Tile Sizing. In 8th International Workshop on Compilers forParallel Computers, pages 351{366, Aussois, Jan. 2000.[AI91℄ C. Anourt and F. Irigoin. Sanning Polyhedra with DO Loops. In Proeedings ofthe Third ACM SIGPLAN Symposium on Priniples & Pratie of Parallel Pro-gramming (PPoPP), pages 39{50, Williamsburg, VA, April 1991.[AK04℄ E. Athanasaki and N. Koziris. Fast Indexing for Bloked Array Layouts to ImproveMulti-Level Cahe Loality. In Proeedings of the 8-th Workshop on Interationbetween Compilers and Computer Arhitetures (INTERACT'04), pages 109{119,Madrid, Spain, Feb. 2004. Held in onjuntion with HPCA-10.[AKK03℄ M. Athanasaki, E. Koukis, and N. Koziris. EÆient Sheduling of Tiled IterationSpaes onto a Fixed Size Parallel Arhiteture. In Proeedings of the 9th PanhelleniConferene in Informatis, pages 178{192, Thessaloniki, Greee, Nov. 2003.[AKK04℄ M. Athanasaki, E. Koukis, and N. Koziris. Sheduling of Tiled Nested Loops onto aCluster with a Fixed Number of SMP Nodes. In Proeedings of the 12-th EuromiroConferene on Parallel, Distributed and Network based Proessing (PDP04), pages424{433, A Coruna, Spain, Feb. 2004. IEEE Computer Soiety Press.

182 BIBLIOGRAPHY
[AKN95℄ A. Agarwal, D. Kranz, and V. Natarajan. Automati Partitioning of Parallel Loopsand Data Arrays for Distributed Shared-Memory Multiproessors. IEEE Transa-tions on Parallel and Distributed Systems, 6(9):943{962, 1995.[AKPT99℄ T. Andronikos, N. Koziris, G. Papakonstantinou, and P. Tsanakas. OptimalSheduling for UET/UET-UCT Generalized N-Dimensional Grid Task Graphs.Journal of Parallel and Distributed Computing, 57(2):140{165, May 1999.[AKPT00℄ T. Andronikos, N. Koziris, G. Papakonstantinou, and P. Tsanakas. OptimalSheduling for UET-UCT Grids Into Fixed Number of Proessors. In Proeedingsof 8th Euromiro Workshop on Parallel and Distributed Proessing (PDP2000),IEEE Press, pages 237{243, Rhodes, Greee, Jan. 2000.[AKT05℄ E. Athanasaki, N. Koziris, and P. Tsanakas. A Tile Size Seletion Analysis forBloked Array Layouts. In Proeedings of the 9-th Workshop on Interation be-tween Compilers and Computer Arhitetures (INTERACT'05), pages 70{80, SanFraniso, CA, Feb. 2005. Held in onjuntion with HPCA-11.[AL93℄ S. P. Amarasinghe and M. S. Lam. Communiation Optimization and Code Gen-eration for Distributed Memory Mahines. In Proeedings of the ACM SIGPLANConferene on Programming Language Design and Implementation (PLDI'93), Al-buquerque, New Mexio, USA, June 1993.[AMC97℄ V. Adve and J. Mellor-Crummey. Advaned Code Generation for High PerformaneFortran. In Languages, Compilation Tehniques and Run Time Systems for SalableParallel Systems, hapter 18, Leture Notes in Computer Siene Series. Springer-Verlag, 1997.[AMP00a℄ N. Ahmed, N. Mateev, and K. Pingali. Synthesizing Transformations for LoalityEnhanement of Imperfetly-nested Loop Nests. In Proeedings of the 14th Inter-national Conferene on Superomputing (ICS2000), pages 141{152, Santa Fe, NewMexio, United States, 2000.[AMP00b℄ N. Ahmed, N. Mateev, and K. Pingali. Tiling Imperfetly-nested Loop Nests. InProeedings of the 2000 ACM/IEEE Conferene on Superomputing, Dallas, Texas,United States, 2000.[AST+05℄ M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, N. Koziris, and P. Tsanakas. Hy-perplane Grouping and Pipelined Shedules: How to Exeute Tiled Loops Fast onClusters of SMPs. The Journal of Superomputing, 33(3):197{226, Sep. 2005.[ASTK02a℄ M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, and N. Koziris. A Pipelined Ex-eution of Tiled Nested Loops on SMPs with Computation and Communiation

BIBLIOGRAPHY 183
Overlapping. In Proeedings of the Workshop on Compile/Runtime Tehniques forParallel Computing, in onjuntion with 2002 International Conferene on ParallelProessing (ICPP-2002), pages 559{567, Vanouver, Canada, Aug. 2002.[ASTK02b℄ M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, and N. Koziris. Pipelined Shedulingof Tiled Nested Loops onto Clusters of SMPs using Memory Mapped NetworkInterfaes. In Proeedings of the 2002 ACM/IEEE onferene on Superomputing(SC2002), Baltimore, Maryland, Nov. 2002. IEEE Computer Soiety Press.[Ban88℄ Uptal Banerjee. Dependene Analysis for Superomputing. Kluwer Aademi Pub-lishers, 1988.[Ban93℄ Uptal Banerjee. Loop Transformations for Restruturing Compilers, pages 81{92.Kluwer Aademi Publishers, 1993.[Ban94℄ Uptal Banerjee. Loop Parallelization. Kluwer Aademi Publishers, 1994.[BDRR94℄ P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate tiling? INTEGRA-TION, The VLSI Jounal, 17:33{51, 1994.[BDRV99℄ P. Boulet, J. Dongarra, Y. Robert, and F. Vivien. Stati Tiling for HeterogeneousComputing Platforms. Parallel Computing, 25:547{568, 1999.[Ber66℄ A. Bernstein. Analysis of Programs for Parallel Programming. IEEE Transationson Computers, 15(5):757{763, Ot. 1966.[Blu96℄ M. Blumrih. Network Interfae for Proteted, User-Level Communiation. PhDthesis, Prineton University, April 1996.[BW95℄ A.J.C. Bik and H.A.G. Wijsho�. Implementation of Fourier-Motzkin Elimination.In First Annual Conferene of the ASCI, pages 377{386, The Netherlands, 1995.[CDR97℄ P. Y. Calland, J. Dongarra, and Y. Robert. Tiling with Limited Resoures. InAppliation Spei� Systems, Arhitetures, and Proessors, ASAP'97, pages 229{238. IEEE Computer Soiety Press, July 1997. Extended version available on theweb at http://www.ens-lyon.fr/∼yrobert.[CDRV98℄ P. Y. Calland, A. Darte, Y. Robert, and F. Vivien. On the Removal of Anti andOutput Dependenes. International Journal of Parallel Programming, 26(2):285{312, 1998.[CKE+04℄ G. S. Choi, J.-H. Kim, D. Ersoz, A. B. Yoo, and C. R. Das. Cosheduling inClusters: Is It a Viable Alternative? In Proeedings of the 2004 ACM/IEEEonferene on Superomputing (SC2004), Pittsburgh, PA, USA, Nov. 2004.

184 BIBLIOGRAPHY
[CMZ92℄ B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. InProeedings of the Third Workshop on Compilers for Parallel Computers, pages121{160, July 1992.[CS99℄ David E. Culler and Jaswinder Pal Singh. Parallel Computer Arhiteture - AHardware/Software Approah. Morgan Kaufmann, 1999.[CTHI98℄ F. O' Carroll, H. Tezuka, A. Hori, and Y. Ishikawa. The Design and Implementationof Zero Copy MPI Using Commodity Hardware with a High Performane Network.In Proeedings of the International Conferene on Superomputing, pages 243{249,Melbourne, Australia, 1998.[CZL95℄ M. Cierniak, M. Zaki, and W. Li. Loop Sheduling for Heterogeneity. In Proeed-ings of the 4th IEEE International Symposium on High Performane DistributedComputing (HPDC'95), pages 78{85, Washington D.C., Aug. 1995.[CZL97℄ M. Cierniak, M. Zaki, and W. Li. Compile-Time Sheduling Algorithms for aHeterogeneous Network of Workstations. The Computer Journal, 40(6):356{372,1997.[DDRR97℄ F. Desprez, J. Dongarra, F. Rastello, and Y. Robert. Determining the Idle Time of aTiling: New Results. Journal of Information Siene and Engineering, 14:167{190,Marh 1997.[DGAK03℄ N. Drosinos, G. Goumas, M. Athanasaki, and N. Koziris. Delivering High Perfor-mane to Parallel Appliations Using Advaned Sheduling. In Proeedings of theParallel Computing 2003 (ParCo 2003), Dresden, Germany, Sep. 2003.[DGK+00℄ I. Drossitis, G. Goumas, N. Koziris, G. Papakonstantinou, and P. Tsanakas. Eval-uation of Loop Grouping Methods based on Orthogonal Projetion Spaes. InProeedings of the International Conferene on Parallel Proessing, pages 469{476,Toronto, Canada, Aug. 2000.[DK04℄ N. Drosinos and N. Koziris. Performane Comparison of Pure MPI vs HybridMPI-OpenMP Parallelization Models on SMP Clusters. In Proeedings of the 18thInternational Parallel and Distributed Proessing Symposium 2004 (IPDPS 2004),page 15, Santa Fe, New Mexio, April 2004.[DRR96℄ M. Dion, T. Risset, and Y. Robert. Resoure-onstrained Sheduling of PartitionedAlgorithms on Proessor Arrays. INTEGRATION, The VLSI Jounal, 20, 1996.[FHK+91℄ G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu.Fortran-D Language Spei�ation. Tehnial Report TR-91-170, Dept. of Com-puter Siene, Rie University, De. 1991.

BIBLIOGRAPHY 185
[FLV95℄ A. Fernandez, J. Llaberia, and M. Valero. Loop Transformations Using Nonunimod-ular Matries. IEEE Transations on Parallel and Distributed Systems, 6(8):832{840, Aug. 1995.[GAK02a℄ G. Goumas, M. Athanasaki, and N. Koziris. Automati Code Generation for Ex-euting Tiled Nested Loops Onto Parallel Arhitetures. In Proeedings of the2002 ACM Symposium on Applied Computing (SAC 2002), pages 876{881, Madrid,Spain, Marh 2002.[GAK02b℄ G. Goumas, M. Athanasaki, and N. Koziris. Code Generation Methods for TilingTransformations. Journal of Information Siene and Engineering, 18(5):667{691,Sep. 2002.[GAK03℄ G. Goumas, M. Athanasaki, and N. Koziris. An EÆient Code Generation Teh-nique for Tiled Iteration Spaes. IEEE Transations on Parallel and DistributedSystems, 14(10):1021{1034, Ot. 2003.[GDAK02a℄ G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Compiling Tiled IterationSpaes for Clusters. In Proeedings of the 2002 IEEE International Conferene onCluster Computing, pages 360{369, Chiago, Illinois, Sep. 2002.[GDAK02b℄ G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Data Parallel Code Gener-ation for Arbitrarily Tiled Nested Loops. In Proeedings of the 2002 InternationalConferene on Parallel and Distributed Proessing Tehniques and Appliations,pages 610{616, Las Vegas, Nevada, USA, June 2002.[GDAK04℄ G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Automati Parallel CodeGeneration for Tiled Nested Loops. In Proeedings of the 2004 ACM Symposium onApplied Computing (SAC 2004), pages 1412{1419, Niosia, Cyprus, Marh 2004.[Gou03℄ G. Goumas. Aυτóµατη Παραγωγή Παράλληλoυ SPMD Kώδικα για

Mǫτασχηµατισµoύς Y πǫρκóµβων σǫ Φωλιασµǫ́νoυς Bρóχoυς. PhD thesis,Shool of Eletrial and Computer Engineering, National Tehnial University ofAthens, De. 2003.[GSK01℄ G. Goumas, A. Sotiropoulos, and N. Koziris. Minimizing Completion Time forLoop Tiling with Computation and Communiation Overlapping. In Proeedingsof IEEE International Parallel and Distributed Proessing Symposium (IPDPS'01),San Franiso, April 2001.[HCF97℄ K Hogstedt, L. Carter, and J. Ferrante. Determining the Idle Time of a Tiling. InPriniples of Programming Languages (POPL), pages 160{173, Jan. 1997.

186 BIBLIOGRAPHY
[HCF99℄ K. Hogstedt, L. Carter, and J. Ferrante. Seleting Tile Shape for Minimal Exeutiontime. In ACM Symposium on Parallel Algorithms and Arhitetures, pages 201{211,1999.[HCF03℄ K Hogstedt, L. Carter, and J. Ferrante. On the Parallel Exeution Time of TiledLoops. IEEE Transations on Parallel and Distributed Systems, 14(3):307{321,Marh 2003.[Hel99℄ H. Hellwagner. The SCI Standard and Appliations of SCI. In H. Hellwagner andA. Reine�eld, editors, Salable Coherent Interfae (SCI): Arhiteture and Softwarefor High-Performane Computer Clusters, pages 3{34. Springer-Verlag, Sep. 1999.[Hol92℄ E. H. Hollander. Partitioning and Labeling of Loops by Unimodular Transforma-tions. IEEE Transations on Parallel and Distributed Systems, 3(4):465{476, July1992.[HP96℄ M. Haghighat and C. Polyhronopoulos. Symboli Analysis for Parallelizing Com-pilers. ACM Transations on Programming Languages and Systems, 18(4):477{518,July 1996.[HP03℄ J. Hennessy and D. Patterson. Computer Arhiteture - A Quantitative Approah.Morgan Kaufmann Publishers, San Franiso, CA, 3rd edition, 2003.[HS98℄ E. Hodzi and W. Shang. On Supernode Transformation with Minimized TotalRunning Time. IEEE Transations on Parallel and Distributed Systems, 9(5):417{428, May 1998.[HS02℄ E. Hodzi and W. Shang. On Time Optimal Supernode Shape. IEEE Transationson Parallel and Distributed Systems, 13(12):1220{1233, De. 2002.[ID98℄ S. Ioannidis and S. Dwarkadas. Compiler and Run-Time Support for Adaptive LoadBalaning in Software Distributed Shared Memory Systems. In Proeedings of the4th International Workshop on Languages, Compilers, and Run-Time Systems forSalable Computers (LCR'98), pages 107{122, Pittsburgh, PA, USA, May 1998.[IT88℄ F. Irigoin and R. Triolet. Supernode Partitioning. In Proeedings of the 15th Ann.ACM SIGACT-SIGPLAN Symp. Priniples of Programming Languages, pages319{329, San Diego, California, Jan. 1988.[Jim99℄ M. Jimenez. Multilevel Tiling for Non-Retangular Iteration Spaes. PhD thesis,Universitat Politenia de Catalunia, 1999.[KCN91℄ C.-T. King, W.-H. Chou, and L. Ni. Pipelined Data-Parallel Algorithms: PartII Design. IEEE Transations on Parallel and Distributed Systems, 2(4):430{439,Ot. 1991.

BIBLIOGRAPHY 187
[KCRB03℄ M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Reduing FalseSharing and Improving Spatial Loality in a Uni�ed Compilation Framework. IEEETransations on Parallel and Distributed Systems, 14(4):337{354, April 2003.[KMP+95℄ W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnaott. TheOmega Library Interfae Guide. Tehnial Report CS-TR-3445, CS Dept., Univ.of Maryland, College Park, Marh 1995.[KP96℄ T. Kim and J. Purtilo. Load Balaning for Parallel Loops in Workstation Clusters.In Proeedings of the 1996 International Conferene on Parallel Proessing (ICPP'96), Bloomingdale, Illinois, Aug. 1996.[KRC99℄ M. Kandemir, J. Ramanujam, and A. Choudary. Improving Cahe Loality by aCombination of Loop and Data Transformations. IEEE Transations on Comput-ers, 48(2):159{167, Feb. 1999.[KSG03℄ N. Koziris, A. Sotiropoulos, and G. Goumas. A Pipelined Shedule to MinimizeCompletion Time for Loop Tiling with Computation and Communiation Over-lapping. Journal of Parallel and Distributed Computing, 63(11):1138{1151, Nov.2003.[Kul98℄ D. Kulkarni. Transformations for Improving Data Aess Loality in Non-PerfetlyNested Loops. In Proeedings of 1998 International Conferene on Parallel Arhi-tetures and Compilation Tehniques (PACT'98), pages 314{321, Paris, Frane,1998.[Li93℄ W. Li. Compiling for NUMA Parallel Mahines. PhD thesis, Cornell Univ., Ithaa,New York, 1993.[LL98℄ A. Lim and M. Lam. Maximizing parallelism and minimizing synhronization withaÆne partitions. Parallel Computing, 24:445{475, May 1998.[LLL01℄ A. Lim, S. Liao, and M. Lam. Bloking and Array Contration Aross ArbitrarilyNested Loops Using AÆne Partitioning. In Proeedings of the 8th ACM SIGPLANsymposium on Priniples and Praties of Parallel Programming (PPoPP'01),pages 103{112, Snowbird, Utah, United States, 2001.[LRW91℄ M. Lam, E. Rothberg, and M. Wolf. The Cahe Performane and Optimizations ofBloked algorithms. In Seond International Conferene on Arhitetural Supportfor Programming Languages and Operating Systems (ASPLOS), pages 63{74, SantaClara, California, April 1991.

188 BIBLIOGRAPHY
[MA01℄ N. Manjikian and T. S. Abdelrahman. Exploiting Wavefront Parallelism on Large-Sale Shared-Memory Multiproessors. IEEE Transations on Parallel and Dis-tributed Systems, 12(3):259{271, Marh 2001.[MHCF98℄ N. Mithell, K. Hogsted, L. Carter, and J. Ferrante. Quantifying the Multi-LevelNature of Tiling Interations. International J. Parallel Programming, 1998.[ML94℄ E. P. Markatos and T. J. LeBlan. Using Proessor AÆnity in Loop Sheduling onShared-Memory Multiproessors. IEEE Transations on Parallel and DistributedSystems, 5(4):379{400, April 1994.[Mor98℄ P. Morin. Coarse Grained Parallel Computing on Heterogeneous Systems. InProeedings of the 1998 ACM Symposium on Applied Computing (SAC'98), pages628{634, Atlanta, Georgia, United States, 1998.[MPI94℄ Message Passing Interfae Forum MPIF. A Message-Passing Interfae Standard.Tehnial Report ut-s-94-230, University of Tennessee, Knoxville, TN, USA, 1994.[MPI97℄ Message Passing Interfae ForumMPIF. MPI-2: Extensions to the Message-PassingInterfae. Tehnial report, University of Tennessee, Knoxville, TN, USA, July1997.[Myr02℄ Myriom. GM: A Message-Passing System for Myrinet Networks, 2002. http://www.myri.om/ss/GM/do/html.[OSKO95℄ H. Ohta, Y. Saito, M. Kainaga, and H. Ono. Optimal Tile Size Adjustment inCompiling General DOACROSS Loop Nests. In International Conferene on Su-peromputing, pages 270{279, New York, 1995. ACM Press.[PB99℄ S. Pande and T. Bali. A Computation+Communiation Load Balaned Loop Par-titioning Method for Distributed Memory Systems. Journal of Parallel and Dis-tributed Computing, 58:515{545, 1999.[PC89℄ J. Peir and R. Cytron. Minimum Distane: A Method for Partitioning Reur-renes for Multiproessors. IEEE Transations on Computers, 38(8):1203{1211,Aug. 1989.[PH94℄ D. Patterson and J. Hennessy. Computer Organization & Design. The Hard-ware/Software Interfae. Morgan Kaufmann Publishers, San Franiso, CA, 1994.[PHP03℄ N. Park, B. Hong, and V. Prasanna. Tiling, Blok Data Layout and MemoryHierarhy Performane. IEEE Transations on Parallel and Distributed Systems,14(7):640{654, July 2003.

BIBLIOGRAPHY 189
[PTK98℄ G. Papakonstantinou, P. Tsanakas, and N. Koziris. Aπǫικóνιση Aλγoρίθµων

σǫ Aρχιτǫκτoνικǫ́ς Παράλληλης Eπǫξǫργασίας, page 33. Παπασωτηρίoυ -
EΠIΣEY/EMΠ, Athens, Greee, 1998.[Pug92℄ William Pugh. The Omega Test: A fast and Pratial Integer Programming Al-gorithm for Dependene Analysis. Communiations of the ACM, 35(8):102{114,Aug. 1992.[PW86℄ D. Padua and W. Wolfe. Advaned Compiler Optimizations for Superomputers.Communiations of the ACM, 29(12), 1986.[Ram92℄ J. Ramanujam. Non-Unimodular Loop Transformations of Nested Loops. In Su-peromputing 92, pages 214{223, Minneapolis, Nov. 1992.[Ram95℄ J. Ramanujam. Beyond Unimodular Transformations. Journal of Superomputing,9(4):365{389, Ot. 1995.[RR02℄ F. Rastello and Y. Robert. Automati Partitioning of Parallel Loops withParallelepiped-Shaped Tiles. IEEE Transations on Parallel and Distributed Sys-tems, 13(5):460{470, May 2002.[RR04℄ L. Renganarayana and S. Rajopadhye. A Geometri Programming Framework forOptimal Multi-Level Tiling. In Proeedings of the 2004 ACM/IEEE onferene onSuperomputing (SC2004), Pittsburgh, PA USA, Nov. 2004.[RRP03℄ F. Rastello, A. Rao, and S. Pande. Optimal task sheduling at run time to exploitintra-tile parallelism. Parallel Computing, 29(2):209{239, 2003.[RS92℄ J. Ramanujam and P. Sadayappan. Tiling Multidimensional Iteration Spaes forMultiomputers. Journal of Parallel and Distributed Computing, 16:108{120, 1992.[Sak97℄ R. Sakellariou. A Compile-Time Partitioning Strategy for Non-Retangular LoopNests. In Proeeding of the 1997 International Parallel Proessing Symposium(IPPS97), 1997.[SC95℄ J.-P. Sheu and T.-S. Chen. Partitioning and Mapping Nested Loops for LinearArray Multiomputers. Journal of Superomputing, 9:183{202, 1995.[SF91℄ W. Shang and J.A.B. Fortes. Time Optimal Linear Shedules for Algorithms withUniform Dependenes. IEEE Transations on Computers, 40(6):723{742, June1991.[SF92℄ W. Shang and J.A.B. Fortes. Independent Partitioning of Algorithms with UniformDependenies. IEEE Transations on Computers, 41(2):190{206, Feb. 1992.

190 BIBLIOGRAPHY
[SG97℄ R. Sakellariou and J. R. Gurd. Compile-Time Minimization of Load Imbalane inLoop Nests. In Proeeding of the 1997 International Conferene on Superomputing(ICS97), Vienna, Austria, 1997.[SL99℄ Y. Song and Z. Li. New Tiling Tehniques to Improve Cahe Temporal Loality.In Proeedings of the ACM SIGPLAN 1999 Conferene on Programming LanguageDesign and Implementation (PLDI'99), pages 215{228, Atlanta, Georgia, UnitedStates, 1999.[SLR+95℄ E. Su, A. Lain, S. Ramaswamy, D. J. Palermo, E. W. Hodges, and P. Banerjee.Advaned Compilation Tehniques in the PARADIGM Compiler for DistributedMemory Multiomputers. In Proeedings of the ACM International Conferene onSuperomputing (ICS), Madrid, Spain, July 1995.[Sot04℄ A. Sotiropoulos. Aπoδoτική Aξιoπoίηση Σύγχρoνων ∆ικτυακών Tǫχνoλoγιών

στην Παράλληλη Eκτ ǫ́λǫση Υπoλoγισµών σǫ Συστoιχίǫς Υπoλoγιστών

Υψηλών Eπιδóσǫων. PhD thesis, Shool of Eletrial and Computer Engineer-ing, National Tehnial University of Athens, Feb. 2004.[ST91℄ J.-P. Sheu and T.-H. Tai. Partitioning and Mapping Nested Loops on Multiproes-sor Systems. IEEE Transations on Parallel and Distributed Systems, 2(4):430{439,Ot. 1991.[STK02℄ A. Sotiropoulos, G. Tsoukalas, and N. Koziris. Enhaning the Performane ofTiled Loop Exeution onto Clusters using Memory Mapped Network Interfaesand Pipelined Shedules. In Proeedings of the 2002 Workshop on CommuniationArhiteture for Clusters (CAC'02), International Parallel and Distributed Proess-ing Symposium (IPDPS'02), Fort Lauderdale, Florida, April 2002.[TKP00℄ P. Tsanakas, N. Koziris, and G. Papakonstantinou. Chain Grouping: A Methodfor Partitioning Loops onto Mesh-Conneted Proessor Arrays. IEEE Transationson Parallel and Distributed Systems, 11(9):941{955, Sep. 2000.[TLH94℄ J. Torrellas, H. Lam, and J. Hennessy. False Sharing and Spatial Loality in Mul-tiproessor Cahes. IEEE Transations on Computers, 43(6):651{663, June 1994.[TN93℄ T. Tzen and L. Ni. Trapezoid Self-Sheduling: A Pratial Sheduling Shemefor Parallel Compilers. IEEE Transations on Parallel and Distributed Systems,4(1):87{98, Jan. 1993.[TOP℄ Top500 list for november 2004. http://www.top500.org/lists/2004/11/.[TX00℄ P. Tang and J. Xue. Generating EÆient Tiled Code for Distributed MemoryMahines. Parallel Computing, 26(11):1369{1410, 2000.

BIBLIOGRAPHY 191
[WL91a℄ M. Wolf and M. Lam. A Data Loality Optimizing Algorithm. In ACMSIGPLAN'91 Conferene on Programming Language Design and Implementation(PLDI), Toronto, Ontario, June 1991.[WL91b℄ M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm toMaximize Parallelism. IEEE Transations on Parallel and Distributed Systems,2(4):452{471, Ot. 1991.[XC02℄ J. Xue and W. Cai. Time-minimal Tiling when Rise is Larger than Zero. ParallelComputing, 28(6):915{939, 2002.[Xue94℄ J. Xue. Automati Non-unimodular Loop Transformations for Massive Parallelism.Parallel Computing, 20(5):711{728, 1994.[Xue96℄ J. Xue. AÆne-by-Statement Transformations of Imperfetly Nested Loops. InProeedings of the 10th International Parallel Proessing Symposium (IPPS'96),pages 34{38, Honolulu, Hawaii, Apr. 1996.[Xue97a℄ J. Xue. Communiation-Minimal Tiling of Uniform Dependene Loops. Journal ofParallel and Distributed Computing, 42(1):42{59, 1997.[Xue97b℄ J. Xue. On Tiling as a Loop Transformation. Parallel Proessing Letters, 7(4):409{424, 1997.[Xue00℄ Jingling Xue. Loop Tiling for Parallelism. Kluwer Aademi Publishers, 2000.[ZLP97℄ M. Zaki, W. Li, and S. Parthasarathy. Customized Dynami Load Balaningfor a Network of Workstations. Journal of Parallel and Distributed Computing,43(2):156{162, June 1997.

