
Automatic Code Generation for Executing Tiled Nested
Loops onto Parallel Architectures

Georgios Goumas
National Technical University

of Athens
Computing Systems

Laboratory
Dept. of Electrical and
Computer Engineering

goumas@cslab.ntua.gr

Maria Athanasaki
National Technical University

of Athens
Computing Systems

Laboratory
Dept. of Electrical and
Computer Engineering

maria@cslab.ntua.gr

Nectarios Koziris
National Technical University

of Athens
Computing Systems

Laboratory
Dept. of Electrical and
Computer Engineering

nkoziris@cslab.ntua.gr

ABSTRACT
This paper presents a novel approach for the problem of generating
tiled code for nested for-loops using a tiling transformation. Tiling
or supernode transformation has been widely used to improve lo-
cality in multi-level memory hierarchies as well as to efficiently ex-
ecute loops onto non-uniform memory access architectures. How-
ever, automatic code generation for tiled loops can be a very com-
plex compiler work due to non-rectangular tile shapes and iteration
space bounds. Our method considerably enhances previous work
on rewriting tiled loops by considering parallelepiped tiles and arbi-
trary iteration space shapes. The complexity of code generation for
tiling transformation is now reduced to the complexity of code gen-
eration for any linear transformation. Experimental results which
compare all so far presented approaches, show that the proposed
approach for generating tiled code is significantly accelerated.

Keywords
Loop tiling, non-unimodular transformations, Fourier-Motzkin elim-
ination, code generation, Hermite Normal Forms.

1. INTRODUCTION
Tiling or supernode partitioning is a loop transformation that has
been widely used to improve locality in multi-level memory hierar-
chies as well as to efficiently execute loops onto distributed mem-
ory architectures. Supernode transformation groups neighboring
iterations together in order to form a large and independent com-
putational unit called tile or supernode. Supernode partitioning of
the iteration space was first proposed by Irigoin and Triolet in [6].
In their paper Ramanujam and Sadayappan [9] showed the equiva-
lence between the problem of finding a set of extreme vectors for a
given set of dependence vectors and the problem of finding a tiling
transformation � that produces valid, deadlock-free tiles. In order
to find optimal tile shapes, Boulet et al. in [3] and Xue in [12] and
[14] used a communication function that has to be minimized by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci®c
permission and/or a fee.

SAC 2002, Madrid, Spain
c�2002 ACM 1-58113-445-2/02/03...$5.00

linear programming approaches.

Although tiling as a loop transformation is extensively discussed,
only rectangular tiling is used in real applications. However, com-
munication criteria may suggest the use of non-rectangular tiles.
On the other hand, non-rectangular loop nests very commonly ap-
pear in numerical applications. This means that, in the general
case, we have to deal with non-rectangular shapes in tiles and it-
eration spaces. A method for manipulating non-rectangular tiles
and general convex spaces has been introduced by Ancourt and
Irigoin in [1], but the problem of calculating the exact transformed
loop bounds is formulated as a large system of linear inequalities.
The authors use the Fourier-Motzkin elimination method in order
to transform these inequalities into a form appropriate for the cal-
culation of the exact final loop bounds. However, due to the vast
complexity of the Fourier-Motzkin elimination, this method cannot
be practically applied for iteration spaces of more than � dimen-
sions.

In this paper, we present an efficient way to generate code for tiled
iteration spaces, considering both non-rectangular tiles and non-
rectangular iteration spaces. Our goal is to reduce the size of the
resulting systems of inequalities and to restrict the application of
Fourier-Motzkin elimination to as fewer times as possible. We di-
vide the main problem into the subproblems of enumerating the
tiles of the iteration space and sweeping the internal points of every
tile. For the first problem, we continue previous work concern-
ing code generation for non-unimodular linear transformations in
[10] and [11]. Tiling was used as an example to compute loop
bounds, but the method proposed fails to enumerate all tile origins
exactly. We adjust this method in order to access all tiles. As far as
sweeping the internal points of every tile is concerned, we propose
a novel method which uses the properties of non-unimodular trans-
formations. The method is based on the observation that tiles are
identical and that large computational complexity arises when non-
rectangular tiles are concerned. To face this fact, we first transform
the parallelepiped (non-rectangular) tile (Tile Iteration Space-���)
into a rectangular one (����), sweep the derived Transformed Tile
Iteration Space ���� and use the inverse transformation in order
to access the original points. The results are adjusted in order to
sweep the internal points of all tiles, taking into consideration the
original iteration space bounds as well. In both cases, the resulting
systems of inequalities are eliminated using Fourier-Motzkin (FM)
elimination, but as it will be shown, the second application can

easily be avoided. The complexity of our method is equal to the
methods proposed for code generation of linear loop transforma-
tions. Compared to the method presented by Irigoin and Ancourt
in [1], our method outperforms in terms of efficiency. Experimen-
tal results show that the procedure of generating tiled code is vastly
accelerated, since the derived systems of inequalities in our case
are smaller and can be simultaneously eliminated. In addition, the
generated code is much simpler containing less expressions and
avoiding unnecessary calculations imposed by boundary tiles.

The rest of the paper is organized as follows: Basic terminology
used throughout the paper is introduced in Section 2. We present
tiling or supernode transformation in Section 3. The problem of
code generation for tiling transformation is defined in Section 4.
Previous work on generating tiled code is presented in Section 5.
Our method for generating tiled code is presented in detail in sec-
tion 6. In section 7 we compare our method with the one presented
in [1] and present some experimental results. Finally, in Section 8
we summarize our results and propose future work.

2. ALGORITHMIC MODEL-NOTATION
In this paper we consider algorithms with perfectly nested FOR-
loops that is, our algorithms are of the form:
FOR �� � �� TO �� DO

FOR �� � �� TO �� DO
...
FOR �� � �� TO �� DO
������
...
������

ENDFOR
...

ENDFOR
ENDFOR

where: (1) � � ���� 			� ���, (2) �� and �� are rational-valued con-
stants, (3) �� and �� (
 � �			�) are of the form:
�� � �
���������� 	 	 	 � ������� 	 	 	 � �������� 	 	 	 � �������,
�� � ������������ 	 	 	 � ������� 	 	 	 � �������� 	 	 	 � �������,
where ��� and ��� are affine functions and (4) ���� 			� ��� are
assignment statements of the form �� � ����� 			� ���, where ��
is an output variable indexed by � and produced by expression �
operating on input variables ��� 			� ��, also indexed by �. Thus
we are not only dealing with rectangular iteration spaces, but also
with more general convex spaces, with the only assumption that
the iteration space is defined as the bisection of a finite number of
semi-spaces of the n-dimensional space ��.

Throughout this paper the following notation is used: � is the set
of naturals, � is the set of integers and � is the number of nested
FOR-loops of the algorithm. �� � �� is the set of indices, or
the iteration space of an algorithm: �� � ������ 			� ������ � � 	
��
 ��
 ��� �
 �
 ��. Each point in this �-dimensional
integer space is a distinct instantiation of the loop body. If � is a
matrix we denote
�� the matrix element in the �-th row and �-th
column. In addition we define the symbols
� and
� as follows:

� � �
��
� �� and
� � �
���
� ��.

3. SUPERNODE TRANSFORMATION
In a supernode transformation the index space �� is partitioned into
identical �-dimensional parallelepiped areas (tiles or supernodes)
formed by � independent families of parallel hyperplanes. Supern-
ode transformation is defined by the �-dimensional square matrix

� . Each row vector of � is perpendicular to one family of hyper-
planes forming the tiles. Dually, supernode transformation can be
defined by � linearly independent vectors, which are the sides of
the supernodes. Similar to matrix � , matrix � contains the side-
vectors of a supernode as column vectors. It holds � � ���.
Formally supernode transformation is defined as follows:

� � �� �
 �
��
� ���� �

[
����

� ��������

]
�

where ���� identifies the coordinates of the tile that iteration point
����� ��� 	 	 	 � ��� is mapped to and � �������� gives the coor-
dinates of � within that tile relative to the tile origin. Thus the
initial �-dimensional iteration space �� is transformed to a ��-
dimensional one, the space of tiles and the space of indices within
tiles. Apparently, supernode transformation is not a linear transfor-
mation. The following spaces are derived from a supernode trans-
formation � , when applied to an iteration space ��.

1. The Tile Iteration Space ������ � �� � ����
 ���� �
��, which contains all points that belong to the tile starting
at the axes origins.

2. The Tile Space ������ �� � ��� ��� � ����� � � ���,
which contains the images of all points � � �� according to
supernode transformation.

3. The Tile Origin Space ������ � ���� � �� � ���� �
����� � �� � ���, which contains the origins of tiles in the
original space.

According to the above it holds: ��
�
�
 �� and ��

�
�
 ���.

Note that all points of �� that belong to the same tile are mapped
to the same point of �� . This means that a point �� in this �-
dimensional integer space �� is a distinct tile with coordinates
���� � �

�
� � 	 	 	 � �

�
� �. Note also that ��� is not necessarily a sub-

set of ��, since there may exist tile origins which do not belong to
the original index space ��, but some iterations within these tiles
do belong to ��. The following example analyzes the properties of
each of the spaces defined above.

Example

Consider a supernode transformation defined by � �

[�
�

� �
�

� �
�

�
�

]

or equivalently by � �

[
� �
� �

]
applied to index space �� � �� �

�� � �� � � �� � ��. Then, as shown in Figure 1, ��� contains
points ���� ��� ��� ��� ��� ��� and �� is transformed by matrix � to Tile
Space �� � ����� ��� ���� ��� ���� ��� � � � � ������� ������� �������

�������. In the sequel, the Tile Space �� is transformed by matrix �

to �	� � ����� ��� ���� ��� ���� ��� � � � � �	� ��� ��� ��� ��� ���. The
points of �	� are shown in bold dots. �

The iteration space �� of an algorithm, as defined in section 2 can
also be represented by a system of linear inequalities. An inequality
of this system expresses a boundary surface of our iteration space.
Thus, �� can be equivalently defined as: �� � �� � �����

���. Matrix � and vector �� can be easily derived from the affine
functions ��� and ��� in section 2 and vice versa. Similarly, points
belonging to the same tile with tile origin �� � ��� satisfy the
system of inequalities �
 ��� � ��� � �. In order to deal with
integer inequalities, we define � to be the smallest integer such as
�� is an integer matrix. Thus we can rewrite the above system of

2
Index Space Jn

Tile
origin

Tile Space JS

j

j S

j2
S

1

j1

TIS

0 2 4 6

2

4

-2

-2

0 2

2

-2

-2 4

Figure 1: �� , ��� and ��� from Example 1

inequalities as follows: �
 ���� � ���
 �� � ��. We denote

� �

(
��
���

)
and �� �

(
�� � ����

��

)
. Equivalently the above

system becomes: ��� � ���
 ��.

4. CODE GENERATION
In the next two sections we elaborate on methods for generating
tiled code that will traverse an iteration space �� transformed ac-
cording to tiling transformation � . Applying this transformation
to ��, we obtain the Tile Space �� , ��� and ���. In section 3
it is shown that supernode (tiling) transformation is a �� �
 ���

transformation, which means that a point � � �� is transformed
into a tuple of �-dimensional points (�	� �
), where �	 identifies
the tile that the original point belongs to (�	 � ��) and �
 the co-
ordinates of the point relevant to the tile origin (�
 � ���). The
tiled code reorders the execution of indices imposed by the original
nested loop, resulting in a rearranged, transformed order described
by the following scheme: for every tile in the Tile Space �� , tra-
verse its internal points. According to the above, the tiled code
should consist of a ��-dimensional nested loop. The � outermost
loops traverse the Tile Space �� , using indices ��� � �

�
� � 	 	 	 � �

�
� , and

the � innermost loops traverse the points within the tile defined by
��� � �

�
� � 	 	 	 � �

�
� , using indices ���� �

�

�� 	 	 	 � �
�

�. We denote ��� , ��� the
lower and upper bounds of index ��� respectively. Similarly, we de-
note ���, ��� the lower and upper bounds of index ��� . In all cases,
lower bounds �� are of the form: �� � �
������� ����� 	 	 	� and
upper bounds � of the form: � � ��������� ����� 	 	 	�, where
���� , ���� are affine functions of the outermost indices. Code gener-
ation involves the calculation of steps (loop strides) and exact lower
and upper bounds for indices ��� and ���.

5. PREVIOUS WORK
The problem of generating tiled code for an iteration space can be
separated into two subproblems: traversing the Tile Space �� and
sweeping the internal points of every tile or, in our context, finding
lower and upper bounds for the � outermost indices ��� � �

�
� � 	 	 	 � �

�
�

and finding lower and upper bounds for the � innermost indices
���� �

�

�� 	 	 	 � �
�

�. Ancourt and Irigoin in [1] dealt with these subprob-
lems constructing appropriate sets of inequalities for each case. In
order to traverse the Tile Space �� the first system is constructed,
which consists of the inequalities representing the original index
space and the inequalities representing a tile. Recall from section 3
that a point � � �� that belongs to a tile with tile origin �� � ���,
satisfies the set of inequalities: ��� � ���
 ��. Let us denote
��� � �� the coordinates of �� in the Tile Space �� . Clearly it
holds �� � ���� . Consequently the preceding system of inequali-

ties becomes:

(
��� ��
�� ���

) (
���
�

)

 ��. Recall also that a

point � � �� satisfies the system of inequalities ��
 ��. Combin-
ing these systems we obtain the final system of inequalities:

 � �

��� ��
�� ���


 (

���
�

)

(
��
��

)
(1)

In order to traverse the internal points of every tile, the above set of
inequalities is rewritten equivalently:

 �
��

���


 �


 ��

�� � ���� � ����
��� ����


 � (2)

Ancourt and Irigoin propose the application of Fourier-Motzkin
elimination to the above systems in order to obtain proper formu-
las for the lower and upper bounds of the ��-dimensional loop that
will traverse the tiled space.

6. OUR METHOD
We shall now introduce an alternative method to generate tiled
code. The concept of dividing the main problem into the sub-
problems of traversing the Tile Space �� and sweeping the internal
points of every tile, is preserved here as well. However, the point
of view is different, since in both subproblems certain transforma-
tions are applied before constructing the final sets of inequalities
and applying Fourier-Motzkin elimination to them. In this way, we
shall be able to reduce the inequalities involved in the derived sys-
tems and thus significantly decrease the steps of Fourier-Motzkin
elimination.

6.1 Enumerating the Tiles
The subproblem of traversing the Tile Space �� has been faced
by many authors as an example of applying the non-unimodular
tiling transformation to the original iteration space. More specif-
ically, Ramanujam in [10] [11] applied the non-unimodular tiling
transformation to the set of inequalities ��
 �� representing the
iteration space as follows: ��
 ��� ������
 ���

���
�
�
 �� (3)

Here, again, the application of Fourier-Motzkin elimination to the
derived system of inequalities is proposed, in order to obtain closed
form formulas for tile bounds ��� � 	 	 	 � �

�
� and ��� � 	 	 	 � �

�
� .

Unfortunately the previous approach fails to enumerate tile origins
exactly. Note that the system of inequalities in (3) is satisfied by
points in the Tile Space �� whose inverse belong to ��. However,
as stated in section 3 and indicated in Figure 1 there exist some
points in ��� that do not belong to ��. Although these points
do not satisfy the preceding systems of inequalities, they must be
also traversed. Consequently, a modification is needed in order for
Fourier-Motzkin elimination to scan all tiles correctly. As we can
see in Figure 2, what is needed is a proper reduction of the lower
bounds and/or a proper increase of the upper bounds of our space in
order to include all tile origins. Lemma 1 determines how much we
should expand space bounds in order to include all points of ���.

Lemma 1: If we apply tiling transformation � to an index space
�� whose bounds are expressed by the system of inequalities��

�� then for all tile origins �� � ��� it holds:

���
 ���� (4)

Figure 2: Expanding bounds to include all tile origins

where ��� is a �-dimensional vector formed by the vector�� so that
its �-th element is given in terms of the �-th element of �� by the
equation

��� � �� �
� � �

�

�∑
���

�
�∑

���

!��"���
� (5)

where � is the minimum integer number by which the tiling matrix
� should be multiplied in order to become integral.

Proof: Suppose that the point � � �� belongs to tile with origin ��. Then
� can be expressed as the sum of �� and a linear combination of the column-
vectors of the tiling matrix � : � � ��

∑�
���
� ��� . In addition, as

aforementioned, the following equality holds: � �
������� � �
 � ��.
The �-th row of this inequality can be rewritten: � � ����� � ��� �

���
�

,

where ��� is the �-th row-vector of matrix � � ���. Therefore: � �
���

∑�
���
� ��� �

���
�

. As � � ��� it holds that ��� ��� � � and ��� ��� �

� if � �� �. Consequently the last form can be rewritten: � �
� �
���
�

for all � � �� � � � � �.

For each � � ��, it holds �� � ��. The �-th row of this system can be
written as follows:

∑�
��� ����� � �� We can rewrite the last inequal-

ity in terms of the corresponding tile origin as follows:
∑�

��� �������
∑�
���
����� � �� �

∑�
��� ������ � �� �

∑�
��� ���

∑�
���
����

�
�∑

���

������ � �� �
�∑
���

�

�∑
���

������ (6)

In addition, as we proved above, it holds � �
� �
���
�

, � � �� � � � � �. If

multiplied by
∑�

��� ������ this inequality gives:

a) If
∑�

��� ������ � �: � �
�
∑�

��� ������ �
���
�

∑�
��� ������

b) If
∑�

��� ������ � �: ���
�

∑�
��� ������ �
�

∑�
��� ������ � �

Using the symbols �� and �� given in the Notation section of this pa-
per, the previous inequalities can in every case be rewritten as follows:
� ���

�
�
∑�

��� �������
� �
�

∑�
��� ������ �

���
�

�
∑�

��� �������
�

If added for � � �� � � � � � this inequality gives: �
∑�

���
�
∑�

��� ������

� ���
�

∑�
����

∑�
��� �������

� .

Therefore, from the last formula and the inequality (6), we conclude that∑�
��� ������ � ��
 ���

�

∑�
����

∑�
��� �������

� . Thus, for each tile

with origin �� which has at least one point in the initial iteration space, it
holds that ��� � ���, where the vector ��� is constructed so as its �th element
is given by the form: ��

�
� ��
 ���

�

∑�
����

∑�
��� �������

� . �

If we consider Tile Space �� then, since �� � ���� , we equiva-
lently get the system of inequalities

���
�
�
 ��� (7)

Thus we can adjust the system of inequalities in (3) making use of
Lemma 1 and replacing the vector �� with ���. Note however, that
this expansion of bounds may include some redundant tiles, whose
origins belong to the extended space but their internal points remain
outside the original iteration space. These tiles will be accessed but
their internal points will not be swept, as it will be shown next, thus
imposing little computation overhead in the execution of the tiled
code.

6.2 Sweeping the points within a tile
As far as the scanning of the internal points of a tile is concerned,
we present a new approach based on the use of a non-unimodular
tranformation. Unlike the method presented in section 5, which
traverses the tile moving along the directions of the orthocanonical
space, this technique scans the points moving along the sides of
the tiles. Our goal is to traverse the ��� and then slide the points
of ��� properly so as to scan all points of ��. In order to achieve
this, we transform the ��� to a rectangular space, called the Trans-
formed Tile Iteration Space (����). We traverse the ���� with
a �-dimensional nested loop and then transform the indices of the
loop so as to return to the proper points of the ���. Our method
consists of three steps: determination of the transformation matrix,
code generation for traversing the ���� and adjustment in order
to access all points of ��.

6.2.1 Determining the Transformation Matrix

We are searching for a transformation pair (� �, � �): ����
� �

�

��� and ���
��

�
 ���� (Fig. 3). Intuitively, we demand � �

to be parallel to tile sides, that is the column vectors of � � should
be parallel to the column vectors of � . This is equivalent to the
row vectors of �� being parallel to the row vectors of � . In ad-
dition to this, we demand the lattice of �� (denoted as �����)
to be an integer space in order for loop indices to be able to tra-
verse it. Formally, we are searching for a �-dimensional transfor-
mation � � � � � � � � , where � is a � � � diagonal matrix
and ����� � ��. The following Lemma proves that the second
requirement is satisfied if and only if �� is integral.

P’

H’

1

2

Transformed Tile Iteration Space (TTIS) Tile Iteration Space (TIS)

2

1

j

j

j’

j’0 5 10

5

10

15

20

0 5 10

5

10

Figure 3: Traverse the ��� with a non-unimodular transfor-
mation

Lemma 2: If �� � ��� � � �� then �� � �� iff A is integral.

Proof: If A is integral it is clear that �� � ���� � ��. Suppose
that �� � ���� � ��. We shall prove that � is integral. Without
lack of generality we select � � ��� , where ��� is the �-th unitary vec-
tor, ��� � ����� � � � � ����, ��� � �� ��� � �� � �� �. Then accord-

ing to the above ���� � �
�∑
���

�������
�∑
���

������� � � � �
�∑
���

������

 �

���� � ��� � � � � � ���

 � ��. This holds for all ���� � � � � � � �, thus � is

integral. �

Let us construct � in the following way: every diagonal element
#�� is the smallest integer such that #��$� is integral, where $� is
the
-th row of matrix� . Thus both requirements for �� are satis-
fied. It is obvious that�� is a non-unimodular transformation. This
means that the Transformed Tile Iteration Space contains holes. In
Figure 3, the holes in the ���� are depicted by white dots, while
the actual points are depicted by black dots. So, in order to traverse
the ���, we have to scan all actual points of the ���� and then
transform them back using matrix � �.

6.2.2 Traversing the ����
For the code generation we shall use the same notion as in [10],
[13], [8] and [4]. However, we shall avoid the application of the
Fourier-Motzkin elimination method to calculate the bounds of the
���� by taking advantage of the tile shape regularity. We use a �-
dimensional nested loop with iterations indexed by ������� �

�

�� 	 	 	 �
���� in order to traverse the actual points of the ����. The up-
per bounds of the indices ��� are easily determined: it holds ���

#�� � �. However, the increment step %� of an index ��� is not
necessarily 1. In addition to this, if index ��� is incremented by %�,
then all indices ������ 	 	 	 � �

�

� should also be augmented by certain
offset values
������� 	 	 	 �
��. Suppose that for a certain index
vector ��, it holds � ��� � ��. The first question is how much
to increment the innermost index ��� so that the next swept point
is also integral. Formally, we search the minimum %� � � such
that � �

[
��� ��� 	 	 	 ��� � %�

]

� ��. After determining %�,

the next step is to calculate the increment step of index ����� so
that the next swept point is also integral. In this case it is possible
that index ��� should also be augmented by an incremental offset

������ � �

������ � %�. In the general case of index ��� we
need to determine %��
������� 	 	 	 �
�� such that:

� �
[
��� 	 	 	 ��� � %� ����� �
������ 	 	 	 ��� �
��

]

�

��. The following Lemma 3 proves that incremental steps %� and
incremental offsets
��, (
 � � 	 	 	 � and � � � 	 	 	
 � �), are di-
rectly obtained from the Column Hermite Normal Form of matrix
� �, denoted �̃ �.

Lemma 3: If �̃ � is the column HNF of �� and ������� �
�

�� 	 	 	 � �
�

��
is the index vector used to traverse the actual points of �����, then
the increment step (stride) for index ��� is %� � $̃��� and the addi-
tional offsets are
�� � $̃���, (
 � � 	 	 	 � and � � � 	 	 	
 � �).

Proof: It holds 	���� � 	��̃�� and �� � 	����. In addition to this, the
columns of �̃� belong to 	����. Suppose �� � ����� with the following
properties: �� � � for � � � and � � �� � �̃��� for � � � � �. It
suffices to prove that �� �� 	����. Suppose that �� � 	���� which means
that
� � �� � �̃�� � ��. �̃� is a lower triangular non-negative matrix
and thus it holds: �� � �̃����� � � � �� � �. Similarly �� � � for
� � �. In addition it holds: �� � �̃����� . According to the above it
should hold � � �� � �̃����� � �̃��� � � � �� � �. In addition
� � ���� � �̃���������
 �̃��������������� � �̃������� . Since

�̃����������� � �̃������� � ���� � �. Similarly �� � � for � � �
�.

Consequently either �� � �� which is a contradiction, or �� is the � � ��

column of �̃�. �

According to the above analysis, the point that will be traversed
using the next instantiation of indices is calculated from the current
instantiation, since steps and incremental offsets are added to the
current indices.

~
2 22

21 21

2

1 11
~

a = h’ = 2
~

c =h’ =5

c =h’ =1

j

j1

Figure 4: Steps and initial offsets in ���� derived from matrix
�̃ �

Theorem 3: The following �-dimensional nested loop traverses all
points �� � ����

��� � ��̃���
��
� � � � � �̃���
��
������ � ��

FOR ��� � � TO ��� � �, ���� � �, ����� � �, DO

FOR ��� � ����
 �̃���
������
�� � TO ��� � �,
���� � �, ����� � �, DO

� � �

FOR ��� � ����
 �̃���
������
�� � TO ��� � �,
���� � �, DO

� � �

ENDFOR
� � �

ENDFOR
ENDFOR

Proof: It can be easily derived from Lemmas 2 and 3. �

6.2.3 Accessing the points of � �

We now need to adjust the above loop, which sweeps all points
in ����, in order to traverse the internal points of any tile in
�� . If �� � ���� is the point that is derived from the indices
of the former loop (�� � ����� 	 	 	 � �

�

�)) and �� � �� is the tile
whose internal points � � �� we want to traverse, it will hold:
� � ��� � � ��� � �� � � ���, �� � ���, where �� � ���

is the tile origin, and � ��� � ��� the corresponding to �� point
in ���. Special attention needs to be given so that the points tra-
versed do not outreach the original space boundaries. As we have
mentioned before, a point � � �� satisfies the following set of in-
equalities: ��
 ��. Replacing � by the above equation we have:
���� � � ����
 ���

��
�

�
�
 ������ (8)

By applying Fourier-Motzkin elimination to the preceding set of
inequalities, we obtain proper expressions for ��, so as to not cross
the original space boundaries. In this way, the problem of redun-
dant tiles that arised in the previous section is also faced, since no
computation is performed in these tiles.

7. COMPARISON
We shall now compare our method for generating tiled code with
the one presented by Irigoin and Ancourt in [1]. Let us primar-
ily consider the problem of enumerating the tile space. Comparing
the systems (1) and (7) we conclude that in our case, the Fourier-
Motzkin elimination algorithm [2], whose complexity is doubly ex-
ponential [7], is supplied with a much smaller input. In order to
sweep the internal points of every tile, Ancourt and Irigoin propose
the application of Fourier-Motzkin elimination to the system de-
rived from expression (2). In our case, we can avoid any further
application of FM elimination by making the following observa-
tion: the first part of the systems of inequalities in (7) and (8) are
expressed by matrices �� and �� � respectively. The second one
can be derived from the first one by dividing each column
 by
the constant #�� . Thus we can apply FM elimination to both sys-
tems by executing the method only once. That is, if we apply FM
elimination to the matrix 	�� ������� ������
, taking care to adapt
the matrix �� to the desired form, the matrix �� � can be simul-
taneously adapted. Consequently, the procedure of generating tiled
code becomes much more efficient.

The cost of this acceleration is that system (7) is not as precise as
(1), it may result to some redundant tiles. However these are re-
stricted only at the edges of the initial tile space. If the tile space
is large enough, then we can safely assert that their number is neg-
ligible in respect to the total number of tiles that actually have to
be traversed. In any case, the method that sweeps iterations within
tiles, finds no iterations to be executed within these tiles. In addi-
tion our method results to fewer inequalities for the bounds of the
Tile Space and thus the computational cost avoided during run time
may compensate the overhead of enumerating redundant tiles.

In order to evaluate the proposed method, we ran several repre-
sentative examples for �-dimentional and �-dimentional iteration
spaces and counted the number of row-operations needed for Fourier
- Motzkin algorithm to be completed in both cases for the calcula-
tion of the bounds of the Tile Space. More specifically, we ex-
amined �� �-dimensional examples with both rectangular and non-
rectangular iteration spaces, rectangular and non-rectangular tiling
matrices and �� �-dimensional examples. The table in Figure 5
indicates the average values of the experimental results.

Ancourt - Irigoin Our Method

�-D ����
�
 ��
�-D �� ���� ���� ��� ���

Figure 5: Average Row-operations performed by Experiments

8. CONCLUSIONS - FUTURE WORK
In this paper, we proposed a novel approach for the problem of
generating code for tiled nested loops. Our method is applied to
general parallelepiped tiles and non-rectangular space boundaries
as well. In order to generate code efficiently, we divided the prob-
lem in the subproblems of enumerating the tiles and sweeping the
points inside every tile. In the first case, we extended previous
work on non-unimodular tranformations in order to precisely tra-
verse all tile origins. In the second case, we proposed the use
of a non-unimodular transformation in order to transform the tile
iteration space into a hyper-rectangle. Fourier-Motzkin elimina-
tion is applied only once to a system of inequalities as large as
the systems that arise from any linear transformation. Experimen-
tal results show that our method outperforms previous work since

it constructs smaller systems of inequalities that can be simulta-
neously eliminated. Future work, involves the development of a
framework combining this work with the one presented in [5] for
pipelined scheduling of tiles to clusters.

9. REFERENCES
[1] C. Ancourt and F. Irigoin, ”Scanning Polyhedra with DO

Loops,” Proceedings of the Third ACM SIGPLAN
Symposium on Principles & Practice of Parallel
Programming (PPoPP), pp. 39–50, April 1991.

[2] A.J.C. Bik and H.A.G. Wijshoff, ”Implementation of
Fourier-Motzkin Elimination,” Proceedings of the first
annual Conference of the ASCI, The Netherlands, pp
377–386, 1995.

[3] P. Boulet, A. Darte, T. Risset and Y. Robert, ”(Pen)-ultimate
tiling?,” INTEGRATION, The VLSI Jounal, volume 17, pp.
33–51, 1994. 2000.

[4] A. Fernandez, J. Llaberia and M. Valero, ”Loop
Transformation Using Nonunimodular Matrices,” IEEE
Trans. on Parallel and Distributed Systems, vol.6, no.8, pp.
832–840, Aug. 1995.

[5] G. Goumas, A. Sotiropoulos and N. Koziris, ”Minimizing
Completion Time for Loop Tiling with Computation and
Communication Overlapping,” Int’l Parallel and Distributed
Processing Symposium 2001 (IPDPS-2001), San Francisco,
California, April 2001.

[6] F. Irigoin and R. Triolet, ”Supernode Partitioning,” Proc.
15th Ann. ACM SIGACT-SIGPLAN Symp. Principles of
Programming Languages, pp. 319–329, San Diego,
California, Jan 1988.

[7] M. Jimenez, ”Multilevel Tiling for Non-Rectangular
Iteration Spaces,” PhD thesis, Universitat Politecnica de
Catalunia, Spain, 1999.

[8] W. Li and K. Pingali, ”A Singular Loop Transformation
Framework based on Non-singular Matrices,” Proceedings of
the Fifth Workshop on Languages and Compilers for Parallel
Computing, August 1992.

[9] J. Ramanujam and P. Sadayappan, ”Tiling Multidimensional
Iteration Spaces for Multicomputers,” Journal of Parallel
and Distributed Computing, vol. 16, pp.108–120, 1992.

[10] J. Ramanujam, ”Non-Unimodular Transformations of Nested
Loops,” Proceedings of Supercomputing 92, (November 92),
pp. 214–223, 1992.

[11] J. Ramanujam, ”Beyond Unimodular Transformations,”
Journal of Supercomputing, 9(4), pages 365–389, October
1995.

[12] J. Xue, ”Communication-Minimal Tiling of Uniform
Dependence Loops,” Journal of Parallel and Distributed
Computing, vol. 42, no.1, pp. 42–59, 1997.

[13] J. Xue, ”Automatic Non-Unimodular Loop Transformations
for Massive Parallelism,” Parallel Computing, 20(5) pp.
711-728, 1994.

[14] J. Xue, ”On Tiling as a Loop Transformation,” Parallel
Processing Letters, vol.7, no.4, pp. 409–424, 1997.

