
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 18, 667-691 (2002)

667

Code Generation Methods for Tiling Transformations

GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS

Computing Systems Laboratory
Department of Electrical and Computer Engineering

National Technical University of Athens

Zografou Campus, Zografou 15773, Athens, Greece
E-mail: {goumas, mathan, nkoziris}@cslab.ece.ntua.gr

Tiling or supernode transformation has been widely used to improve locality in
multi-level memory hierarchies, as well as to efficiently execute loops on parallel archi-
tectures. However, automatic code generation for tiled loops can be a very complex
compiler work due to non-rectangular tile shapes and arbitrary iteration space bounds. In
this paper, we first survey code generation methods for nested loops which are trans-
formed using non-unimodular transformations. All methods are based on Fou-
rier-Motzkin (FM) elimination. Next, we consider and enhance previous work on re-
writing tiled loops by considering parallelepiped tiles and arbitrary iteration space shapes.
In order to generate tiled code, all methods first enumerate the tiles containing points
within the iteration space, and second, sweep the points within each tile. For the first, we
extend previous work in order to access all tile origins correctly, while for the latter, we
propose the transformation of the initial parallelepiped tile iteration space into a rectan-
gular one, so as to generate code efficiently with the aid of a non-unimodular transfor-
mation matrix and its Hermite Normal Form (HNF). The resulting systems of inequali-
ties are much simpler than those in bibliography; thus their solutions are determined
more efficiently using the FM elimination. Experimental results which compare all pre-
sented approaches, show that the proposed method for generating tiled code is signifi-
cantly faster, and thus rewriting any n-D tiled loop in a much more efficient and direct
way.

Keywords: loop tiling, supernodes, non-unimodular transformations, Fourier-Motzkin
elimination, code generation

1. INTRODUCTION

Linear loop transformations such as reversal, interchanging, skewing, wavefront
transformation etc. are extensively used to efficiently execute nested loops by restructur-
ing the loop execution order. Such transformations can be represented by non-singular
matrices, either unimodular, or non-unimodular. When unimodular transformations are
concerned, code generation is simply restricted to the calculation of the lower and upper
bounds of the transformed loop. When dealing with non-unimodular transformations,
further attention needs to be paid, in order to skip the holes that are created in the trans-
formed iteration space. In this case, the overall complexity is aggravated by the calcula-
tion of the exact integer lower and upper bounds, as well as by the calculation of the
steps of the new loop variables. Researchers have solved the problem of code generation

Received September 3, 2001; accepted April 15, 2002.
Communicated by Jang-Ping Sheu, Makoto Takizawa and Myongsoon Park.



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS668

for linear loop transformations using the Fourier-Motzkin (FM) elimination method and
the properties of the Hermite Normal Form (HNF) of the transformation matrix. Ra-
manujam [1, 2] used the HNF of the transformation matrix T and Hessenberg matrices in
order to correct the bounds that result from the application of Fourier-Motzkin to the
transformed iteration space. The use of the HNF of T is also proposed by Xue [3] and
Fernandez et al. [4]. Li and Pingali [5] follow a slightly different approach which is
based on the decomposition of transformation matrix T to the product of its HNFT

~
and a

unimodular matrix U. U transforms the original iteration space into an auxiliary iteration
space, whose bounds are calculated using Fourier-Motzkin. In the sequel, the bounds of
the target iteration space are easily obtained from the bounds of the auxiliary iteration
space. The strides of the loop variables in all previous works are obtained from the ele-
ments in the diagonal of the HNF of the transformation matrix. Note that all code genera-
tion methods use the Fourier-Motzkin elimination method which is extremely complex,
as it depends doubly exponentially on the number of nested loops. Fortunately, loop
depth is kept small for practical problems, making code generation for linear loop
transformations feasible.

Tiling or supernode partitioning is another loop transformation that has been widely
used to improve locality in multi-level memory hierarchies, as well as to efficiently exe-
cute loops on distributed memory architectures. Supernode transformation groups
neighboring iterations together, in order to form a large and independent computational
unit, called a tile or supernode. Supernode partitioning of the iteration space was first
proposed by Irigoin and Triolet in [6]. They introduced the initial model of loop tiling
and gave conditions for a tiling transformation to be valid. Tiles are required to be atomic,
identical, bounded and their union spans the initial iteration space. In their paper ([7]),
Ramanujam and Sadayappan showed the equivalence between the problem of finding a
set of extreme vectors for a given set of dependence vectors and the problem of finding a
tiling transformation H that produces valid, deadlock-free tiles. Since the tiling planes hi

are defined by a set of extreme vectors, they gave a linear programming formulation for
the problem of finding optimal shape tiles (thus determining optimal H) that reduces
communication. Boulet et al. in [8] and Xue in [9] and [10] used a communication func-
tion that has to be minimized by linear programming approaches.

When executing nested loops on parallel architectures, the key issue in loop parti-
tioning to different processors, is to mitigate communication overhead by efficiently
controlling the computation to communication ratio. In distributed memory machines,
explicit message passing incurs extra time overhead due to message startup latencies and
data transfer delays. In order to eliminate the communication overhead, Shang [11], Hol-
lander [12] and others, have presented methods for dividing the index space into inde-
pendent sets of iterations, which are assigned to different processors. If the rank of the
dependence vector matrix is nd < n, the n-dimensional loop can always be transformed to
have, at maximum, n − nd outermost FOR-ALL loops [13]. However, in many cases,
independent partitioning of the index space is not feasible, thus data exchanges between
processors impose additional communication delays. When fine grain parallelism is
needed/involved, several methods were proposed to group neighboring chains of itera-
tions [14, 15], while preserving the optimal hyperplane schedule [16-18].

When tiling for exploiting parallelism, neighboring iteration points are grouped to-
gether to build a larger computation node, which is executed by a processor. Tiles have



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 669

much larger granularity than single iterations, thus reducing synchronization points and
alleviating overall communication overhead. Data exchanges are grouped and performed
within a single message for each neighboring processor at the end of each atomic super-
node execution. Hodzic and Shang [19] proposed a method to correlate optimal tile size
and shape based on overall completion time reduction. They applied the hyperplane
transformation to loop tiles and generated a schedule where the objective is to reduce the
overall time by adjusting the tile size and shape appropriately. Their approach considers
a schedule where each processor executes all tiles along a specific dimension by inter-
leaving computation and communication phases. All processors first receive data, then
compute and finally send resulting data to neighbors in distinct phases, according to the
hyperplane scheduling vector. In [20] the overall execution time for tiled nested loops
was further minimized through communication and computation overlapping. The over-
all schedule resembles a pipelined datapath where computations are no longer interleaved
with send and receives to non-local processors, but partly overlapped using a modified
hyperplane time schedule. Tile size and shape are thus determined so as to reduce overall
completion time under this new time scheduling scheme.

Although tiling as a loop transformation is discussed extensively, only rectangular
tiling is used in real applications. However, rectangular tiling is not always legal or, as
we mentioned above, communication criteria may suggest the use of non-rectangular
tiles. Hodzic and Shang in [21] have shown that non-rectangular tile shapes can also lead
to smaller total execution times due to more efficient scheduling schemes. On the other
hand, non-rectangular loop nests are very common in numerical applications. In addition,
a non-rectangular iteration space may arise when a loop transformation such as skewing
is applied to an original rectangular iteration space. This means that, in the general case,
we have to deal with non-rectangular shapes in tiles and iteration spaces, where code
generation is far from being straightforward and efficient. This is because tiling is not a
linear loop transformation, which means that previous work on code generation for linear
transformations cannot be directly applied to tiling. Loop rewriting in the case of tiling
involves the application of the tiling transformation H, being found by the above optimal
loop tiling methods, to produce an equivalent nested loop with 2n depth. The innermost
n-D nests represent iterations within a tile and are sequentially executed, whereas the
outermost n-D nests are for-across loops executed in parallel by different processors un-
der a time synchronization and space scheduling scheme. The objective here is to gener-
ate the outermost n-D loop nests that scan all tiles and the innermost n-D loop nests that
scan all points within a tile by calculating the correct index strides and loop bounds in the
transformed tile space. Thus, due to the special characteristics of tiling described above,
Fourier-Motzkin elimination has to be applied in larger systems of inequalities compared
to those formed by usual linear transformations, making methods so far presented im-
practical for problems that are more complex, as in the case of non-rectangular tiles and
non-rectangular spaces.

Tang and Xue [22] have presented a method for generating SPMD code for tiled it-
eration spaces. They addressed issues such as computation and data distribution and
message passing code generation. Although this is a complete approach resulting in a
very straightforward loop code, it is limited to only rectangular tiles. Another approach
for generating code for tiled iteration spaces was introduced by Ancourt and Irigoin in
[23]. In this paper, non-rectangular tiles and iteration spaces are considered as well.



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS670

However, due to the fact that tiles have parallelepiped boundary surfaces, the problem of
calculating the exact transformed loop bounds is formulated as a large system of linear
inequalities. These inequalities are formed first to calculate the exact bounds for every
tile execution and, second, to find all iterations inside each tile. The authors use Fou-
rier-Motzkin elimination to solve the problem, but the size of the formed systems of ine-
qualities makes Fourier-Motzkin elimination very time-consuming for loop nests with
depth greater than two or three. Note that although sophisticated implementations of
Fourier-Motkzin have been presented (e.g. see [24]), the method remains an extremely
complex one leading to impractical compilation times in Ancourt and Irigoin's approach.

In this paper, we present an efficient way to generate code for tiled iteration spaces,
considering both non-rectangular tiles and non-rectangular iteration spaces. Our goal is
to reduce the size of the resulting systems of inequalities and to restrict the application of
Fourier-Motzkin elimination to as few times as possible. We divide the main problem
into the subproblems of enumerating the tiles of the iteration space and sweeping the
internal points of every tile. For the first problem, we continue previous work concerning
code generation for non-unimodular linear transformations in [1] and [2]. Tiling was
used as an example to compute loop bounds, but the method proposed fails to enumerate
all tile origins exactly. We adjust this method in order to access all tiles. As far as
sweeping the internal points of every tile is concerned, we propose a novel method which
uses the properties of non-unimodular transformations. The method is based on the ob-
servation that tiles are identical and that large computational complexity arises when
non-rectangular tiles are involved. To handle this fact, we first transform the parallelepi-
ped (non-rectangular) tile (Tile Iteration Space-TIS) into a rectangular one (Transformed
Tile Iteration Space-TTIS), sweep the derived TTIS and use the inverse transformation in
order to access the original points. The results are adjusted in order to sweep the internal
points of all tiles, taking also into consideration the original iteration space bounds. In
both cases, the resulting systems of inequalities are eliminated using Fourier-Motzkin
elimination but, as it will be shown, the second application can be easily avoided. The
complexity of our method is the same as the methods proposed for code generation of
linear loop transformations. Compared to the method presented by Irigoin and Ancourt
[23], our method outperforms in terms of efficiency. Experimental results show that the
procedure for generating tiled code is vastly faster, since the derived systems of inequali-
ties, in our case, are smaller and can be simultaneously eliminated. In addition, the gen-
erated code is much simpler, containing fewer expressions and avoiding unnecessary
calculations imposed by boundary tiles.

The rest of the paper is organized as follows: Basic terminology used throughout the
paper and definitions from linear algebra are introduced in section 2. We present tiling or
supernode transformation in section 3. The problem of generating code for tiled iteration
spaces is defined in section 4. Section 5 reviews previous work and proposes a new
method for the problem of enumerating tile origins. Section 6 reviews previous work and
proposes a new method for the problem of scanning the internal points of every tile. In
section 7 we compare our method with the one presented in [23] and present some ex-
perimental results. Finally, in section 8 we summarize our results.



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 671

2. PRELIMINARIES

2.1 The Model of the Algorithms

In this paper we consider algorithms with perfectly nested FOR-loops, i.e., that is,
our algorithms are of the form:

FOR j1 = l1 TO u1 DO
FOR j2 = l2 TO u2 DO

...
FOR jn = ln TO un DO

Loop Body
ENDFOR
...

ENDFOR
ENDFOR

where: (1) j = (j1, ..., jn), (2) l1 and u1 are rational-valued parameters and (3) lk and uk (k =
2 ... n) are of the form: lk = max(fk1(j1, …, jk-1), …, fkr(j1, …, jk-1)) and uk = min
(gk1(j1, …, jk-1), …, gkr(j1, …, jk-1)), where fki and gki are affine functions. Therefore,
we are not only dealing with rectangular iteration spaces, but also with more general pa-
rameterized convex spaces, with the only assumption that the iteration space is defined as
the bisection of a finite number of semi-spaces of the n-dimensional space Zn . Each of
these semi-spaces corresponds to one of the bounds lk(j1, …, jk-1) or uk(j1, …, jk-1) of the
nested for-loops.

2.2 Notation

Throughout this paper the following notation is used: N is the set of naturals, Z is
the set of integers, R is the set of rationals and n is the number of nested FOR-loops in
the algorithm. Jn ⊂ Zn is the set of indices, or the iteration space of an algorithm: Jn =
{j(j1, …, jn) | ji ∈ Z ∧ li ≤ ji ≤ ui, 1 ≤ i ≤ n}. Each point in this n-dimensional integer space
is a distinct instantiation of the loop body. If A is a matrix, we denote aij as the matrix
element in the i-th row and j-th column. We denote a vector as a or a

r

according to the
context. The k-th element of the vector is denoted ak. In addition we define the symbols
x+ and x- as follows: x+ = max(x, 0) and x- = max(-x, 0).

2.3 Linear Algebra Concepts

We present some basic linear algebra concepts which are used in the following sec-
tions:

Definition 1 A square matrix A is unimodular, if it is integral and its determinant equals
± 1.

Unimodular transformations have a very useful property: their inverse transforma-
tion is integral as well. On the other hand the inverse of a non-unimodular matrix is not



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS672

integral, which causes the transformed space to have “holes”. We call holes the integer
points of the transformed space that have no integer anti-image in the original space.

Definition 2 Let A be an m × n integer matrix. We call the set L(A) = {y | y = Ax ∧ x ∈ Zn}
the lattice that is generated by the columns of A.

Consequently, we can define the holes of a non-unimodular transformation as fol-
lows: if a T is a non-unimodular transformation, we call holes the points j' ∈ Zn such that
T - 1j' ∉ Zn . On the contrary, we shall call actual points of a non-unimodular transforma-
tion T the points j' ∈ L(T) ⇔ T - 1j' ∈ Zn . Fig. 1 shows the results of a unimodular and a
non-unimodular transformation to the same index space. Holes are depicted by white
dots and actual points by black ones.

Fig. 1. Unimodular and non-unimodular transformations.

Theorem 1 If T is an m × n integer matrix, and C is an n × n unimodular matrix, then L(T)
= L(TC).

Proof: Given in [1].

Definition 3 We say that a square, non-singular matrix H = [ ,1h
r

…, ]nh
r

∈ Rn ×n is in
Column Hermite Normal Form (HNF) iff H is lower triangular (hij ≠ 0 implies i ≥ j) and
for all i > j, 0 ≤ hij < hii (the diagonal is the greatest element in the row and all entries are
positive.)

Theorem 2 If T is an m × n integer matrix of full row rank, then there exists an n × n
unimodular matrix C such that TC = ]0

~
[T andT

~
is in Hermite Normal Form.

Proof: Given in [1].



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 673

Every integer matrix with full row rank has a unique Hermite Normal Form. By
Theorem 1 we conclude that L(T) = L )

~
(T which means that an integer matrix of full row

rank and its HNF produce the same lattice. This property will be proven to be very useful
for the code generation of tiled spaces.

2.4 Fourier-Motzkin Elimination Method

The Fourier-Motzkin elimination method can be used to test the consistency of a
system of linear inequalities ,axA

rr

≤ or to convert this system into a form in which the
lower and upper bounds of each element xi of the vector x

r

are expressed only in terms
of the variables x1, …, xi-1. This fact is very important when using a nested loop in order
to traverse an iteration space Jn defined by a system of inequalities. It is evident that the
bounds of index jk of the nested loop should be expressed in terms of only the k − 1 outer
indices. This means that Fourier-Motzkin elimination can convert a system describing a
general iteration space into a form suitable for use in nested loops.

The method is based on the observation that a variable xi can be eliminated from
such a system by replacing each pair-wise combination of two inequalities which define

a lower and an upper bound on xi as follows: 0with 112
2

1 >≤⇒




≤
≤

cUcLc
Uxc

xcL

i

i and c2

> 0. After this elimination, another system of inequalities is derived, without xi. This re-
sulting system has a large number of inequalities involving variable xi, but not all of them
are necessary for the precision of the corresponding bounds. The unnecessary inequali-
ties should be eliminated in order to simplify the resulting system. In order to specify the
redundant inequalities, two methods are proposed: the “Ad-Hoc simplification method”
and the “Exact simplification method”. A full description of the Fourier-Motzkin elimi-
nation method, the Ad-Hoc simplification and the Exact simplification method is pre-
sented in [25].

If the initial system of inequalities consists of k inequalities with n variables, then
the complexity of Fourier-Motzkin is ).)(()( 2

22 2)1(2

2 n

n

n
kk OO ≈

−+ Therefore, it depends

doubly exponentially on the number of variables involved.

3. TILING TRANSFORMATION

In a tiling transformation the index space Jn is partitioned into identical
n-dimensional parallelepiped areas (tiles or supernodes) formed by n independent fami-
lies of parallel hyperplanes. Tiling transformation is uniquely defined by the
n-dimensional square matrix H. Each row vector of H is perpendicular to one family of
hyperplanes forming the tiles. Dually, tiling transformation can be defined by n linearly
independent vectors, which are the sides of the tiles. Similar to matrix H, matrix P con-
tains the side-vectors of a tile as column vectors. It holds that P = H - 1. Formally, tiling
transformation is defined as:

 
 










−
=→ − HjHj

Hj
jrZZr nn

1
2 )(,:



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS674

where Hj identifies the coordinates of the tile that iteration point j(j1, j2, …, jn) is
mapped to and j − H - 1Hj gives the coordinates of j within that tile relative to the tile
origin. Thus the initial n-dimensional iteration space Jn is transformed to a
2n-dimensional one, the space of tiles and the space of indices within tiles. Apparently,
tiling transformation is not a linear transformation. The following spaces are derived
when tiling transformation H is applied to an iteration space Jn .

1. The Tile Iteration Space TIS(H) = {j ∈ Zn | 0 ≤ Hj < 1}, which contains all
points that belong to the tile starting at the axes origins.

2. The Tile Space JS (Jn , H) = {j S | JS = Hj, j ∈ Jn}, which contains the images of
all points j ∈ Jn according to tiling transformation.

3. The Tile Origin Space TOS(JS , H - 1) = {j ∈ Zn | j = H - 1j S , j S ∈ JS}, which con-
tains the origins of tiles in the original space.

According to the above, Jn →H JS and JS →P TOS. For simplicity we shall refer to
TIS(H) as TIS, JS (Jn , H) as JS and TOS(JS , H - 1) as TOS. Note that all points of Jn that
belong to the same tile are mapped to the same point of JS . This means that a point j S in
this n-dimensional integer space JS is a distinct tile with coordinates ).,...,,( 21

S
n

SS jjj
Note also that TOS is not necessarily a subset of Jn , since there may exist tile origins
which do not belong to the original index space Jn , but some iterations within these tiles
do belong to Jn . The following example analyzes the properties of each of the spaces
defined above.

Example 1 Consider a tiling transformation defined by H =












−
−

3
2

3
1

3
1

3
2

or equivalently

by P = 








21

12
applied to index space J 2 = {0 ≤ j1 ≤ 6, 0 ≤ j2 ≤ 4}. Then, as shown in Fig.

2, TIS contains points {(0, 0), (1, 1), (2, 2)} and Jn is transformed by matrix H to Tile
Space JS = {(−2, 3), (−2, 2), (−1, 2), …, (3, −1), (3, −2), (4, −2), (4, −3)}. In the sequel,
the Tile Space JS is transformed by matrix P to TOS = {(−1, 4), (−2, 2), (0, 3), …, (5, 1),
(4, −1), (6, 0), (5, −2)}. The points of TOS are shown as bold dots. �

Fig. 2. J S , TIS and TOS from Example 1.



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 675

The iteration space Jn of an algorithm, as defined in section 2.2, can also be repre-
sented by a system of linear inequalities. An inequality of this system expresses a bound-
ary surface of our iteration space. Thus Jn can be equivalently defined as: Jn = {j ∈ Zn |
Bj ≤ }.b

r

Matrix B and vector b
r

can be easily derived from lk and uk in section 2.1. and
vice versa. Similarly, points belonging to the same tile with tile origin j0 ∈ TOS satisfy
the system of inequalities 0 ≤ H(j − j0) < 1. In order to deal with integer inequalities, we
define g to be the minimum positive integer such as gH is an integer matrix. Thus, we
can rewrite the above system of inequalities as follows: 0 ≤ gH(j − j0) < g ⇔ 0 ≤ gH(j −

j0) ≤ (g − 1). We denote S =









− gH

gH and .
0

1)1(












 −= r

r

r g
s Equivalently the above system

becomes S(j − j0) ≤ .s
v

Note that if j0 = 0, S(j − j0) ≤ s
v

is satisfied only by points in TIS.

Example 2 Consider the following nested loop:

FOR j1 = 0 TO 39 DO
FOR j2 = 0 TO 29 DO

A[j1, j2] = A[j1 − 1, j2 − 2] + A[j1 − 3, j2 − 1]
ENDFOR

ENDFOR

The index space J2 is: J2 = {(j1, j2) | 0 ≤ j1 ≤ 39, 0 ≤ j2 ≤ 29}. The set of inequalities

describing the index space J2 is: .

0

0

29

39

10

01

10

01

2

1





















≤




























−
− j

j
Let us consider, without lack of

generality, the tiling transformation matrix H = .
20
3

20
1

10
1

5
1













−
−

Consequently, we have

H - 1 = P = .
8

4

2

6







 The system of inequalities S(j − j0) ≤ s
v

describing a tile is (since g =

20): .

0

0

19

19

3

2

3

2

1

4

1

4

2

1

02

01





















≤









−
−





















−

−

−
−

jj

jj
Fig. 3 shows the form of a tile, the partition of the in-

dex space Jn into tiles, and the coordinates of every tile according to the tiling transfor-
mation, or equivalently the coordinates of every tile point in the Tile Space JS . �

4. CODE GENERATION

Let us formally define the problem of generating tiled code that will traverse an it-
eration space Jn transformed by a tiling transformation H. Applying this transformation
to Jn , we obtain the Tile Space JS , TIS and TOS. In section 3 it is shown that tiling
transformation is a Zn → Z 2 n transformation, which means that a point j ∈ Jn is trans-
formed into a tuple of n-dimensional points (ja, jb), where ja identifies the tile that the



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS676

Fig. 3. Tiling with matrices H and P.

original point belongs to (ja ∈ JS ) and jb is the coordinates of the point relative to the tile
origin (jb ∈ TIS). The tiled code reorders the execution of indices imposed by the original
nested loop, resulting in a rearranged, transformed order described by the following
scheme: for every tile in the Tile Space JS , traverse its internal points. According to the
above, the tiled code should consist of a 2n-dimensional nested loop. The n outermost
loops traverse the Tile Space JS , using indices ,,...,, 21

S
n

SS jjj and the n innermost loops
traverse the points within the tile defined by ,,...,, 21

S
n

SS jjj using indices .,...,, 21 njjj ′′′
We denote as S

k
S
k ul , the lower and upper bounds of index S

kj respectively. Similarly,
we denote as kk ul ′′ , the lower and upper bounds of index .kj′ In all cases, lower bounds
Lk are of the form: Lk = max(lk,0, lk,1, …) and upper bounds Uk of the form: Uk = min(uk,0,
uk,1, …), where lk,j, uk,j are affine functions of the outermost indices. Code generation in-
volves the calculation of steps (loop strides) and exact lower and upper bounds for indi-
ces S

kj and .kj′ The problem of generating tiled code for an iteration space can be
separated into two subproblems: traversing the Tile Space JS and sweeping the internal
points of every tile or, in our context, finding lower and upper bounds for the n outermost
indices ,,...,, 21

S
n

SS jjj and finding lower and upper bounds for the n innermost indices
.,...,, 21 njjj ′′′

5. TRAVERSING THE TILE SPACE

In this section we elaborate on the problem of traversing the Tile Space JS . We first
review previous work in the field, and in the sequel, we extend one of the approaches in
order to efficiently and correctly traverse the Tile Space.

5.1 Previous Work

The method presented by Ancourt and Irigoin [23] traverses the Tile Space JS by
constructing a system of inequalities which consists of one system representing the
original index space and one system representing a tile. Recall from section 3 that a point



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 677

j ∈ Jn that belongs to a tile with tile origin j0 ∈ TOS, satisfies the set of inequalities: S(j −
j0) ≤ .s

v

Let us denote Sj0 ∈ JS the coordinates of j0 in the Tile Space JS . Clearly it holds

that j0 = .0
SPj Consequently, the preceding system of inequalities becomes: 









−
−

gH

gH

gI

gI

.0 s
j

j S
r

≤










Recall also that a point j ∈ Jn satisfies the system of inequalities Bj ≤ .b

r

Combining these systems we obtain the final system of inequalities:














≤




























−
−

s

b

j

j

gH

gH

B

gI

gI
S

r

r

0

0
(1)

Ancourt and Irigoin propose the application of Fourier-Motzkin elimination to the above
system in order to obtain proper formulas for the lower and upper bounds of the
n-dimensional loop that will traverse the Tile Space. Although this method scans the tile
origins correctly, the elimination of the above system is impractical even for loops with
small nestings.

Ramanujam [1] and [2] applied tiling transformation to the set of inequalities Bj ≤
b
r

representing the iteration space as follows: Bj ≤ b
r

⇒ BH - 1Hj ≤ b
r

⇒

bBPj S
r

≤0 (2)

Here, again, the application of Fourier-Motzkin elimination to the derived system of
inequalities is proposed, in order to obtain closed form formulas for tile bounds S

n
S ll ,...,1

and .,...,1
S
n

S uu
This approach is more elegant since the system constructed has the same size as the

one that arises when any linear transformation is employed. Unfortunately, it fails to
enumerate tile origins exactly. Problems arise because the method is applicable to inte-
gral matrices, while H is not integral. Note that the system of inequalities in (2) is satis-
fied by points in the Tile Space JS whose inverse belong to Jn . However, as stated in
section 3 there exist some points in TOS that do not belong to Jn . In Fig. 3, tiles in the
lower boundaries such as (− 3, 3), (− 2, 1), (4, − 2) and others are not scanned by this
method because their origins do not belong to the original index space Jn . Nevertheless,
these tiles also contain points of the index space J 2 and should be traversed, although
they do not satisfy the preceding systems of inequalities.

5.2 Our Approach

We shall now extend the work presented in [1] and [2] to make it also applicable to
the enumeration of tiles. We modify the system in (2) in order to include all tile origins.
What is needed is a proper reduction of the lower bounds and/or a proper increase of the
upper bounds of our space. Lemma 1 determines how much we should expand space
bounds, in order to include all points of TOS.

Lemma 1 If we apply tiling transformation P to an index space Jn , whose bounds are
expressed by the system of inequalities Bj ≤ ,b

r

then for all tile origins j0 ∈ TOS:



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS678

bBj ′≤
r

0 (3)

where b ′
r

is a n-dimensional vector formed by the vector b
r

so that its i-th element is
given by the equation:

∑ ∑
= =

−β−+=′
n

r

n

j
jriji p

g

g
bib

1 1

)(
1

(4)

where g is the minimum integer by which the tiling matrix H should be multiplied in
order to become integral.

Proof: Suppose that the point j ∈ Jn belongs to the tile with origin j0. Then j can be ex-
pressed as the sum of j0 and a linear combination of the column vectors of the tiling ma-

trix P: j = j0 + .
1 jj pλ

j

n r

∑ = In addition, as mentioned earlier, the following equality

holds: 0
r

≤ gH(j − j0) ≤ ).1( −g The i-th row of this inequality can be rewritten 0 ≤

,
1

)( 0 g

g
jjhi

−≤−
r

where ih
r

is the i-th row vector of matrix H = P-1. Therefore, 0 ≤

.
1

1∑
−≤

= g

g
pλ

j

n
h jii

r

r

Since P = H - 1, and so ii ph
r

r

= 1 and ji ph
r

r

= 0 if i ≠ j. Conse-

quently the last formula can be rewritten
g

g
λi

1
0

−≤≤ for all i = 1, …, n.

For each j ∈ Jn , .bBj
r

≤ The k-th row of this system can be written ∑ = jkj jβ
j

n

1

.kb≤ We can rewrite the last inequality in terms of the corresponding tile origin

∑∑ ∑ ≤
=

⇒≤
=

+
= jkjkjiijkj jβ

j

n
bpλ

i

n
jβ

j

n
00 1

)
1

(
1 ∑ ∑ ==

− jiikjk pλ
i

n
β

j

n
b

11

∑ ∑ ∑
= = =

−≤⇒

n

j

n

i

n

j
jikjikjkj pβλbjβ

1 1 1
0

(5)

In addition, as proved above,
g

g
λi

1
0

−≤≤ for all i = 1, …, n. If multiplied by
,

1∑ = jikj pβ
j

n this inequality gives:

a) If ∑∑∑ =
−≤

=
≤>

= jikjjikjijikj pβ
j

n

g

g
pβ

j

n
λpβ

j

n

1
1

1
0,0

1

b) If 0
11

1
,0

1
≤

=
≤

=
−<

= ∑∑∑ jikjijikjjikj pβ
j

n
λpβ

j

n

g

g
pβ

j

n

Using the symbols x+ and x- given in section 2.2, the previous inequalities can be

rewritten as ⇒

=
−≤

=
≤

=
−− +−

∑∑∑ )
1

(
1

1
)

1
(

1
jikjjikjijikj pβ

j

n

g

g
pβ

j

n
λpβ

j

n

g

g
∑ =

− jikji pβ
j

n
λ

1

.)
1

(
1 −
∑ =

−≤ jikj pβ
j

n

g

g If added for i = 1, …, n this inequality gives ∑∑ ==
− jikji pβ

j

n
λ

i

n

11

.)
1

(
1

1
−

∑ ∑ ==
−≤ jikj pβ

j

n

i

n

g

g

Therefore, from the last formula and the inequality (5), we conclude that jkj jβ
j

n
01∑ =

.)
1

(
1

1 −
∑∑ ==

−+≤ jikjk pβ
j

n

i

n

g

g
b Thus, for each tile with origin j0 which has at



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 679

least one point in the initial iteration space, Bj0 ≤ ,b ′
r

where the vector b ′
r

is constructed
so that its kth element is given by .)

1
(

1

1 −
∑∑ ==

−+=′ jikjkk pβ
j

n

i

n

g

g
bb ⊣

If we consider Tile Space JS then, since j0 = ,0
SPj we get the equivalent system of

inequalities

bBPj S ′≤
r

0 (6)

Thus we can adjust the system of inequalities in (2), making use of Lemma 1, and re-
placing the vector b

r

with b ′
r

.
Geometrically, the term added to each element of b

r

expresses a parallel shift of the
corresponding bound of the initial space. In Fig. 4 we present an example of our method.
Each row iβ

r

of the matrix B expresses a vector vertical to the corresponding bound of
the iteration space and its direction is outward. The equation of this boundary surface is

.ii bxβ =
r

r

A parallel shift of this surface by a vector 0x
r

is expressed by the equation
.)( 00 xβbxβbxxβ iiiii

r

r

r

r

rr

r

+=⇔=− As shown in Fig. 4, we shift a boundary surface by

Fig. 4. Expanding bounds to include all tile origins.

a tile edge-vector ,rp
r

if this vector forms an angle greater than 90o with vector iβ
r

(as
are the angles between the vectors 1β

r

and ,1p
r

1β
r

and ,2p
r

3β
r

and ,1p
r

3β
r

and ,2p
r

4β
r

and 1p
r

in Fig. 4), or equivalently if and only if .0<ir βp
r

r

This fact can be ex-
pressed as follows: if the dot product of one of the columns of matrix P, ,rp

r

and a row



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS680

of B, ,iβ
r

is negative, then we should subtract this dot product from the constant bi. In
eq. (4) we add the term −− =

=∑ )()
1

( rijrij pβpβ
j

n r

r

to the constant bi for all vectors .rp
r

The factor
g

g 1−
by which the shifting constant is multiplied, expresses the fact that

a tile is a semiopen hyperparallelepiped, and thus we need not contain in the tile space
the tiles which just touch the initial iteration space. Note, however, that this expansion of
bounds may include some redundant tiles whose origins belong to the extended space,
but their internal points remain outside the original iteration space. These tiles will be
accessed but their internal points will not be swept, as it will be shown next, thus impos-
ing little computation overhead in the execution of the tiled code. Consequently, we suc-
ceeded in correctly accessing all tile origins with a small system of inequalities that can
be efficiently eliminated for practical problems.

Example 3 We shall enumerate the tiles of the algorithm shown in Example 2. We con-
sider the same tiling transformation. Following our approach, we construct the system of
inequalities in (6) making use of the expression in (4). Expression (4) in our case gives

b ′
r

= [39 29 9.5 9.5]T and thus the system in (6) becomes: .

5.9

5.9

29

39

8

4

8

4

2

6

2

6

0

1





















≤


































−
−

−
− S

S

j

j The

expansion of bounds for this example is shown in Fig. 5. If we multiply row 1 by row 2
and add it to row 4, we get Sj110 ≤ 87.5 ⇒

Sj1 ≤ 8. Similarly, we get Sj1 ≥ − 4 (this cor-
responds to a rough application of FM). Consequently, a loop that enumerates the origins
of tiles in our case has the form:

FOR Sj1 = − 4 TO 8 DO

FOR Sj2 = ),(
8

25.9
4

65.9 11











 −−−− SS jjMAX TO ),(

8
229

4
639 11











 −− SS jjMIN DO

…
ENDFOR

ENDFOR

Note that tiles (8, − 3) and (− 4, 4) are redundant. �

6. SCANNING THE INTERIOR OF A TILE

6.1 Previous Work

Traversing the internal points of a tile is also discussed by Ancourt and Irigoin in
[23]. Similar to the approach used there to enumerate tile origins, Ancourt and Irigoin
construct a proper system of inequalities, which they eliminate using Fourier-Motzkin
elimination. The inequalities describing the original index space and the tile can be
equivalently rewritten as

















−
+−≤

















− S

S

gj

gjg

b

j

gH

gH

B

0

0

0

1)1(
r

r

r

(7)



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 681

Fig. 5. Example 3: Expansion of bounds.

where vector Sj0 gives the coordinates of the tile to be traversed. Here again, the size of
the system is too big, making Fourier-Motzkin elimination inefficient for practical prob-
lems.

6.2 Our Approach

In the following, we present a new method of sweeping the internal points of a tile.
Our goal is to construct a smaller system of inequalities that can be efficiently eliminated.
Our approach is based on the use of a non-unimodular transformation. We shall traverse
the TIS and then slide the points of TIS properly, so as to scan all points of Jn . In order to
achieve this, we transform the TIS to a rectangular space, called the Transformed Tile
Iteration Space (TTIS). We traverse the TTIS with an n-dimensional nested loop and then
transform the indices of the loop, so as to return to the proper points of the TIS. In other
words, we are searching for a transformation pair (P', H'): TTIS → ′P TIS and
TIS → ′H TTIS (Fig. 6). Intuitively, we demand that P' be parallel to the tile sides, that
is, the column vectors of P' should be parallel to the column vectors of P. This is equiva-
lent to the row vectors of H' being parallel to the row vectors of H. In addition, we de-
mand that the lattice of H' be an integer space in order for loop indices to be able to trav-
erse it. Formally, we are searching for an n-dimensional transformation H' : H' = VH,
where V is an n × n diagonal matrix and L(H') ⊆ Zn . The following Lemma proves that
the second requirement is satisfied if and only if H' is integral.



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS682

Transformed Tile Iteration Space (TTIS) Tile Iteration Space (TIS)

Fig. 6. Traverse the TIS with a non-unimodular transformation.

Lemma 2 If j' = Aj, j ∈ Zn , then j' ∈ Zn iff A is integral.

Proof: If A is integral, it is clear that j' ∈ Zn∀j ∈ Zn . Suppose that j' ∈ Zn∀j ∈ Zn . We
shall prove that A is integral. Without lack of generality we select j = ûk, where ûk is the
k-th unitary vector, ûk = (uk1, …, ukn), ukk = 1, ukj = 0, j ≠ k. Then according to the above,

.],...,,[]
1

,...,
1

,
1

[ˆ 2121
nT

nkkk
T

knikikik Zaaaua
i

n
ua

i

n
ua

i

n
uA

iii
∈=

===
= ∑∑∑ This holds for

all ûk, k = 1 … n, and thus A is integral. ⊣

Let us construct V in the following way: every diagonal element vkk is the smallest
integer such that vkkhk is integral, where hk is the k-th row of matrix H. Thus both re-
quirements for H' are satisfied. It is obvious that H' is a non-unimodular transformation.
This means that the Transformed Tile Iteration Space contains holes. In Fig. 6, the holes
in the TTIS are depicted by white dots, while the actual points are depicted by black dots.
So, in order to traverse the TIS, we have to scan all actual points of the TTIS and then
transform them back using matrix P'. For the code generation we shall use the same no-
tion as in [1, 3-5]. However, we shall avoid the application of the Fourier-Motzkin
elimination method to calculate the bounds of the TTIS by taking advantage of the tile
shape regularity.

We use an n-dimensional nested loop with iterations indexed by ),...,,( 21 njjjj ′′′′ in
order to traverse the actual points of the TTIS. The upper bounds of the indices j′k are eas-
ily determined: kj′ ≤ vkk − 1. However, the increment step ck of an index kj′ is not neces-
sarily 1. In addition to this, if index kj′ is incremented by ck, then all indices nk jj ′′ + ,...,1
should be initialized at certain offset values a(k+1)k, …, ank. Suppose that for a certain in-
dex vector j', P'j' ∈ Zn . The first question is how much to increment the innermost in-
dex nj′ so that the next swept point is also integral. Formally, we search for the minimum
cn ∈ Z such that .]...[ 21

nT
nn ZcjjjP ∈+′′′′ After determining cn, the next step is to

calculate the step increment of index 1−′nj so that the next swept point is also integral. In
this case, it is possible that index nj′ should also be augmented by an offset an(n-1) : 0 ≤



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 683

an(n-1) < cn. In the general case of index kj′ we need to determine ck, a(k+1)k, …, ank so that
T

nknkkkkk ajajcjjP ]...[ )1(11 +′+′+′′′ ++ ∈ Zn. Every index kj′ has k − 1 different
offsets aki, depending on each of the increment steps ci of the k − 1 outer indices ,ij′ i =
1 … k − 1. These offsets are ak1, …, ak(k-1). The following Lemma 3 proves that steps in-
crement ck and offsets akl, (k = 1 … n and l = 1 … k − 1), are obtained directly from the
Hermite Normal Form of matrix H', denoted .

~
H ′

Lemma 3 If H ′~
is the column HNF of H' and ),...,,( 21 njjjj ′′′′ is the index vector used to

traverse the actual points of L(H'), then the increment step (stride) for index kj′ is ck

= kkh ′~
and the offsets are akl = ,

~
klh ′ (k = 1 … n and l = 1 … k − 1).

Proof: We have L(H') = L )
~

(H ′ and 0
r

∈ L(H'). In addition, the columns of H ′~
belong to

L(H'). Suppose 0/
r

r nZx ∈ with the following properties: xi = 0 for i < k, and 0 ≤ xi ≤ ikh ′~

for k ≤ i ≤ n. It suffices to prove that x
r

∉L(H'). Suppose that x
r

∈L(H') which means that
∃ j ∈ Zn such that .

~
xjH
r

=′ H ′~
is a lower triangular non-negative matrix and thus x1 =

111
~

jh ′ = 0 ⇒ j1 = 0. Similarly ji = 0 for i < k. In addition, xk = .
~

kkk jh ′ According to the
above we should have 0 ≤ xk = kkk jh ′~

≤ kkh ′~
⇒ 0 ≤ jk ≤ 1. In addition, 0 ≤ xk+1

.
~~~

)1(1)1)(1()1( kkkkkkkk hjhjh +++++ ′≤′+′= Since ⇒′≥′ +++ kkkk hh )1()1)(1(
~~

jk+1 = 0. Similarly,
then ji = 0 for i > k + 1. Consequently, either ,0

r

r

=x which is a contradiction, or x
r

is the
k − th column of .

~
H ′ ⊣

According to the above analysis, the point that will be traversed using the next in-
stantiation of indices is calculated from the current instantiation, since steps and offsets
are added to the current indices. There are two remarks that have to be made on that.
First, the indices of the loop must be initialized to the values 2j′ = − a21, …, nj′ = − an1.
Second, the loop must choose the appropriate offset for index kj′ from ak1, …, ak(k-1).
Recall that akl expresses the offset of index kj′ when index lj′ (l < k) is incremented by its
step cl. The following form of loops suggests a solution to this problem using an extra
variable PHASE showing the index that has just been incremented. The mod expression
is used to traverse the minimum point in the particular dimension.

Theorem 3 The following n-dimensional nested loop traverses all points j' ∈ TTIS

;1];1][[
~

];...,1][2[
~

2 =′′−=′ PHASEnHHj
FOR 1j′ = 0 TO v11 − 1 STEP = c1 PHASE = 1 DO

FOR ncPHASEHjj ])%][2[
~

( 22 ′+′=′ TO v22 − 1 STEP = c2 PHASE = 2 DO
…
FOR nnn cPHASEnHjj ])%][[

~
( ′+′=′ TO vnn − 1 STEP = cn DO

…
ENDFOR
…

ENDFOR
ENDFOR

Proof: It can be easily derived from Lemmas 2 and 3.



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS684

We now need to adjust the above loop, which sweeps all points in TTIS, in order to
traverse the internal points of any tile in JS . If j' ∈ TTIS is the point derived from the
indices of the former loop and j S ∈ JS is the tile whose internal points j ∈ Jn we want to
traverse, then j = PjS + P'j' = j0 + P'j', j0 ∈ TOS, where j0 = PjS is the tile origin, and P'j'
∈ TIS the point corresponding to j' point in TIS. Special attention needs to be given so
that the points traversed do not outreach the original space boundaries. As we have men-
tioned, a point j ∈ Jn satisfies the set of inequalities: Bj ≤ .b

r

Replacing j by the above
equation we have B(j0 + P'j') ≤ b

r

⇒

BP'j' ≤ b
r

− Bj0 (8)

Applying Fourier-Motzkin elimination to the preceding set of inequalities, we obtain
proper expressions for j', so as to not cross the original space boundaries. In this way, the
problem of redundant tiles that arose in the previous section is also faced, since no
computation is performed in these tiles.

Example 4 Continuing the previous examples, we shall now sweep the internal points of

a tile. If we follow our method we have the following: 






 −
−

=
3

1

1

2
'H and .

20

0

0

10








=V

Accordingly .'
5
2

5
1

5
1

5
3












=P The Hermite Normal Form of matrix H' is '

~
H = =









5

0

2

1
















 −
− 2

1

1

1

3

1

1

2
and thus, as shown in Fig. 7, c1 = 1, c2 = 5 a21 = 2. We construct matrix

.

100

010

1029

0139

]||[

5
2

5
1

5
1

5
3

5
2

5
1

5
1

5
3





















−−−
−−−

=′ BbPB
r

FM elimination on this matrix gives

.

100

010

122901

1029

0139

127801

5
2

5
1

5
1

5
3

5
2

5
1

5
1

5
3



























−−−
−−−
−−

−

Consequently, the loop that traverses the indices inside

every tile, in our case is:






















=








S

S

j

j

j

j

2

1

02

01

8

4

2

6

2j′ = − 2
FOR DO1)278,9(TO)229,0(

2121 00001 =+−+−−=′ STEPjjMINjjMAXj

FOR ),53,5)%2(( 2

5
0122

201

1 



−′−+′=′ −′− jj

jjjMAXj

TO DO5),19553,19( 2

1455
01

101

1
=





+−′− +−′−

STEPjjMIN
jj



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 685


























+









=








'
2

'
1

5
2

5
1

5
1

5
3

0

0

2

1

2

1

j

j
j

j

j

j

A[j1, j2] = A[j1 − 1, j2 − 2] + A[j1 − 3, j2 − 1]
ENDFOR

ENDFOR �

Fig. 7. Steps and offsets in TTIS derived from matrix .
~
H ′

7. COMPARISON

We shall now compare our method for generating tiled code with the one presented
by Ancourt and Irigoin in [23]. Let us primarily consider the problem of enumerating the
Tile Space. The system in (1) contains 4n inequalities with 2n variables, while the one in
(6) contains 2n inequalities with n variables. This means that in our case, the extremely
complex Fourier-Motzkin elimination algorithm is supplied with a much smaller input.
In order to sweep the internal points of every tile, Ancourt and Irigoin propose the appli-
cation of Fourier-Motzkin elimination to the system derived from expression (7). In our
case, we can avoid any further application of FM elimination by making the following
observation. The first part of the systems of inequalities in (6) and (8) are expressed by
matrices BP and BP' respectively. The second one can be derived from the first one by
dividing each column k by the constant vkk. Since all steps of FM elimination depend
only on the form of these matrices, we can apply it to both systems (6) and (8) by exe-
cuting the method only once. That is, if we apply FM elimination to the matrix

],||||[ BbPBbBP
rr

′′ taking care to adapt the matrix BP to the desired form, then the ma-
trix BP' can be simultaneously adapted. Consequently, the procedure for generating tiled
code becomes much more efficient, as in the case of linear loop transformations.

Moreover, our method results in fewer inequalities for the bounds of the Tile Space,
and thus needs fewer bound calculations during run time. As a drawback, it may enu-
merate some redundant tiles as well. However, these are restricted only to the edges of



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS686

the Tile Space. If the Tile Space is large enough, then we can safely assert that their
number is negligible with respect to the total number of tiles that actually have to be
traversed. In any case, the method that sweeps iterations within tiles finds no iterations to
be executed within these tiles.

In order to evaluate the proposed method, we ran a number of examples with dif-
ferent matrices P, B, b and counted the number of row-operations needed by Fou-
rier-Motzkin for the calculation of the bounds in the Tile Space. The implementation of
the Fourier-Motkzin algorithm was based on the techniques presented in [24]. Table 1
shows the iteration spaces used. Note that the first four spaces are 2-dimensional, the
second ones are 3-dimensional and the last ones are 4-dimensional. The shapes in all
cases vary from rectangular to more complex ones. Each iteration space was tiled using
four tiling transformations. More specifically, the 2-dimensional algorithms were tiled

using 








−
−

=







=








=

108

510
,

21

12
,

40

05
321 PPP and ,

92

36
4 








=P the 3-dimensional

using

















−
=

















=
















=
213

260

065

,

203

260

065

,

500

0150

0010

765 PPP and















 −
=

204

260

1615

8P and the

4-dimensional using



















−
−

=


















=


















=

4000

0502

0550

0201

,

4000

0500

0050

1001

,

4000

0500

00150

00010

11109 PPP

and .

4004

0500

0055

1011

12



















−
=P The row operations required in each case are shown in Tables

2~4. We denote the method presented by Ancourt and Irigoin in [23] as AI and our
method as RI (Reduced Inequalities). It is clear that, as expected, in all cases RI method
greatly outperforms AI method.

Table 1. Example iteration spaces.
i1 i2 i3 i4

lower
bound

upper
bound

lower
bound

upper
bound

lower
bound

upper
bound

lower
bound

upper
bound

Space1 0 3999 0 2999 - - - -

Space2 0 1599 0 3199 - - - -

Space3 0 239 3
1i− 5

2159 1i+
- - - -

Space4 0 2099 0 2099 − i1 - - - -

Space5 0 4999 0 5999 0 3999 - -

Space6 0 1999 0 3999 − i1 −i1 2999 − i1 - -

Space7 0 1999 −i1 3999 − i1 −i1 2999 − i1 - -

Space8 0 49 3i1 59 − 2i1 −2i2 39 + 2i1 − 3i2 - -

Space9 0 19 0 29 0 39 0 19

Space10 0 19 0 29 − i1 −i2 39 − i1 −i1 19 − i2

Space11 0 19 0 29 − 2i1 −2i2 39 − 3i2 0 19 − i1

Space12 0 19 −2i1 29 − 2i1 −3i2 39 − 3i2 −2i1 19 − 2i1



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 687

Table 2. Number of row operations for 2-dimensional algorithms.

AI method RI method

Space1/P1 25 5
Space1/P2 756 30
Space1/P3 727 30
Space1/P4 772 30
Space2/P1 25 5
Space2/P2 802 30
Space2/P3 769 30
Space2/P4 730 30
Space3/P1 95 5
Space3/P2 536 24
Space3/P3 691 25
Space3/P4 816 24
Space4/P1 210 5
Space4/P2 859 32
Space4/P3 836 32
Space4/P4 823 32

Table 3. Number of row operations for 3-dimensional algorithms.

AI method RI method

Space5/P5 59 11
Space5/P6 8671 106
Space5/P7 9924 106
Space5/P8 30264 257
Space6/P5 757 11
Space6/P6 13393 84
Space6/P7 18578 111
Space6/P8 60536 259
Space7/P5 1157 11
Space7/P6 12987 106
Space7/P7 26226 106
Space7/P8 91118 257
Space8/P5 4083 11
Space8/P6 128344 147
Space8/P7 33157 147
Space8/P8 347018 187

We ran the above experiments on a Sun HPC450 with 4 UltraSparcII 400MHz
CPUs and 1GB RAM, using Solaris 8. Some indicative execution times are, for example:
Using iteration space8 with tiling matrix P6, AI method completed in 6.9min, while RI
method completed in 4.5msec. Using iteration space8 with tiling matrix P8, AI method



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS688

Table 4. Number of row operations for 4-dimensional algorithms.

AI method RI method

Space9/P9 108 20
Space9/P10 1143 115
Space9/P11 6228 193
Space9/P12 13649 164
Space10/P9 5085 21
Space10/P10 16492 313
Space10/P11 151682 227
Space10/P12 291120 441
Space11/P9 702 20
Space11/P10 2625 126
Space11/P11 15642 228
Space11/P12 14695 209
Space12/P9 4032 20
Space12/P10 10045 293
Space12/P11 30173 266
Space12/P12 219219407 375

completed in 25min, while RI method completed in 5.4msec. This illustrates the im-
provement achieved when applying our method for the reduction of the compilation time
using tiling transformations.

8. CONCLUSIONS

In this paper we surveyed all previous work concerning code generation for linear
loop transformations and tiling transformations, and proposed a novel approach for the
problem of generating code for tiled nested loops. Our method applies to general paral-
lelepiped tiles and non-rectangular space boundaries as well. In order to generate code
efficiently, we divided the problem into the subtasks of enumerating the tiles and sweep-
ing the points inside each tile. In the first case, we extended previous work on
non-unimodular transformations in order to precisely traverse all tile origins. In the sec-
ond case, we proposed the use of a non-unimodular transformation in order to transform
the tile iteration space into a hyper-rectangle. We traversed that rectangular space and
adjusted the results in order to access the internal points of any single tile in the tile space.
Fourier-Motzkin elimination is applied only once to a system of inequalities as large as
the systems that arise from any linear transformation. Experimental results show that our
method outperforms previous works since it constructs smaller systems of inequalities
that can be simultaneously eliminated.

REFERENCES

1. J. Ramanujam, “Non-unimodular transformations of nested loops,” in Proceedings
of Supercomputing 92, 1992, pp. 214-223.



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 689

2. J. Ramanujam, “Beyond unimodular transformations,” Journal of Supercomputing,
Vol. 9, 1995, pp. 365-389.

3. J. Xue, “Automatic non-unimodular loop transformations for massive parallelism,”
Parallel Computing, Vol. 20, 1994, pp. 711-728.

4. A. Fernandez, J. Llaberia, and M. Valero, “Loop transformation using nonunimodu-
lar matrices,” IEEE Transactions on Parallel and Distributed Systems, Vol. 6, 1995,
pp. 832-840.

5. W. Li and K. Pingali, “A singular loop transformation framework based on
non-singular matrices,” in Proceedings of the Fifth Workshop on Languages and
Compilers for Parallel Computing, 1992, pp. 249-260.

6. F. Irigoin and R. Triolet, “Supernode partitioning,” in Proceedings of the 15th An-
nual ACM SIGACT-SIGPLAN Symposium Principles of Programming Languages,
1988, pp. 319-329.

7. J. Ramanujam and P. Sadayappan, “Tiling multidimensional iteration spaces for
multicomputers,” Journal of Parallel and Distributed Computing, Vol. 16, 1992, pp.
108-120.

8. P. Boulet, A. Darte, T. Risset, and Y. Robert, “(Pen)-ultimate tiling?,” INTEGRA-
TION, The VLSI Journal, Vol. 17, 1994, pp. 33-51.

9. J. Xue, “Communication-minimal tiling of uniform dependence loops,” Journal of
Parallel and Distributed Computing, Vol. 42, 1997, pp. 42-59.

10. J. Xue, “On tiling as a loop transformation,” Parallel Processing Letters, Vol. 7,
1997, pp. 409-424.

11. W. Shang and J. A. B. Fortes, “Independent partitioning of algorithms with uniform
dependencies,” IEEE Transactions on Computers, Vol. 41, 1992, pp. 190-206.

12. E. H. Hollander, “Partitioning and labeling loops by unimodular transformations,”
IEEE Transactions on Parallel and Distributed Systems, Vol. 3, 1992, pp. 465-476.

13. M. Wolf and M. Lam, “A loop transformation theory and an algorithm to maximize
parallelism,” IEEE Transactions on Parallel and Distributed Systems, Vol. 2, 1991,
pp. 452-471.

14. J. P. Sheu and T. S. Chen, “Partitioning and mapping nested loops for linear array
multicomputers,” Journal of Supercomputing, Vol. 9, 1995, pp. 183-202.

15. Chung-Ta King, W-H Chou, and L. Ni, “Pipelined data-parallel algorithms: part II
design,” IEEE Transactions on Parallel and Distributed Systems, Vol. 2, 1991, pp.
430-439.

16. P. Tsanakas, N. Koziris, and G. Papakonstantinou, “Chain grouping: a method for
partitioning loops onto mesh-connected processor arrays,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 57, 2000, pp. 941-955.

17. J. P. Sheu and T. H. Tai, “Partitioning and mapping nested loops on multiprocessor
systems,” IEEE Transactions on Parallel and Distributed Systems, Vol. 2, 1991, pp.
430-439.

18. I. Drossitis, G. Goumas, N. Koziris, G. Papakonstantinou, and P. Tsanakas, “Evalua-
tion of loop grouping methods based on orthogonal projection spaces,” in Proceed-
ings of the 2000 International Conference on Parallel Processing (ICPP-2000), pp.
469-476.

19. E. Hodzic and W. Shang, “On supernode transformation with minimized total run-
ning time,” IEEE Transactions on Parallel and Distributed Systems, Vol. 9, 1998,
pp. 417-428.



GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS690

20. G. Goumas, A. Sotiropoulos, and N. Koziris, “Minimizing completion time for loop
tiling with computation and communication overlapping,” International Parallel
and Distributed Processing Symposium 2001 (IPDPS-2001).

21. E. Hodzic and W. Shang, “On time optimal supernode shape,” in Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications, 1999.

22. P. Tang and J. Xue, “Generating efficient tiled code for distributed memory ma-
chines,” Parallel Computing, 2000, pp. 1369-1410.

23. C. Ancourt and F. Irigoin, “Scanning polyhedra with DO loops,” in Proceedings of
the Third ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming, 1991, pp. 39-50.

24. W. Pugh, “The omega test: a fast and practical integer programming algorithm for
dependence analysis,” Comuunications of the ACM, 1992, pp. 102-114.

25. A. J. C. Bik and H. A. G. Wijshoff, “Implementation of fourier-motzkin elimina-
tion,” in Proceedings of the 1st Annual Conference of the ASCI, 1995, pp. 377-386.

Georgios Goumas received his Diploma in Electrical and
Computer Engineering from the National Technical University
of Athens in 1999. He is currently a PhD candidate at the De-
partment of Electrical and Computer Engineering, National
Technical University of Athens. His research interests include
parallel processing (parallelizing compilers, automatic loop par-
titioning), parallel architectures, high speed networking and op-
erating systems.

Maria Athanasaki received her Diploma in Electrical and
Computer Engineering from the National Technical University of
Athens in 2001. She is currently a PhD candidate at the Depart-
ment of Electrical and Computer Engineering, National Technical
University of Athens. Her research interests include parallel and
distributed systems, parallelizing compilers, dependence analysis
and high performance numerical applications.



CODE GENERATION METHODS FOR TILING TRANSFORMATIONS 691

Nectarios Koziris received his Diploma in Electrical Engi-
neering from the National Technical University of Athens and his
Ph.D. in Computer Engineering from NTUA (1997). He is cur-
rently a faculty member at the Department of Electrical and
Computer Engineering, National Technical University of Athens.
His research interests include computer architecture, parallel
processing, parallel architectures (loop compilation techniques,
automatic algorithm mapping and partitioning) and communica-
tion architectures for clusters. He has published more than 40
research papers in international refereed journals, and in the pro-

ceedings of international conferences and workshops. He has also published two Greek
textbooks “Mapping Algorithms into Parallel Processing Architectures”, and “Computer
Architecture and Operating Systems”. Nectarios Koziris is a recipient of the
IEEE-IPDPS01 best paper award for the paper “Minimising Completion Time for Loop
Tiling with Computation and Communication Overlapping”. He is reviewer in Interna-
tional Journals and Conferences. He served as PC member for HiPC 2002 and Program
Chair for the SAC03 ACM Symposium on Applied Computing-Special Track on Parallel,
Distributed Systems and Networking. He conducted research in several EU and national
Research Programmes. He is a member of IEEE Computer Society, member of IEEE-CS
TCPP and TCCA (Technical Committees on Parallel Processing and Computer Archi-
tecture), ACM and organized the Greek IEEE Chapter Computer Society.


