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ABSTRACT
Although serverless computing brings major benefits to de-

velopers, the widespread adoption of Function-as-a-Service

(FaaS) creates severe challenges for the cloud providers. Ir-

regularity in function invocation patterns and the high cost

of cold starts has led them to allocate precious DRAM re-

sources to keep function instances always warm, a clearly

sub-optimal and inflexible approach. To cope with this is-

sue, both state-of-the-art and state-of-practice approaches

consider snapshotting as a viable mitigation, thus directly

associating cold start latency with storage performance.

Prior studies consider storage to be inert, rather than the

evolving hierarchy that it truly is. In this work, we evalu-

ate cold start and warm function invocations on instances

restored from snapshots residing on devices across differ-

ent layers of the modern storage hierarchy. We thoroughly

analyze and characterize the observed behavior of multiple

workloads and identify fundamental trade-offs among the

devices. We conclude by motivating and providing sugges-

tions for the inclusion of the modern storage hierarchy as a

decisive factor in serverless resource provisioning.
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1 INTRODUCTION
Serverless computing has recently received significant atten-

tion by both industry and academia [36, 23, 58, 47]. Devel-

opers create applications based on the notion of functions,

avoiding the explicit allocation of resources (e.g., VMs); in-

stead, service providers are responsible for allocating and

managing resources when functions are invoked. Serverless

provides three important benefits: (i) it abstracts away plat-

form details allowing the programmer to write code without

worrying about infrastructure management; (ii) it enables

resource and energy efficient execution as resources are con-

sumed according to workloads’ demands, and (iii) it supports

a pay-per-use model, which is beneficial for both application

developers, who avoid the error-prone task of resource provi-

sioning, and for service providers that can manage their own

resources more efficiently. These benefits designate server-

less as the next step in the evolution of cloud computing.

However, serverless still faces many challenges, with the

problem of cold starts being one of the most important across

different platforms [51, 47, 53, 54, 58]. In the FaaS paradigm,

functions can execute instantly if the corresponding applica-

tion code/execution environment is already loaded in mem-

ory (warm start). Otherwise, there is a start-up penalty as

dependencies must be loaded from storage (cold start) for
the invoked function to run. In the case of virtual machines,

cold start entails booting and launching a VM image from

storage to execute the requested function, while warm start

presupposes a running VM residing in memory.

Several studies [17, 53, 54, 47, 51] have shown that cold

start latencies can slow down function execution by orders of

magnitude. Thus, cold starts impact both users and providers.

On one hand, users may be reluctant to embrace server-

less, particularly for applications with critical latency con-

straints. On the other hand, providers are affected financially,

as users are not charged while their requests experience cold

starts [54].
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To address cold starts, prior works have mainly followed

two orthogonal approaches: (i) minimizing their number by

keeping instances warm [47], and (ii) mitigating cold start

latency to sustain user experience. In this paper we focus on

the latter, where various schemes have been proposed [2, 44,

24]. In particular, we focus on snapshotting, a recently pro-

posed and promising technique [17, 54, 51], which stores the

state of a fully booted function instance in storage and then

loads it upon a following cold function invocation, avoiding

entirely cold boot latencies.

However, all prior works considering snapshotting assume

traditional slow storage, such as SSDs. Storage systems nowa-

days support (sub)microsecond-scale I/O via emerging mem-

ories (e.g., Optane DCPM) and low-latency I/O devices (e.g.,

Optane NVMe) [10]. In this paper we seek to answer: What

is the impact on cold start of alternative storage devices for

snapshots? What are the implications to leverage persistent

memory as a snapshot store? Are there new opportunities

for improved resource management?

To answer these questions, we perform an extensive anal-

ysis of cold start performance when snapshots are stored

in three different devices (DCPM, NVMe and flash SSD).

We use Firecracker [2] as virtualization technology to sand-

box serverless workloads, adopted from FunctionBench [37,

38]. Our analysis shows, among other, that high-performant

storage can occasionally: (i) speed-up cold start by 8×, (ii)
narrow the gap between cold and warm function invocation

below ∼20%, and (iii) release significant amounts of DRAM

resources via direct access to storage (persistent memory).

We demonstrate how various function characteristics (e.g.,

execution time, read-only % of working set) affect its cold

start performance across different devices. Finally, we discuss

how snapshot placement on a modern storage stack can be

promoted to a new decisive factor for FaaS orchestration and

resource management, cross-cutting scheduling decisions

(e.g., warm function instances lifetimes).

In summary, the contributions of this paper are:

• Weperform an extensive performance analysis of snap-

shotting on top of a modern storage hierarchy us-

ing multiple serverless workloads. To the best of our

knowledge, this is the first work to quantify serverless

execution from the snapshot storage perspective.

• We show that the selection of storage device may sig-

nificantly affect the performance and close the gap

between cold and warm invocations.

• We identify application characteristics and device

trade-offs, and provide suggestions for leveraging the

benefits of a modern storage hierarchy in the context

of serverless snapshot resource management.
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Figure 1: Cold starts using VM snapshots. Different
storage media allow for buffered or direct access.

Table 1: Storage devices characteristics. For DRAM and
DCPM we report the performance of a single DIMM.

Type Latency Read BW Write BW Access

DRAM 80ns 23 GB/s 23 GB/s Direct

Optane DCPM[29] 300ns 6.8 GB/s 1.85 GB/s Direct

Optane NVMe [30] 10𝜇𝑠 2.2 GB/s 2 GB/s Buffered

SATA Flash SSD [31] 180𝜇𝑠 0.5 GB/s 0.5 GB/s Buffered

2 BACKGROUND AND MOTIVATION
Lightweight virtualization. To colocate thousands of FaaS
users while preserving isolation and security guarantees [2],

numerous serverless platforms and sandboxing alternatives

have been proposed based on containers [24, 3, 1, 9, 18, 12],

unikernels [42, 40, 43, 48, 13], VMs [2, 5, 8], or other ap-

proaches [4, 20, 41, 45, 49], with VMs being among the most

common choice for FaaS providers [2, 56] to serve functions.

In this paper we focus on Firecracker [2], an open-source

VMM (Virtual MachineMonitor) developed by AWS to power

Lambda [26] and Fargate [25], providing lightweight virtual-

ization sandboxes termedmicroVMs. Based on KVM [39] and

resembling a stripped-down QEMU [11], Firecracker features

a minimal emulation layer, providing storage and network

access via VirtIO [46] block and net devices, backed by files

and TAP [16] interfaces. Firecracker has minimal memory

footprint (3MB) and can boot VMs in ∼125𝑚𝑠 [2].

Snapshots as a cold start mitigation mechanism. State-
of-the-art [17, 54, 57] and state-of-practice [7] approaches

adopt snapshots as a technique to mitigate cold start delays.
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Once a function instance is fully initialized (e.g., already

serving a function handler), its state and memory are seri-

alized onto files on storage (i.e., snapshot). When a request

arrives for a function with no running instance, snapshots

can be used to create a new instance by loading/restoring

directly the stored state and avoiding entirely the boot proce-

dure. The newly created instance is instantly ready to serve

requests. Firecracker’s snapshotting design, influenced by

Catalyzer [17], reports restoration latencies below 10𝑚𝑠 [7].

Snapshot restoration. To restore a function instance from

snapshot files, Firecracker (i) loads VMM’s and microVM’s

state from the corresponding file, and (ii) creates a private

mapping of the guest’s snapshotted physical memory file

(mmap – Figure 1a). The low restoration latency reported [7]

is largely attributed to the design decision of letting the cre-

ated mapping populate on demand. Any first-touch access on

guest physical pages results in a VM-exit and a page fault on

the host. These occur on the critical path of a cold start func-

tion invocation and recent studies [54] have shown that they

significantly deteriorate cold start performance. However,

those studies only consider traditional storage devices (e.g.,

flash SSDs) for snapshot files placement. In this paper, we

seek to answer how the technique performs in the presence

of a modern storage hierarchy, where heterogeneous and

high-performant devices co-exist.

Storage trends. Storage systems evolve rapidly as micro-

second I/O devices are integrated into commodity stacks,

shaking the software ecosystem [10]. Storage hierarchies

today include high-performant devices, such as persistent

memory (e.g., 3D XPoint – Intel Optane DCPM [33]), low-

latency SSDs (e.g., Intel OptaneNVMe [32]), NVMe and SATA

Flash SSDs [34]. Table 1 summarizes the device characteris-

tics in our experimental setup; access latency varies by orders

of magnitude and bandwidth discrepancies reach 12×.
Persistent memory, apart from its superior latency and

read bandwidth, is also different in terms of access, being

connected to the system via thememory bus, like DRAM, and

accessible via CPU load/store instructions. This ground-

breaking access path blurs the decades-old distinction be-

tween slow-but-persistent storage and fast-but-volatile mem-

ory. The direct access (DAX [14]) OS mechanism maps vir-

tual pages from process address spaces directly to persistent

memory physical locations.

Cold start execution under buffered and direct snap-
shot access. Figures 1c and 1d depict cold start execution

when snapshots are restored from disk and persistent mem-

ory, respectively. As discussed earlier, first-touch memory

accesses on microVM’s physical memory result in VM-exits

due to Extended Page Table (EPT) violations, and page faults.

With traditional storage (e.g., SSDs), faults entail copy-

ing (buffering) the memory-mapped snapshot file pages into

DRAM (page cache) and then setting microVM’s EPT to point

at the new DRAM copies (Figure 1c). Thus, all microVM ac-

cesses to its physical memory eventually refer to DRAM

locations, but all the initialization faults are subject to the

cost of storage-to-DRAM data movement (I/O). This is a dom-

inant overhead in cold start latency, and is sensitive to the

underlying storage characteristics (latency and bandwidth).

With persistent memory and direct access, read faults en-

tail only the costs of populating EPT and guest page tables

on VM-exits, to point directly to DCPM locations (Figure 1d).

Overheads from storage-to-DRAM transfers of whole pages

are eliminated for those accesses, and parts of the guest phys-

ical memory end up directly backed by persistent memory.

The trade-off is that subsequent read accesses to these loca-

tions are always served by the device (Figure 1b), suffering

higher latency and lower bandwidth compared to DRAM.

Write faults still transfer the whole page into DRAM, lever-

aging Copy-on-Write semantics over the privately mapped

snapshot file (to preserve its content). In this paper, we study

how sensitive serverless workloads are to these trade-offs.

3 METHODOLOGY
3.1 Evaluation Platform
We conduct our experiments on a single host (similar to [54,

17]), equipped with an Intel Xeon Gold 5812T Cascade Lake

CPU with 2× 16 physical cores, with frequency fixed at

2.7 GHz and SMT disabled. Each socket is equipped with

160GB DRAM and a 128GB Intel Optane DCPMM in AppDi-

rect mode, while the host has also a 200GB Intel Optane DC

P4801X Series SSD over PCIe 3.0 and a 240GB Intel SSD 520

Series over SATA3. Hereinafter, we refer to them as DRAM,

DCPM, NVMe and SSD, respectively. Disks are formatted

with the ext4 filesystem and we use ext4-DAX for DCPM.

We use Linux 5.1 on host, Firecracker v1.0.0 as VMM, and

Linux 5.14 for guest microVMs, minimally configured, sim-

ilar to the kernels provided by the Firecracker developers.

In both host and guest kernels, THP [15] is set to always. In
general, we adhere to the AWS Firecracker team’s produc-

tion guidelines [6], but we use Firecracker without the Jailer

process.

Software stack adjustments. On EPT violation, by default,

KVM sets the write permission bit on EPT if the page is

writable, regardless of whether the fault that triggered the

VM-exit was read or write. This eliminates the need for sub-

sequent VM-exits to update the bit in cases of a WaR (Write-

after-Read) page access pattern. However, it also eliminates

the core advantage of snapshotting over DCPM: zero copies

of read-only pages. To prevent Copy-on-Write operations on

every DCPM snapshot access, we modify the host’s kernel

(only for DCPM experiments) to fall back to what the native

page fault handler does: we do not set the write permission

bit on EPT violations due to reads. This penalizes workloads

15



SYSTOR ’22, June 13–15, 2022, Haifa, Israel C. Katsakioris, C. Alverti, V. Karakostas, K. Nikas, G. Goumas, and N. Koziris

that perform WaR accesses (by suffering more VM-exits) but

enables the benefit of zero copying.

In Firecracker, we disable the page cache readahead func-

tionality, as it severely harms scaling microVM instances

to many cores when the instances are restored from snap-

shots stored on NVMe or SSD, by saturating their bandwidth

(§4.2). We use madvise and the MADV_RANDOM option for the

memory mapping of the guest physical memory file.

3.2 Experimental Process
3.2.1 Common Design. All our experiments include one

or more Firecracker instances waiting to restore a microVM

with one vCPU and 512MB memory. The microVMs are al-

ways pinned to the physical cores of the NUMA node local to

the DCPMmodule, and snapshot files are stored on the device

under examination. MicroVMs’ disk images are read-only

mounted on the guests, and served from a DRAM-backed

filesystem on the host, which allows us to better isolate the

performance of snapshotting itself across the devices, with-

out burdening them with guests’ local I/O.

To accommodate functions’ input and output data, we

deploy a single-node MinIO [27] server (acting as a S3-

compatible store) on the same physical host as the microVMs,

but on a separate NUMA node, serving objects from a DRAM-

backed filesystem as well. Thus, we take into account any

software overheads on the critical path (e.g., the network

stack), without adding obtrusive noise from data transfers

over the wire to our measurements. The latter is a topic that

merits its own interest with respect to analysis and optimiza-

tion [53, 58, 56, 44, 52].

Finally, a multithreaded client uses Firecracker’s API to

communicate to the VMM processes which snapshot file

should be used to restore a microVM. Once a microVM is

restored and resumed, client threads can issue requests. In

all experiments, after initiating a connection to the server

inside their assigned microVM, client threads issue two iden-

tical consecutive requests, allowing the evaluation of both

cold and warm function invocations. The client runs on the

host, on a different NUMA node than the VMM processes

to avoid interference. Snapshot files are removed from the

page cache between successive runs, to closely model cold

function invocations in real FaaS environments.

3.2.2 Workloads. To model FaaS workloads, we employ

functions from FunctionBench [37, 38], a representative

serverless benchmark suite. Table 2 presents the adopted

functions. We use gRPC [22] as a communication fabric be-

tween function servers and clients, and Protocol Buffers [21]

as their messages’ serialization format
1
.

1
Source code is available at https://github.com/cslab-ntua/fbpml-systor22.

Table 2: FaaS workloads adopted from FunctionBench.

Name Description

helloworld No actual workload; for reference

lr_serving Logistic regression serving (scikit)
pyaes Python AES encryption of a string

chameleon HTML table rendering

cnn_serving JPEG classification CNN (Tensorflow)

image_rotate JPEG image manipulation

json_serdes JSON serialization & deserialization

matmul_fb Matrix multiplication (numpy)
video_processing Gray-scale effect application (opencv)

lr_training Logistic regression training (scikit)

3.2.3 Metrics. There are multiple ways to measure cold

start latency [17, 54, 51]. Our approach mostly resembles

that of SnapFaaS [51]; total cold start latency measures from

the instant the client contacts the pre-forked VMM process

to restore the microVM, until the client receives a response

from the invoked function inside it. We run every experiment

10 times and report the average latency.

We break total latency down to the following: (i) VMM
loading that includes the time between the point that the

client attempts to contact the VMM to restore the microVM

until the point it receives a response that the microVM has

been resumed; (ii) function execution as the total duration

of the handling of the incoming request as perceived (and

measured) by the function itself, and (iii) client overhead that

includes the time between the point that the client attempts

to contact the gRPC server inside the microVM, until the

point the client receives a response from the function, mi-

nus function execution. Client overhead includes the time

required to restore the gRPC connection with the server,

the (intra-node) network overhead, and the time required to

(de)serialize the request and the response (which are both

minimal for all our functions).

4 EXPERIMENTAL RESULTS
4.1 Single microVM Experiments
We use a single client thread to evaluate the cold start latency

of a single microVM booted from a snapshot stored in one

of the three available devices: DCPM, NVMe or SSD. Our

purpose is to study the performance of each function in

isolation across all different devices, and deduce some first

fundamental characteristics.

Function classification. Figure 2 illustrates the average la-
tency of both cold and warm invocations of the functions

adopted from FunctionBench, along with their breakdowns,

when a single microVM is running. We classify the functions

into three categories, shown in Table 3, based on their ob-

served behavior in the case of warm requests. Light functions’
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Figure 2: Average latency of cold start and warm function invocations, along with their breakdowns, when a single
MicroVM is running. (Note that vertical scales vary per function.)

Table 3: Categorization of functions.

Class Functions

Light lr_serving, pyaes (and helloworld)

Mid chameleon, cnn_serving, image_rotate, json_serdes

Heavy matmul_fb, video_processing, lr_training

requests are handled very quickly by warmed-up instances

and their workload is minimal. In contrast, Heavy functions’

latency is noticeable, regardless of the cold start. Mid func-

tions stand in the middle; they are handled fast, but their

workload is not trivial.

4.1.1 Cold start execution. First, we focus our analysis
on cold start performance through pairwise comparisons

of devices in adjacent layers of the storage hierarchy. As

discussed in §2, cold start invocations suffer from page faults,

whose latency is affected by the medium’s characteristics,

i.e., its latency and whether the access is direct or buffered.

SSD vs NVMe.The difference between the two devices, across
all functions, is evident in Figure 2. In particular, Light func-
tions experience a 5−6× average slowdown in total latency

when the snapshot is stored on the SSD rather than the

NVMe. The slowdown is significant for Mid functions too,

about 3.2−4.7×. Heavy functions appear to be the least af-

fected, featuring 25%−51% average slowdowns.

To investigate these slowdowns, we introduce Figure 3,

which aggregates per device the delay of each individual

constituent of the average total latency of every function.

Starting with VMM loading, we observe that the measured

delays form disjoint clusters, ranging a few hundreds of

VMM Loading Client Overhead Function Execution

1

100

10000

30

50

100

4.00

4.25

4.50

D
u

ra
ti
o

n
 (

m
s
)

DCPM NVMe Flash SSD

Figure 3: Individual constituents of total latency in
cold start invocations, per device, across all functions.
(Note that vertical scales vary per constituent.)
𝜇𝑠 on the axis, which indicates that VMM loading depends

on the underlying medium where the snapshot is stored.

Indeed, it entails reading a small 12KB snapshot file where

microVM state is stored, as well as reading file metadata

(using open) to create a private memory mapping for guest

physical memory. Nevertheless, the contribution of VMM
loading in total function latency is negligible overall.

In the same figure we observe that, similarly, client over-
head depends strongly on the underlying device. By its defini-
tion, elucidated in §3, client overhead encompasses a number

of page faults and EPT violation VM-exits that need to be

served. These refer either to pages containing code – both

17
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kernel (e.g., the network stack) and userspace (e.g., CPython

and the necessary modules) – or to fresh allocations which

also need to touch guest physical frames lying on the device.

As a result, the values in Figure 3 form disjoint clusters for

both SSD and NVMe, which render the superiority of the lat-

ter visible. Client overhead delays for functions booted from

snapshots stored on SSD exhibit a significant slowdown of

4.5−6.3× compared to the corresponding on NVMe.

When it comes to function execution delays, even though

Figure 3 hints some differences across the storage hierarchy,

it is otherwise rather inconclusive. Therefore, the total la-

tency of a function is highly dependent on the nature of its

actual workload. Figure 2 illustrates that there is always an

improvement in function execution delays when using NVMe

instead of SSD. For the particular constituent, Light functions
on SSD suffer a significant 5.6−6.9× slowdown on average

compared to NVMe. Function execution times’ slowdown is

decreased forMid functions to 2.8−4×, whereas it is 15%−41%
for Heavy functions.

Takeaway 1: Employing faster block devices (e.g., Optane

NVMe) to store snapshots can be enough to speedup cold

starts up to 6× compared to traditional flash-based SSDs.

NVMe vs DCPM. The differences between those two devices

are generally modest in comparison with the differences

between NVMe and SSD. In particular, Light functions ex-
perience on average a 2.3−2.4× slowdown in total latency

when the snapshot is stored on NVMe rather than on DCPM.

The slowdown forMid functions is significantly lower, about

68%−94%. Heavy functions are the least affected, with a mere

9%−10% slowdown in total latency when NVMe is employed

in place of DCPM.

The reason for the improved performance of DCPM over

NVMe is twofold. First, DCPM is a device with lower access

latency. Second, there is a difference on the amount of data

transferred from each medium, as DCPM features direct

rather than buffered access. In the case of DCPM, only pages

that are written are copied to DRAM, via Copy-on-Write

faults that keep the snapshot file intact. Read-only pages’

content, on the other hand, is never copied to DRAM; instead

it is accessed via load instructions directly on persistent

memory (§2). As a result, it is the ratio of the read-only and

writable pages, on each function’s working set, that dictates

the amount of data that will be copied to DRAM. In contrast,

when first accessing a page stored on NVMe, regardless of

whether it is a read or a write access, an additional transfer

of that page into the page cache is always imposed.

To investigate this aspect, we examine the percentage

of read-only and writable pages of the working sets of the

microVMs, as derived by monitoring EPT violation VM-exits

on the host, and compile Table 4. We observe that for Light

Table 4: Function instances’ (i) working set (WS) at 4KB
page granularity, (ii) read-only/read-write accesses %
to WS pages, (iii) total reads served by DCPM (in MB).
The latter does not match WS, as read-only data are
always fetched from the medium (DAX) and at smaller
granularities than 4KB.

Function
WS
(MB)

[dstat]

Read-
Only
%

Read-
Write
%

Total reads
served from
DCPM (MB)
[pmwatch]

helloworld 9.5 70 30 7.7

lr_serving 13 68 32 11

pyaes 10 67 33 8.7

chameleon 16 60 40 15

cnn_serving 49 44 56 76

image_rotate 32 44 56 34

json_serdes 45 32 68 50

matmul_fb 18 44 56 18

video_processing 51 43 57 59

lr_training 101 23 77 185

functions, the majority of page accesses are read-only, which

indicates that a larger portion of data remains in DCPM

rather than being moved into DRAM. This, in turn, could

explain why Light functions exhibit the biggest improvement

from booting over DCPM rather than NVMe. The situation

is analogous forMid and Heavy functions, whose gains drop

along with their percentage of read-only pages faulted-in.

To further understand the total latency breakdown, we

consult Figure 3. VMM loading is slightly costlier for DCPM

than NVMe, but their difference lies in the range of a few

hundreds of 𝜇𝑠 at most.

For client overhead delays, we observe that performance

over NVMe is consistently worse than over DCPM. Func-

tions booting from snapshots stored on the former exhibit

on average a 2.5−3× slowdown in client overhead delays

compared to those using the latter.

The same pattern recurs in the case of the function exe-
cution component of the latency breakdown, which can be

better studied in Figure 2, since Figure 3 merely suggests its

strong dependence on the actual workload of the function.

We observe that function execution time is usually slightly

improved in the case of DCPM. Light functions, whose work-
ing sets consist mostly of read-only pages, when booted from

snapshots stored on NVMe experience a 2−2.7× slowdown

for this constituent. Mid functions’ slowdown in function
execution time when using NVMe over DCPM is 60%−85%.
The slowdown drops to a mere 4%−9% for Heavy functions,

which comprise the least affected category from changing

the snapshot storage medium from a DCPM to a NVMe de-

vice, and also the category with the highest percentage of

writable pages, according to Table 4.
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Table 5: Cold start execution slowdown (vs warm start)
per function class and per storage medium.

Class DCPM NVMe SSD

Light 6.3−9× 9.4−17.4× 19.4−29.4×
Mid 1.6−4× 2.5−7.5× 6.6−17.8×
Heavy 1.05−1.1× 1.13−1.18× 1.44−1.77×

Takeaway 2: Cold start invocation of functions that

mainly perform read-only memory accesses and run

shortly (e.g., < 100𝑚𝑠) can benefit by up to 2.4× by DCPM

versus the Optane NVMe. If a function runs for longer

periods and is CPU-bound or requires write access to

the majority of its working set, the gap between the two

mediums becomes negligible.

An important implication of employing a directly accessed

device, like DCPM, as a snapshot store is that precious DRAM

resources that would otherwise be occupied by the guest’s

working set, are not required anymore, and are free to be

used elsewhere. In a nutshell, the read-only percentage, as

reported in Table 4, represents also the reduction in occupied

DRAM resources with respect to NVMe (or any buffered ac-

cess device). The cost for that is that subsequent invocations

which could enjoy the benefits of a warmed-up instance, are

now paying the same cost of accessing the higher-latency

medium. We study this effect in the next section.

This observation introduces a fundamental trade-off. On

the one hand, DRAM is a low latency medium compared to

DCPM, thus boosting the performance of serverless work-

loads that remain warm. On the other hand, DRAM’s cost

per GB is significantly higher than that of DCPM, constrain-

ing its capacity and rendering other layers of the storage

hierarchy an important part of resource allocation policies.

Takeaway 3: Using DCPM as the snapshot store can save

up to ∼70% of DRAM resources for a running function

compared to an SSD.

4.1.2 Cold start vs warm execution. Next we study the

cold start penaltywith respect to the averagewarm execution

of each function class and per device where snapshots are

stored. Table 5 summarizes our results. Cold start invocations

are up to 29.4× times slower compared to the respective

warm ones when snapshots are stored on the SSD, whereas

the slowdown drops to 17.4× for NVMe and 9× for DCPM.

This effect depends heavily on the function class. Light
functions suffer the biggest slowdowns as their minimal

workload is severely impeded by restoring the microVM and

reestablishing the gRPC connection. On the contrary, Heavy
functions’ average latency is affected the least: in the case

of SSD, cold start invocations still exhibit slowdowns of up

to 77%, while for NVMe the overhead drops to 18% and for

DCPM to a mere 10%.

Takeaway 4: High-performance storage mediums (e.g.,

Optane NVMe and DCPM) lead to cold start performance

close to warm (e.g., only 9% slower), especially for func-

tions with significant execution times (e.g., >500𝑚𝑠).

4.1.3 Warm execution. We focus now on the cases where

an incoming request is handled by an already running and

warm function instance. Here, a significant portion of the

microVM’s working set is already in DRAM, thus the number

of page faults – and also the I/O to the snapshot store – is

expected to be minimal, especially given that a large number

of pages is reused across function invocations [54].

We seek to answer if DCPM penalizes warm execution

(compared to the SSD and NVMe) as functions’ memory

accesses to read-only portions of their working set are still

served by storage, as discussed earlier. However, this is not

the behavior observed in Figure 2, where it is evident that

functions usually perform better over DCPM than the rest

of the devices even in the cases of warm executions.

We attribute this peculiarity to the fact that no working

set has really been moved into DRAM in its whole. Non-

determinism permeates several aspects of warmed up in-

stances, leading to page faults that incur additional I/O to

the snapshot store. Given the high latency of SSD and NVMe

compared to DCPM, sometimes this can be enough to turn

the tables in favor of the latter. Nevertheless, as recurring

invocations warrant a decreasing amount of I/O from the

snapshot store, the total latency of warm invocations over

SSD and NVMe is expected to eventually improve due to the

page cache. To quantify our hypothesis, we additionally ex-

amine the 51
𝑠𝑡
consecutive warm invocation on each device.

We confirm that page caching effects significantly narrow

the gap; latency differences among the devices do not sur-

pass 4%, albeit DCPM usually remains the fastest. We further

verify our assumption by additionally conducting the experi-

ments using a filesystem backed by DRAM as snapshot store.

For all functions, the total latency measured is slightly, yet

consistently, lower than that of the DCPM-backed snapshot

store, too: the slowdown of the latter compared to the former

reaches 24% for Light functions, and merely 4% for the rest

of the functions.

Takeaway 5: Employing DCPM as the snapshot store

does not affect the latency of warm function invocations

when microVMs run in isolation.

4.2 Scalability Experiments
In this subsection, we evaluate how functions in microVMs

restored from snapshots on various devices behave as the

number of concurrent microVMs is increased. Multiple client
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threads attempt to restore a number of microVMs from snap-

shots, in parallel. To simplify our analysis, in our experiments

we always run the same function across all microVMs, so

that the actual workload is uniform. A real-world scenario

would include an orchestrator [9, 18] featuring some sort

of queuing system to leverage fewer warmed-up instances,

rather than spawning a new one per incoming request. For

that reason, in our experiments, each microVM is otherwise

treated as if it was a distinct cold function being invoked,

and is therefore associated with its own distinct disk im-

age and snapshot. We note that all microVMs are pinned to

the 16 physical cores of the NUMA node that is local to the

DCPM module, equally distributed among them when nec-

essary. Therefore, concurrent function invocations beyond

16 instances share all CPU resources.

4.2.1 Cold start execution. Having multiple VMM pro-

cesses attempting in parallel to restore several microVMs

from snapshots, all stored on the same device, stresses the

read bandwidth of the underlying medium. Figure 4 summa-

rizes our cold start scalability results.

SSD vs NVMe. We observe that the total latency using the

SSD is always visibly worse than when using the NVMe. For

Light functions, the slowdown ranges between 5.2−8.2×. It
remains stable until 4 microVMs in parallel, but always in-

creases for more of them, peaking at 16 and dropping beyond

that, as NVMe’s performance gets also penalized. The situa-

tion is similar forMid functions, with the slowdown ranging

between 3.2−7.5×, being relatively stable until 2 or 4 con-

current microVMs, peaking at 16 and dropping afterwards.

Based on these findings, we verify that SSD’s bandwidth

for random reads (IOPS limit) is saturated when 4 instances

boot from snapshots in parallel. In Figure 5, we plot one func-

tion per class employing linear scale on the vertical axis,

to better illustrate the different concurrency level at which

bandwidth’s curve becomes apparent for the devices. Heavy
functions are affected significantly less, with a slowdown of

1.3−2×, peaking at 16 microVMs as well.

Takeaway 6: Read bandwidth can severely affect the scal-
ability of cold function invocations [54]; e.g., scaling stops

already at 4 cores for SSD. A medium with superior band-

width (e.g., NVMe) enables scaling to 8-16 concurrent

cold start invocations each running up to 7.5× faster.

NVMe vs DCPM. Overall, we observe that the performance

of the two devices is close. Light functions exhibit a slow-
down of 2.1−2.8× when using NVMe in place of DCPM,

which peaks at 4 and 8 concurrent microVMs. Mid scaling

is similar but with a slowdown ranging from zero (only in

image_rotatewith large concurrency) up to 2×.Heavy func-
tions experience the smallest slowdown when using NVMe

instead of DCPM: 1%−97%.

For NVMe, Light and Mid functions appear to saturate its

bandwidth (2 GB/s) somewhere between 8 and 16 instances.

Heavy functions do not appear to be I/O-bound and their

performance drops, commonly beyond 16 instances, due to

CPU sharing. For DCPM, scaling follows the same trend as

with NVMe; performance commonly drops beyond 8 cores,

failing to scale perfectly to 16 cores, and severely deteriorates

for >16 parallel function instances. This is not a straightfor-

ward result, as DCPM holds a significant advantage over

NVMe with respect to read bandwidth (6.8 GB/s vs 2.2 GB/s

– Table 1). We identify two reasons for this behavior.

First, for NVMe, recurring page accesses during function

execution are served by DRAM (page cache). This is not true

for DCPM, where read-only pages remain on the medium

(direct access) and recurring accesses always pay its higher

latency and consume its bandwidth. Table 4 reports the total

reads served by DCPM, measured in approximation using

pmwatch [28]. In comparison to the data fetched from NVMe

(equal to WS size – dstat [59] measurements), we observe

that certain workloads (e.g., cnn_serving) read more bytes

from DCPM during function invocation, increasing their

bandwidth requirements. Others (e.g., lr_serving) fetch
fewer data as they probably access sparsely their WS pages.

Taking into consideration the above, we observe that Light
functions already saturate DCPM’s bandwidth at 16 or more

concurrent microVMs, as the throughput they collectively

extract
2
is between 5–6GB/s. ForMid functions, where the ob-

served scaling behaviour is similar, themaximum throughput

(saturation point) observed is significantly lower, between

2.4–4.8GB/s. We discuss further this poor performance that

limits DCPM scalability over NVMe.

Second, in our case many accesses are expected to be

concurrent, irregular and smaller (e.g., guest’s pointer deref-

erences) than the commonly suggested 256B access size [61,

35] for which the nominal 6.8 GB/s DCPM bandwidth is

reported [50]. Past studies [61, 35] have shown that the per-

formance of non-interleaved (as in our setup – §3.1) DCPM

is severely degraded when access size is minimal (e.g., cache

line size), even at the measured optimal concurrency level.

Moreover, they have shown that even at optimal access sizes,

the performance is non-monotonic as concurrency varies

due to increased irregularity in the access pattern [61, 35].

Consequently, we find that our results corroborate with past

studies as our use case exhibits a combination of character-

istics known for degrading non-interleaved DCPM setups’

performance under scale. To verify that the limited through-

put observed can be attributed to the aforementioned charac-

teristics, we devise a microbenchmark. A variable number of

2
We calculate an approximation of the collectively extracted throughput by

dividing the amount of data transferred from the DCPM (or the working

set read from the NVMe) for each microVM with the concurrent function

invocations’ average response latency.

20



FaaS in the Age of (sub-)𝜇𝑠 I/O: A Performance Analysis of Snapshotting SYSTOR ’22, June 13–15, 2022, Haifa, Israel

helloworld lr_serving pyaes chameleon cnn_serving

image_rotate json_serdes matmul_fb video_processing lr_training

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

300

1000

3000

10000

5000

10000

30000

100

300

1000

3000

3000

5000

10000

30

100

300

1000

500

1000

3000

5000

30

100

300

1000

300

1000

3000

30

100

300

1000

100

300

1000

3000D
u
ra

ti
o
n
 (

m
s
)

DCPM NVMe Flash SSD

Figure 4: Average cold start latency as the number of microVMs restored from snapshots in parallel increases. (Note
that vertical and horizontal scales are 𝑙𝑜𝑔10 and 𝑙𝑜𝑔2, respectively, with the former being different per function.)
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(b) Excluding the SATA flash-based SSD

Figure 5: Average cold start latency as the number ofmi-
croVMs restored from snapshots in parallel increases.
(Note that the scale on the vertical axis is linear and
varies per plot.)

threads read from a (separate each) 16MB file on each device.

Assuming a 1:1 read-write access ratio, to approximate a

microVM’s access pattern (Table 4), we randomly copy 4KB

blocks of the first half of the file into DRAM (to emulate

CoW accesses), and then randomly read 64B blocks from the

other half of the file to emulate irregular read-only accesses.

We measure throughput similar to the one observed in our

real-world experiments: peaking at 4GB/s for 8-16 threads

on DCPM, and tailing off as concurrency further increases

and NVMe’s throughput catches up (an analogous result is

reported in [60]).
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Figure 6: Average “warm” latency as the number of
concurrentmicroVMs increases. (Note that vertical and
horizontal scales are 𝑙𝑜𝑔10 and 𝑙𝑜𝑔2, respectively, with
the former being different per function.)

Takeaway 7: Inherent characteristics of snapshot restora-
tion at scale (e.g., irregular pattern due to high concur-

rency and small access granularity) are not aligned to the

best programming practices for persistent memory [61].

A setup consisting of multiple interleaved DCPM modules

could, therefore, be considered as an option to compensate

for the throughput loss due to the characteristics of our use

case, as it can greatly improve random small read bandwidth

(e.g., ∼2→10GB/s for 64B accesses, as reported in [61, 35]).
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4.2.2 Warm execution. Figure 6 shows the scalability of

warm-start function invocations for a representative subset

of the workloads, at least one per class.
SSD vs NVMe. We observe that the average latency for Light
and Mid functions in instances restored from SSD is always

worse than when restored from NVMe, even though the

working set of the running functions is expected to reside

mostly in DRAM for both cases. The maximum slowdown

reaches 4×, observed in Light functions. This is attributed to

additional page faults, even in warm runs, that incur addi-

tional I/O to the snapshot file. This effect has been already

observed in §4.1 and here is magnified by concurrency, which

also stresses bandwidth limits.

Takeaway 8: Storage hierarchy is a decisive factor when

snapshotting techniques are put into use, as it can affect

the latency even of warmed-up instances due to sponta-

neous page faults (hence I/O to the underlying medium).

NVMe vs DCPM. We generally observe that, warmed-up mi-

croVMs restored from DCPM rarely preserve their perfor-

mance superiority at scale. The consistent performance

degradation of DCPM compared to NVMe, exacerbated for

function classes with higher percentage of read-only accesses

(as per Table 4), constitutes a manifestation of the higher

bandwidth of DRAM (page cache) compared to DCPM. In-

terestingly though, even in our limited single-DIMM DCPM

setup (Takeaway 7) not all workloads are penalized. Light
functions are affected the most, exhibiting a slowdown of

1.1−3.7× (beyond 2 concurrent instances). Instead, the per-

formance ofMid functions fluctuates by a mere ±35% at most

across the media, with NVMe being faster in most cases, but

their performance is generally very close. Heavy functions

perform equally for all mediums.

In light of the above, we observe that the greater the ben-

efits a function class exhibits from running over DCPM on

cold start invocations, the more is penalized during warm

executions that scale to many cores.
3

Takeaway 9: DCPM’s limited bandwidth (compared to

DRAM) may penalize warm execution scalability, espe-

cially in limited single-DIMM DCPM setups (Takeaway7).

4.3 Disk Readahead
Disk prefetching is enabled by default on Linux, so that

when a file page is read from the disk into the page cache, a

number of logically successive ones are fetched along with it

3
Note that themaximumnumber of concurrent requests to DCPM is dictated

by the number of physical cores, and not the number of running functions

(which can be thousands).Nevertheless, the number of running functions

can affect the access pattern (irregularity) of the requests to DCPM, which

in turn can affect the bandwidth that the medium provides [60, 61].

(readahead faults). In all our previous experiments we have

turned page cache readahead off.
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Figure 7: Cold start scalability with readahead enabled.

Figure 7 shows the average measured cold start latency

for a subset of the examined functions (one per class) when

readahead is enabled. Note that readahead is only relevant to

NVMe and SSD that have buffered access. Juxtaposition with

Figure 4 unveils that sometimes prefetching is advantageous

for 1 or 2 concurrent instances (also depending on the actual

workload), but severely penalizes performance scaling. Disk

bandwidth is quickly saturated by fetching blocks that are

never accessed. Light functions, that are already BW-limited,

are affected the most, experiencing average slowdowns sky-

rocketing to an order of magnitude higher, or more.

Prior work [54] has raised the issue of the potentially harm-

ing effects of generic page cache prefetching in FaaS, identi-

fying that cold starts tend to have irregular access patterns

and cannot benefit from it. We augment on this observation

studying its major bandwidth saturation effect.

Takeaway 10: Disk prefetching can needlessly saturate

storage bandwidth and reduce the performance.

5 MAIN TAKEAWAYS AND DISCUSSION
In this section, we recap what we consider as the major take-

aways of our analysis and seek to answer what opportunities

arise with respect to better resource management for FaaS.

Cold start performance can vary by up to 8.5×, depend-
ing on which device the snapshots are stored. As laten-
cies and bandwidth can vary by orders of magnitude on a

modern storage stack, integrating snapshot placement on the

decision making mechanisms of a FaaS orchestrator can af-

fect performance. For example, real-world traces from cloud

providers [47] indicate that 20% of applications are respon-

sible for >99% of invocations. Placing popular snapshots

on high-performant devices could improve overall system

performance and scalability (bandwidth importance §4.2).

Functions’ execution overhead and access patterns
change the performance gains obtained by devices.
While placing snapshots to faster mediums (e.g., Optane

DCPM or NVMe vs flash SSD) is always beneficial; the bene-

fit among devices on the higher ranks of a modern storage
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stack is not linear. We observe that DCPM is beneficial (over

NVMe) for functions with mainly read-only access on their

working sets. Direct storage access eliminates data move-

ment to DRAM, providing ∼ 2× performance benefit. At the

same time we observe that this performance boost is relevant

mainly for functions with execution times ∼<100ms (Light),
which comprise ∼20% of function invocations [47], and are

highly sensitive to initialization costs.

Fast mediums bring cold start performance close to
warm for a category of workloads. Past studies [54, 51]
consider cold start latency a priori prohibitive in terms of

performance, assuming storage access latencies in the order

of 100s of 𝜇𝑠 (flash). We find that fast devices (≤ 10s of 𝜇𝑠) can

bring cold start execution performance of heavy functions

(running for >500ms, >50% of invocations [47]), very close

to warm (1.1−1.18× in our experiments). We consider this

as a new decisive factor for the “keep-alive” policy applied

by an orchestrator [47]. If cold starts are entirely cheap, idle

function instances can be shutdown immediately, releasing

precious DRAM resources.

Utilizing DCPM as snapshot store presents various
trade-offs. Backing part of virtual machines’ physical ad-

dress spaces (read-only) with persistent rather than volatile

memory, means higher latency and lower bandwidth during

function execution. This may penalize warm performance for

some functions. Thus, (i) explicit caching of portions of their

working sets in DRAM (similar to [54]) could beworth explor-

ing, or (ii) DCPM should be chosen only for such functions

with infrequent invocation times (which are anyway likely

subject to cold start latency). Meanwhile, DCPM snapshot

stores can lead to 70% less utilization of DRAM resources.

6 RELATEDWORK
Cold start & Snapshotting. FaaS cold start delays have

been modeled and studied by prior work [58, 47, 17, 54, 51,

53]. Some works also propose new techniques in an attempt

to mitigate cold starts [57, 17, 54, 51]. In particular, REAP [54]

studies extensively the detrimental cost of demand paging on

function invocations and proposes an optimized method to

only prefetch the working set. SnapFaas [51] identifies funda-

mental overheads entailed by microVM snapshot restoration

to propose a new technique, arguing that alternative designs

would still be bound by the same overheads, unless they

break the FaaS abstraction. All these works are robust and

thorough, but assume traditional storage (i.e., flash SSDs) to

optimize snapshotting techniques and to evaluate them. We

argue that recent technological advancements render stor-

age a distinct factor that needs to be taken into account for

further tuning FaaS environments in the modern datacenter.

Modern Storage Hierarchy. Past work [60] has studied the
relative performance among layers of the modern storage

hierarchy, and extensively studied caching under the new

prism. It proposes non-hierarchical caching and provides the

novel Orthus implementations to demonstrate its efficacy.

Our study focuses on the specific case of snapshotting in the

context of FaaS and motivates the inclusion of storage hier-

archy as a factor to be considered in resource management.

Persistent Memory. Past work has extensively studied the

performance of DCPMunder different configurations (e.g., in-

terleaving, concurrency, etc) [61, 35] or under specific work-

loads [19], providing useful hints and suggested patterns

for programming over the medium [61]. Our study points

out how microVM snapshotting over DCPM breaks some

of those rules, and corroborates past results showing their

effect on cold and warm function invocations.

Serverless and Persistent Memory. To our knowledge,

there is only one study [55] involving FaaS over DCPM. How-

ever, that work focuses on container-based FaaS, without

studying snapshotting, and it lacks our thorough method-

ology to identify and quantify the impact of the medium in

the context of FaaS.

7 CONCLUSIONS
In this paper we analyze the performance of cold start and

warm executions in FaaS environments, placing snapshots

across different devices of a modern storage hierarchy. We

characterize the behavior of representative workloads, ex-

amine fundamental trade-offs and discuss how these can be

leveraged for efficient snapshot placement. Based on these,

we plan to enrich orchestrators’ decision making regard-

ing snapshot placement and function scheduling, targeting

better system performance overall.
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