Automatic Code Generation for Executing Tiled Nested
Loops onto Parallel Architectures

Georgios Goumas Maria Athanasaki Nectarios Koziris
National Technical University National Technical University National Technical University
of Athens of Athens of Athens
Computing Systems Computing Systems Computing Systems
Laboratory Laboratory Laboratory

Dept. of Electrical and
Computer Engineering

goumas@cslab.ntua.gr

ABSTRACT

This paper presents anovel approach for the problem of generating
tiled code for nested for-loops using atiling transformation. Tiling
or supernode transformation has been widely used to improve lo-
cality in multi-level memory hierarchies aswell asto efficiently ex-
ecute loops onto non-uniform memory access architectures. How-
ever, automatic code generation for tiled loops can be avery com-
plex compiler work due to non-rectangular tile shapes and iteration
space bounds. Our method considerably enhances previous work
on rewriting tiled loops by considering parallel epiped tilesand arbi-
trary iteration space shapes. The complexity of code generation for
tiling transformation is now reduced to the complexity of code gen-
eration for any linear transformation. Experimental results which
compare all so far presented approaches, show that the proposed
approach for generating tiled code is significantly accelerated.

Keywords
Loop tiling, non-unimodular transformations, Fourier-Motzkin elim-
ination, code generation, Hermite Normal Forms.

1. INTRODUCTION

Tiling or supernode partitioning is a loop transformation that has
been widely used to improve locality in multi-level memory hierar-
chies as well as to efficiently execute loops onto distributed mem-
ory architectures. Supernode transformation groups neighboring
iterations together in order to form a large and independent com-
putational unit called tile or supernode. Supernode partitioning of
the iteration space was first proposed by Irigoin and Triolet in [6].
In their paper Ramanujam and Sadayappan [9] showed the equiva-
lence between the problem of finding a set of extreme vectors for a
given set of dependence vectors and the problem of finding atiling
transformation H that produces valid, deadlock-free tiles. In order
to find optimal tile shapes, Boulet et al. in[3] and Xuein [12] and
[14] used a communication function that has to be minimized by

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci®c
permission and/or afee.

SAC 2002, Madrid, Spain
(©2002 ACM 1-58113-445-2/02/03...$5.00

Dept. of Electrical and
Computer Engineering

maria@cslab.ntua.gr

Dept. of Electrical and
Computer Engineering

nkoziris@cslab.ntua.gr

linear programming approaches.

Although tiling as a loop transformation is extensively discussed,
only rectangular tiling is used in real applications. However, com-
munication criteria may suggest the use of non-rectangular tiles.
On the other hand, non-rectangular loop nests very commonly ap-
pear in numerical applications. This means that, in the general
case, we have to deal with non-rectangular shapes in tiles and it-
eration spaces. A method for manipulating non-rectangular tiles
and general convex spaces has been introduced by Ancourt and
Irigoinin[1], but the problem of calculating the exact transformed
loop bounds is formulated as a large system of linear inequalities.
The authors use the Fourier-Motzkin elimination method in order
to transform these inequalities into a form appropriate for the cal-
culation of the exact final loop bounds. However, due to the vast
complexity of the Fourier-Motzkin elimination, this method cannot
be practically applied for iteration spaces of more than 3 dimen-
sions.

In this paper, we present an efficient way to generate code for tiled
iteration spaces, considering both non-rectangular tiles and non-
rectangular iteration spaces. Our goal is to reduce the size of the
resulting systems of inequalities and to restrict the application of
Fourier-Motzkin elimination to as fewer times as possible. We di-
vide the main problem into the subproblems of enumerating the
tiles of the iteration space and sweeping the internal points of every
tile. For the first problem, we continue previous work concern-
ing code generation for non-unimodular linear transformations in
[10] and [11]. Tiling was used as an example to compute loop
bounds, but the method proposed fails to enumerate al tile origins
exactly. We adjust this method in order to access all tiles. Asfar as
sweeping the internal points of every tileis concerned, we propose
anovel method which uses the properties of non-unimodular trans-
formations. The method is based on the observation that tiles are
identical and that large computational complexity arises when non-
rectangular tiles are concerned. To face thisfact, we first transform
the parallelepiped (non-rectangular) tile (Tile Iteration Space-T'1S)
into arectangular one (T'T'1S), sweep the derived Transformed Tile
Iteration Space T'T'I S and use the inverse transformation in order
to access the original points. The results are adjusted in order to
sweep the internal points of al tiles, taking into consideration the
original iteration space bounds as well. In both cases, the resulting
systems of inequalities are eliminated using Fourier-Motzkin (FM)
elimination, but as it will be shown, the second application can

easily be avoided. The complexity of our method is equal to the
methods proposed for code generation of linear loop transforma-
tions. Compared to the method presented by Irigoin and Ancourt
in [1], our method outperforms in terms of efficiency. Experimen-
tal results show that the procedure of generating tiled code is vastly
accelerated, since the derived systems of inequalities in our case
are smaller and can be simultaneously eliminated. In addition, the
generated code is much simpler containing less expressions and
avoiding unnecessary calculations imposed by boundary tiles.

The rest of the paper is organized as follows. Basic terminology
used throughout the paper is introduced in Section 2. We present
tiling or supernode transformation in Section 3. The problem of
code generation for tiling transformation is defined in Section 4.
Previous work on generating tiled code is presented in Section 5.
Our method for generating tiled code is presented in detail in sec-
tion 6. In section 7 we compare our method with the one presented
in [1] and present some experimental results. Finaly, in Section 8
we summarize our results and propose future work.

2. ALGORITHMIC MODEL-NOTATION

In this paper we consider algorithms with perfectly nested FOR-
loops that is, our algorithms are of the form:
FOR ji =1, TOw; DO

FOR jz = lz TO u2 DO

FOR j, = l, TOu, DO
AS1(j)

ASk(j)
ENDFOR

ENDFOR
ENDFOR

where: (1) 5 = (Ji, .-y 4n), (2) I+ and u, are rational-valued con-
stants, (3) I, and u (k = 2...n) are of the form:

le = max([fra(GL, .. gk=1)1 -5 [far (G1, 0 Ge=1)]),s

U = mln(l_gkl(]L s 7j/€*1)J7 R Lng(jla s 7jk*1)J)1
where f; and gy; are affine functions and (4) AS1,..., AS, ae
assignment statements of the form Vo = E(V4,..., Vi), where g
is an output variable indexed by j and produced by expression E
operating on input variables V1, ..., Vi, aso indexed by j. Thus
we are not only dealing with rectangular iteration spaces, but also
with more general convex spaces, with the only assumption that
the iteration space is defined as the bisection of afinite number of
semi-spaces of the n-dimensional space Z™.

Throughout this paper the following notation is used: IV is the set
of naturals, Z isthe set of integers and n is the number of nested
FOR-loops of the algorithm. J" C Z" is the set of indices, or
the iteration space of an algorithm: J" = {j(ji,...,4n)|ji € Z A
li < ji < w1 < i < n}. Each point in this n-dimensional
integer space is a distinct instantiation of the loop body. If A isa
matrix we denote a;; the matrix element in the i-th row and j-th
column. In addition we define the symbols o™ and o™ as follows:
a™ = maz(a,0) anda” = maz(—a,0).

3. SUPERNODE TRANSFORMATION

In asupernode transformation theindex space J" ispartitioned into
identical n-dimensional parallelepiped areas (tiles or supernodes)
formed by n independent families of parallel hyperplanes. Supern-
ode transformation is defined by the n-dimensional sguare matrix

H. Each row vector of H is perpendicular to one family of hyper-
planes forming the tiles. Dually, supernode transformation can be
defined by n linearly independent vectors, which are the sides of
the supernodes. Similar to matrix H, matrix P contains the side-
vectors of a supernode as column vectors. It holds P = H 1.
Formally supernode transformation is defined as follows:

r:Z" —7Z ’T(J)_{]—H_ILH]J}’

where | H 7| identifies the coordinates of thetile that iteration point
341,42, .-, jn) ismapped toand j — H™'| Hj| gives the coor-
dinates of j within that tile relative to the tile origin. Thus the
initial n-dimensional iteration space J" is transformed to a 2n-
dimensional one, the space of tiles and the space of indices within
tiles. Apparently, supernode transformation is not a linear transfor-
mation. The following spaces are derived from a supernode trans-
formation H, when applied to an iteration space J".

1. TheTilelteration Space TIS(H) = {j € Z™|0 < |Hj] <
1}, which contains al points that belong to the tile starting
at the axes origins.

2. The Tile Space J°(J™, H) = {j°|j° = |Hj],j € J"},
which contains the images of al points j € J" according to
supernode transformation.

3. The Tile Origin Space TOS(JS,H™*) = {j € Z"|j =
H~155 35 € J5}, which contains the origins of tilesin the
original space.

According to the above it holds: J* -5 JS and J° £ TOS.

Note that all points of J" that belong to the same tile are mapped
to the same point of J°. This means that a point 5° in this n-
dimensional integer space J° is a distinct tile with coordinates
(§£,45,...,75). Note also that TOS is not necessarily a sub-
set of J", since there may exist tile origins which do not belong to
the original index space J", but some iterations within these tiles
do belong to J". The following example analyzes the properties of
each of the spaces defined above.

Example

2 1
Consider a supernode transformation defined by H = [33 }

3 3
2
1
j1 < 6,0 < j2 < 4}. Then, as shown in Figure 1, T'IS contains
points {(0,0), (1,1),(2,2)} and J™ is transformed by matrix H to Tile
Space JS = {(—2,3), (—2,2), (—1,2),...,(3,—1), (3, —2), (4, —2),
(4,—3)}. In the sequel, the Tile Space J° is transformed by matrix P
toTOS ={(-2,2), (-1,4), (-1,1), ..., (5,4), (6,0), (6,3)}. The
points of T’O S are shown in bold dots. -

or equivaently by P = ; applied to index space J2 = {0 <

The iteration space J" of an agorithm, as defined in section 2 can
also berepresented by asystem of linear inequalities. Aninequality
of this system expresses a boundary surface of our iteration space.
Thus, J" can be equivalently defined as: J" = {j € Z"|Bj <
b}. Matrix B and vector b can be easily derived from the affine
functions f, and g in section 2 and vice versa. Similarly, points
belonging to the same tile with tile origin jo € TOS satisfy the
system of inequalities0 < H(j — jo) < 1. In order to deal with
integer inequalities, we define g to be the smallest integer such as
gH isan integer matrix. Thus we can rewrite the above system of

Index Space J'

iz
o Ul S T T
B B R AR
o ol 4] T
TIS!
o L | 5 A
2 b 2. 4 &7 i
L] o’ B
o2 o / o
Tile
origin

Figurel: J5, TIS and TOS from Example 1

inequalities as follows: 0 < gH(j — jo) < (g — 1). We denote
_ gH . [(g-DT)

S = (ZoH) and 5= (i) Equivalently the above

system becomes: S(j — jo) < 5.

4. CODE GENERATION

In the next two sections we elaborate on methods for generating
tiled code that will traverse an iteration space J" transformed ac-
cording to tiling transformation H. Applying this transformation
to J", we obtain the Tile Space J°, TTS and TOS. In section 3
it is shown that supernode (tiling) transformationisa 2" — 72"
transformation, which means that a point j € J" is transformed
into a tuple of n-dimensiona points (5., j»), where j, identifies
the tile that the original point belongs to (j, € J°) and j; the co-
ordinates of the point relevant to the tile origin (j, € TIS). The
tiled code reorders the execution of indices imposed by the original
nested loop, resulting in a rearranged, transformed order described
by the following scheme: for every tile in the Tile Space J°, tra-
verse its internal points. According to the above, the tiled code
should consist of a 2n-dimensional nested loop. The n outermost
loops traverse the Tile Space J*, using indices j7 , 55, . . ., 55, and
the n innermost |oops traverse the points within the tile defined by
§T, 45, ..., 35 usingindices ji, 5, . .., j.. Wedenote I3, uj the
lower and upper bounds of index j; respectively. Similarly, we de-
note 1}, u}, the lower and upper bounds of index j.. In all cases,
lower bounds Ly, are of the form: L, = maz(lx 0,lk,1,...) and
upper bounds Uj, of the form: U, = min(ux,o, uk,1, .. .), Where
lk,j, ur,; areaffine functions of the outermost indices. Code gener-
ation involvesthe calcul ation of steps (loop strides) and exact lower
and upper bounds for indices j; and jj.

5. PREVIOUSWORK

The problem of generating tiled code for an iteration space can be
separated into two subproblems: traversing the Tile Space J° and
sweeping the internal points of every tile or, in our context, finding
lower and upper bounds for the » outermost indices 57, js , . . . , j=
and finding lower and upper bounds for the n innermost indices
G1, 45 -+, Jn. Ancourt and Irigoinin [1] dealt with these subprob-
lems constructing appropriate sets of inequalities for each case. In
order to traverse the Tile Space J° the first system is constructed,
which consists of the inequalities representing the original index
space and the inequalities representing atile. Recall from section 3
that apoint j € J" that belongsto atilewithtileorigin jo € TOS,
satisfies the set of inequalities: S(j — jo) < 3. Let us denote
j& € J° the coordinates of jo in the Tile Space J°. Clearly it
holds jo = Pj5. Consequently the preceding system of inequali-

.5
A >(J;)§§.Recallalsothata

tlesbecom&s:(gl —gH

point j € J" satisfiesthe system of inequalities Bj < b. Combin-
ing these systems we obtain the final system of inequalities:

0 B .5 -
—or o | (%)<() &
gl —gH J 8
In order to traverse the internal points of every tile, the above set of
inequalitiesis rewritten equivalently:

B b
gH i< | (9-DI+gis |, @
—9H 0—gjo

Ancourt and Irigoin propose the application of Fourier-Motzkin
elimination to the above systems in order to obtain proper formu-
lasfor the lower and upper bounds of the 2n-dimensional loop that
will traverse the tiled space.

6. OURMETHOD

We shall now introduce an aternative method to generate tiled
code. The concept of dividing the main problem into the sub-
problems of traversing the Tile Space J° and sweeping the internal
points of every tile, is preserved here as well. However, the point
of view is different, since in both subproblems certain transforma-
tions are applied before constructing the final sets of inequalities
and applying Fourier-Motzkin elimination to them. In this way, we
shall be able to reduce the inequalities involved in the derived sys-
tems and thus significantly decrease the steps of Fourier-Motzkin
elimination.

6.1 EnumeratingtheTiles

The subproblem of traversing the Tile Space J° has been faced
by many authors as an example of applying the non-unimodular
tiling transformation to the original iteration space. More specif-
ically, Ramanujam in [10] [11] applied the non-unimodular tiling
transformation to the set of inequalities Bj < b representing the
iteration space asfollows: Bj < b= BH 'Hj <b =

BPj5 <b €)

Here, again, the application of Fourier-Motzkin elimination to the
derived system of inequalitiesis proposed, in order to obtain closed
form formulasfor tilebounds 15, ..., 15 and uf, ..., u5.

Unfortunately the previous approach fails to enumerate tile origins
exactly. Note that the system of inequalities in (3) is satisfied by
points in the Tile Space J° whose inverse belong to J™. However,
as stated in section 3 and indicated in Figure 1 there exist some
points in TOS that do not belong to J™. Although these points
do not satisfy the preceding systems of inequalities, they must be
also traversed. Consequently, a modification is needed in order for
Fourier-Motzkin elimination to scan all tiles correctly. As we can
seein Figure 2, what is needed is a proper reduction of the lower
bounds and/or a proper increase of the upper bounds of our spacein
order to include dl tile origins. Lemma 1 determines how much we
should expand space bounds in order to include al points of TOS.

Lemma 1: If we apply tiling transformation P to an index space
J™ whose bounds are expressed by the system of inequalities Bj <
b then for all tileorigins jo € TOS it holds:

f,

| ﬂ/
Vi
by

/1’51

J_ 4
3

Figure 2: Expanding boundsto includeall tile origins

where ¥/ is a n-dimensional vector formed by the vector b so that
its i-th element is given in terms of the i-th element of b by the
equation

-1l v -

b =b + I > O Biipir) ®

9 4 j=1
where g isthe minimum integer number by which the tiling matrix
H should be multiplied in order to become integral.

Proof: Suppose that the point j € J” belongs to tile with origin jo. Then
4 can be expressed as the sum of jp and alinear combination of the column-
vectors of the tiling matrix P: j = jo + >_7_; A;p;. In addition, as
aforementioned, the following equality holds: 0 < gH(j— %) < (g — 1).
The i-th row of this inequality can be rewritten: 0 < h;(j — jo) < 5”%1|
where h: is the i-th row-vector of matrix H = P~!. Therefore: 0 <
Ry Y5, Ajpy < 54 AsP = H~itholdsthat hip; = 1 and hipj =
0if ¢ # j. Consequently the last form can be rewritten: 0 < A < %
fordli=1,...,n.

For each j € J, it holds Bj < b. The k-th row of this system can be
written as follows: Z?:1 Brjjj < by We can rewrite the last inequal-

ity in terms of the corresponding tile origin as follows: Z;’zl Br;(Joj +
Yim Aipji) < bk = 3T Brjdoj < bk — 27y Brj doiey Nibji

n n n
=) Brjdoj Sbk— Y X Y Brjpji (6)
j=1 i=1 j=1

In addition, as we proved above, it holds 0 < ; < gg;l,i =1,...,n.If
multiplied by Z?:1 Br;jpji thisinequality gives:

3 IF 27y Bjpji > 000 <N o7y Brypyi < 52 072y Bujpji

B) I 325y Brjpyi < 00 52 300 Bijpji < Ai 7y Brypji <0
Using the symbols a and a~ given in the Notation section of this pa-
per, the previous inequalities can in every case be rewritten as follows:

_gg;l(z?:lﬂkjpmi < i 2 Bkipii < gg;l(Ge1 Bripii)t
If addedfori =1,...,n thisinequality gives: —3 7%, X; >°7_; Brjpji
< 9;_1 >oie1 (71 Bripia) T

Therefore, from the last formula and the inequality (6), we conclude that
Y71 Brjdos < bi 4 55 0 (7 Brjpji)~ - Thus, for each tile

with origin jo which has at least one point in the initial iteration space, it
holdsthat Bjo < b, wherethevector b is constructed so asits kth element
isgiven by theform: b, = by, + 955 327 (7, Brypsi) - .

If we consider Tile Space J* then, since jo = Pj5, we equiva-
lently get the system of inequalities

BPj§ <V @

Thus we can adjust the system of inequalities in (3) making use of
Lemma 1 and replacing the vector b with &. Note however, that
this expansion of bounds may include some redundant tiles, whose
origins belong to the extended space but their internal pointsremain
outside the original iteration space. Thesetileswill be accessed but
their internal points will not be swept, asit will be shown next, thus
imposing little computation overhead in the execution of the tiled
code.

6.2 Sweeping the pointswithin atile

As far as the scanning of the internal points of atile is concerned,
we present a new approach based on the use of a non-unimodular
tranformation. Unlike the method presented in section 5, which
traverses the tile moving aong the directions of the orthocanonical
space, this technique scans the points moving along the sides of
thetiles. Our goal isto traverse the T'1.S and then slide the points
of T'IS properly so asto scan al points of J™. In order to achieve
this, wetransform the T'1.S to arectangular space, called the Trans-
formed Tile Iteration Space (T'T'1S). We traverse the TT IS with
an-dimensional nested loop and then transform the indices of the
loop so as to return to the proper points of the T'1.S. Our method
consists of three steps: determination of the transformation matrix,
code generation for traversing the TT'I S and adjustment in order
to access dl pointsof J™.

6.2.1 Determining the Transformation Matrix
We are searching for a transformation pair (P, H'): TTIS x,

T1S and TIS X5 TTIS (Fig. 3). Intuitively, we demand P’
to be parallel to tile sides, that is the column vectors of P’ should
be parallél to the column vectors of P. This is equivalent to the
row vectors of H' being parallel to the row vectors of H. In ad-
dition to this, we demand the lattice of H' (denoted as L(H"))
to be an integer space in order for loop indices to be able to tra-
verse it. Formally, we are searching for a n-dimensional transfor-
mation H' : H' = VH, where V isan x n diagonal matrix
and L(H') C Z™. The following Lemma proves that the second
requirement is satisfied if and only if H' isintegral.

Transformed Tile Iteration Space (TTIS)
i5
20|

Tile Iteration Space (TI1S)

10

~

e L] L] L] L] .
\
\ \
ISCRERY SERY SERY RURY SRR U 8
N \
\
.o L] L] L] . L I
.~ \
S0 e e o
RIS I Y
RS v

I
\ ~.
o e e -
\ ~e
e o 0 9 v

0 5 10 J‘l

0 5 0 iy

Figure 3: Traverse the T'1S with a non-unimodular transfor-
mation

Lemma2: If j/ = Aj,j € Z™ thenj' € Z™ iff A isintegral.

Proof: If A isintegra it is clear that / € Z™Vj € Z™. Suppose
that ;' € Z"Vj € Z™. We shal prove that A is integral. Without
lack of generality we select j = 4, where 4y, is the k-th unitary vec-

tor, ﬁ'k = (ukl,. . .,ukn)| Uk = l,ukj = 0,] # k. Then accord-
n n n

ing to the above Ady, = [Z A1iUkq, E A2 Ukgy e+ E am-u/ﬂ-]T =
i=1 i= i=1

[k, %, - - -, ang]T € Z™. Thisholdsfor al i,k =1...n,thus A is

integral. -

Let us construct V' in the following way: every diagonal element
vk iSthe smallest integer such that v by, isintegral, where hy, is
the k-th row of matrix H. Thus both requirementsfor H' are satis-
fied. Itisobviousthat H' isanon-unimodular transformation. This
means that the Transformed Tile Iteration Space contains holes. In
Figure 3, the holesin the TT IS are depicted by white dots, while
the actual points are depicted by black dots. So, in order to traverse
the T'IS, we have to scan al actual points of the 77'1S and then
transform them back using matrix P’.

6.2.2 TraversingtherTr1s

For the code generation we shall use the same notion as in [10],
[13], [8] and [4]. However, we shall avoid the application of the
Fourier-Motzkin elimination method to cal culate the bounds of the
TTIS by taking advantage of the tile shape regularity. Weusean-
dimensiona nested loop with iterations indexed by 7' (51, 75, - - - »
Jj») in order to traverse the actual points of the TTI1S. The up-
per bounds of the indices j;, are easily determined: it holds j;, <
ver — 1. However, the increment step c;, of an index 7, is not
necessarily 1. In addition to this, if index jj, isincremented by cy,
then all indices ji, 1, . .., j,, should also be augmented by certain
offset values a(t1yk, - - -, ank. Suppose that for a certain index
vector j', it holds P’'j" € Z™. The first question is how much
to increment the innermost index j;, so that the next swept point
is aso integral. Formally, we search the minimum ¢,, € Z such
that P' [ji jb Jn +Cn }T € Z™. After determining ¢y,
the next step is to calculate the increment step of index 7, _, so
that the next swept point is also integral. In thiscaseit is possible
that index j,, should also be augmented by an incremental offset
Ann—1) : 0 < ap(n_1) < ca. Inthegeneral case of index j;, we
need to determine c, a(k+1)k; - - - » ank SUch that:

P'[ji Je 4k i1 + Oy o+ ank |1 €
Z™. Thefollowing Lemma 3 proves that incremental steps ¢, and
incremental offsetsay;, (k= 1...nandl = 1...k — 1), are di-
rectly obtained from the Column Hermite Normal Form of matrix
H', denoted H'.

Lemma 3: If H' isthe column HNF of H' and j'(j;, j4, ..., %)
isthe index vector used to traverse the actual points of £(H'), then
the increment step (stride) for index jj, iscy = ﬁ’kk and the addi-
tional offsetsare aw; = W'y, (k=1...nandl=1...k — 1).

Proof: It holds £(H') = £(H') and§ € £(H'). In addition to this, the
columns of H' belong to £(H'). Suppose & € Z™ /0 with the following
properties: ; = 0fori < kand0 < @; < Ry fork < i < m. It
suffices to prove that £ ¢ L£(H'). Suppose that £ € L(H') which means
that 35 € Z™ : ﬁ’j = Z. H' isalower triangular non-negative matrix
and thusit holds: 21 = h/1151 = 0 = j1 = 0. Similarly j; = 0 for
i < k. In addition it holds: z; = E’kkjk. According to the above it
should hold 0 < @y = hljpji < h'ge = 0 < jj < 1. In addition
0 < k1 = W pgrnede + P ey de+1 < A (ge1)r- Since

E,(k+1)(lc+l) > ﬁ"(k+l)k = jk4+1 = 0. Similarly j; = 0fori > k+1.
Consequently either 7 = 0 which is a contradiction, or isthe k — th
column of H'. -

According to the above anadlysis, the point that will be traversed
using the next instantiation of indicesis calculated from the current
instantiation, since steps and incremental offsets are added to the
current indices.

cy=hy;=1

Elgure4: Stepsand initial offsetsin TT'1S derived from matrix
HI

Theorem 3: Thefollowing n-dimensional nested loop traversesall
pointsj' € TTIS
jh = —H']2][1];..., H'[n][1]; PHASE = 1;
FORj, =0TOwv11 — 1, STEP = ¢;, PHASE = 1,DO
FOR j!, = (j}, + H'[2][PHASE])%c2 TO vz — 1,
STEP = co, PHASE = 2,DO

FORj! = (j!, + H'[n][PHASE])%cn TOvpn — 1,
STEP = ¢,, DO

ENDFOR
ENDFOR
ENDFOR

Proof: It can be easily derived from Lemmas 2 and 3. -

6.2.3 Accessing the points of J»

We now need to adjust the above loop, which sweeps al points
in TTIS, in order to traverse the internal points of any tile in
J5. If j/ € TTIS isthe point that is derived from the indices
of the former loop (' = (51,...,4%)) and j° € J° isthetile
whose internal points j € J" we want to traverse, it will hold:
j = Pj° + P'j' = jo+ P'§', jo € TOS, where jo = Pj°
isthe tile origin, and P'j’ € TIS the corresponding to j' point
inT1S. Special attention needs to be given so that the points tra-
versed do not outreach the original space boundaries. Aswe have
mentioned before, apoint j € J" satisfies the following set of in-
equalities: Bj < b. Replacing j by the above equation we have:
B(jo+ P'j) <b=

BP'j' <b— Bjo (8)

By applying Fourier-Motzkin elimination to the preceding set of
inequalities, we obtain proper expressions for 5, so asto not cross
the original space boundaries. In this way, the problem of redun-
dant tiles that arised in the previous section is also faced, since no
computation is performed in these tiles.

7. COMPARISON

We shall now compare our method for generating tiled code with
the one presented by Irigoin and Ancourt in [1]. Let us primar-
ily consider the problem of enumerating the tile space. Comparing
the systems (1) and (7) we conclude that in our case, the Fourier-
Motzkin elimination algorithm [2], whose complexity isdoubly ex-
ponential [7], is supplied with a much smaller input. In order to
sweep the internal points of every tile, Ancourt and Irigoin propose
the application of Fourier-Motzkin elimination to the system de-
rived from expression (2). In our case, we can avoid any further
application of FM elimination by making the following observa-
tion; the first part of the systems of inequalities in (7) and (8) are
expressed by matrices BP and BP' respectively. The second one
can be derived from the first one by dividing each column &k by
the constant vxx. Thus we can apply FM elimination to both sys-
tems by executing the method only once. That is, if we apply FM
elimination to the matrix [BP|V’|BP'|b| B], taking care to adapt
the matrix BP to the desired form, the matrix BP' can be simul-
taneously adapted. Consequently, the procedure of generating tiled
code becomes much more efficient.

The cost of this acceleration is that system (7) is not as precise as
(1), it may result to some redundant tiles. However these are re-
stricted only at the edges of the initial tile space. If the tile space
is large enough, then we can safely assert that their number is neg-
ligible in respect to the total number of tiles that actually have to
be traversed. In any case, the method that sweeps iterations within
tiles, finds no iterations to be executed within these tiles. In addi-
tion our method results to fewer inequalities for the bounds of the
Tile Space and thus the computational cost avoided during run time
may compensate the overhead of enumerating redundant tiles.

In order to evaluate the proposed method, we ran several repre-

sentative examples for 2-dimentional and 3-dimentional iteration

spaces and counted the number of row-operations needed for Fourier
- Motzkin agorithm to be completed in both cases for the calcula-

tion of the bounds of the Tile Space. More specificaly, we ex-

amined 15 2-dimensional examples with both rectangular and non-

rectangular iteration spaces, rectangular and non-rectangular tiling

matrices and 10 3-dimensional examples. The table in Figure 5

indicates the average values of the experimental results.

| [| Ancourt - Irigoin | Our Method |

2-D 136, 737 58
3-D || 1,104,262, 263 303

Figure 5: Average Row-oper ations performed by Experiments

8. CONCLUSIONS- FUTURE WORK

In this paper, we proposed a novel approach for the problem of
generating code for tiled nested loops. Our method is applied to
general parallelepiped tiles and non-rectangular space boundaries
aswell. In order to generate code efficiently, we divided the prob-
lem in the subproblems of enumerating the tiles and sweeping the
points inside every tile. In the first case, we extended previous
work on non-unimodular tranformations in order to precisely tra-
verse al tile origins. In the second case, we proposed the use
of a non-unimodular transformation in order to transform the tile
iteration space into a hyper-rectangle. Fourier-Motzkin elimina-
tion is applied only once to a system of inequalities as large as
the systems that arise from any linear transformation. Experimen-
tal results show that our method outperforms previous work since

it constructs smaller systems of inequalities that can be simulta-
neously eliminated. Future work, involves the development of a
framework combining this work with the one presented in [5] for
pipelined scheduling of tilesto clusters.

9. REFERENCES
[1] C. Ancourt and F. Irigoin, ” Scanning Polyhedra with DO
Loops,” Proceedings of the Third ACM SGPLAN
Symposium on Principles & Practice of Parallel
Programming (PPoPP), pp. 39-50, April 1991.

[2] A.J.C.Bik and H.A.G. Wijshoff, ”Implementation of
Fourier-Motzkin Elimination,” Proceedings of the first
annual Conference of the ASCI, The Netherlands, pp
377-386, 1995.

[3] P.Boulet, A. Darte, T. Risset and Y. Robert, " (Pen)-ultimate
tiling?,” INTEGRATION, The VLS Jounal, volume 17, pp.
33-51, 1994. 2000.

[4] A.Fernandez, J. Llaberiaand M. Valero, "Loop
Transformation Using Nonunimodular Matrices,” |IEEE
Trans. on Parallel and Distributed Systems, vol.6, no.8, pp.
832840, Aug. 1995.

[5] G. Goumas, A. Sotiropoulos and N. Koziris, "Minimizing
Completion Time for Loop Tiling with Computation and
Communication Overlapping,” Int’'| Parallel and Distributed
Processing Symposium 2001 (IPDPS-2001), San Francisco,
Cadlifornia, April 2001.

[6] F. lIrigoinand R. Triolet, ” Supernode Partitioning,” Proc.
15th Ann. ACM SIGACT-S GPLAN Symp. Principles of
Programming Languages, pp. 319-329, San Diego,
Cdifornia, Jan 1988.

[7] M. Jimenez, "Multilevel Tiling for Non-Rectangular
Iteration Spaces,” PhD thesis, Universitat Politecnica de
Catalunia, Spain, 1999.

[8] W.LiandK. Pingai, A Singular Loop Transformation
Framework based on Non-singular Matrices,” Proceedings of
the Fifth Workshop on Languages and Compilers for Parallel
Computing, August 1992.

[9] J. Ramanujam and P. Sadayappan, " Tiling Multidimensional
Iteration Spaces for Multicomputers,” Journal of Parallel
and Distributed Computing, vol. 16, pp.108-120, 1992.

[10] J. Ramanujam, ”Non-Unimodular Transformations of Nested
Loops,” Proceedings of Supercomputing 92, (November 92),
pp. 214-223, 1992.

[11] J. Ramanujam, "Beyond Unimodular Transformations,”
Journal of Supercomputing, 9(4), pages 365-389, October
1995.

[12] J. Xue, "Communication-Minimal Tiling of Uniform
Dependence Loops,” Journal of Parallel and Distributed
Computing, vol. 42, no.1, pp. 42-59, 1997.

[13] J. Xue, " Automatic Non-Unimodular Loop Transformations
for Massive Parallelism,” Parallel Computing, 20(5) pp.
711-728, 1994.

[14] J. Xue, "On Tiling as aLoop Transformation,” Parallel
Processing Letters, vol.7, no.4, pp. 409-424, 1997.

