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Abstract: The rich, complementary data provided by Sentinel-1 and Sentinel-2 satellite constellations
host considerable potential to transform Earth observation (EO) applications. However, a substantial
amount of effort and infrastructure is still required for the generation of analysis-ready data (ARD)
from the low-level products provided by the European Space Agency (ESA). Here, a flexible Python
framework able to generate a range of consistent ARD aligned with the ESA-recommended processing
pipeline is detailed. Sentinel-1 Synthetic Aperture Radar (SAR) data are radiometrically calibrated,
speckle-filtered and terrain-corrected, and Sentinel-2 multi-spectral data resampled in order to
harmonise the spatial resolution between the two streams and to allow stacking with multiple scene
classification masks. The global coverage and flexibility of the framework allows users to define a
specific region of interest (ROI) and time window to create geo-referenced Sentinel-1 and Sentinel-2
images, or a combination of both with closest temporal alignment. The framework can be applied to
any location and is user-centric and versatile in generating multi-modal and multi-temporal ARD.
Finally, the framework handles automatically the inherent challenges in processing Sentinel data,
such as boundary regions with missing values within Sentinel-1 and the filtering of Sentinel-2 scenes
based on ROI cloud coverage.

Keywords: Sentinel-1; Sentinel-2; analysis-ready data; multi-modal; multi-temporal

1. Introduction

Earth observation (EO) data are an important foundation in support of achieving
global-wide development goals as outlined in the United Nations 2030 Agenda for Sus-
tainable Development [1]. Advances in machine learning (ML) and deep learning (DL)
techniques have revolutionised the computer vision, natural language processing (NLP)
and time series analysis disciplines; however, their adoption in the Earth observation (EO)
domain remains comparatively scarce, primarily owing to the challenges with transforming
data from satellite providers into analysis-ready formats. The generation of analysis-ready
data (ARD) remains heavily reliant on extensive domain knowledge and expertise in man-
aging geospatial data, which in turn restricts the meaningful analysis of large volumes of
data. The European Space Agency (ESA) provides free, open access to low-level products,
i.e., Levels 1-2; however, the availability of ARD with global coverage remains a major bar-
rier. The infrastructure requirements to generate ARD products are demanding as satellite
data processing is both computationally and memory-intensive. The ready availability of
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ARD in a format amenable to the development of ML and DL applications would yield
unprecedented opportunities to exploit under-utilised satellite data to develop solutions
to global challenges such as flood risk mapping [2], water resource management [3], de-
forestation [4] and glacial lake mapping [5]. Collocated Sentinel-1 and Sentinel-2 data are
also used in applications such as land cover mapping [6], crop type classification [7], cloud
removal [8], and soil moisture mapping [9].

A number of analysis-ready datasets have been published in recent years. For Sentinel-
1, datasets such as OpenSARShip for ship detection [10] and OpenSARUrban for urban
area classification [11] have been made available. Similarly, for Sentinel-2, the Uganda
dataset for environmental monitoring [12], the Eurosat dataset for land use and land cover
classification [13] and the TimeSen2Crop dataset for crop classification [14] have been
published. Only a small number of collocated Sentinel-1 and Sentinel-2 analysis-ready
datasets are available. For example, the SEN1-2 dataset, consisting of 282,384 pairs of
vertically polarised (VV) Sentinel-1 and RGB Sentinel-2 patches, was published for the
fusion of Synthetic Aperture Radar (SAR) and optical data sources using deep learning [15].
Subsequently, the SEN12MS dataset, with 180,662 triplets of dual polarised Sentinel-1,
multi-spectral Sentinel-2 and MODIS land cover maps, was released [16]. The So2Sat
LCZ42 dataset, consisting of Sentinel-1 and Sentinel-2 patches with local climate zone
(LCZ) labels, was published for LCZ classification [17]. However, the pre-defined location
and temporal span of these datasets restrict their use.

Earth Observation Data Cubes (EODCs) are an emerging trend in terms of providing
organised data as a multi-dimensional array in a time-ordered manner. EODC was concep-
tualised at a nation-wide scale by the Government of Australia through the Landsat archive
data [18–20], the aims being to address the challenges of volume, variety and velocity in
handling Big Data for EO applications. Recently, the Committee on Earth Observation
Satellites (CEOS) has championed the Open Data Cube (ODC) initiative in an effort to
mitigate the difficulties in generating and accessing ARD. A number of data cubes for
multiple territories have become available using ODC technology, e.g., Switzerland [21,22],
Columbia [23], Taiwan [24], Australia [25] and Africa [26], providing a combination of SAR
and optical data. A recent effort has expanded the scope of ARD to include SAR data with
interferometric coherence along with normalised radar backscatter and dual-polarization
decomposition for Australia [27]. Currently, nine open data cubes are operational, 14 in
development and 32 under review [28], not including those that, as yet, have not been
reported. Alongside the ODC initiative, platforms such as FORCE (Framework for Op-
erational Radiometric Correction for Environmental monitoring) implement combined
processing pipelines for optical data (Sentinel-2 and Landsat) with the capability to generate
cubes [29]. Moreover, EarthServer provides access to spatio-temporal EO data using the
Rasdaman array-database system [30] while the Google Earth engine provides access to
high-performance computing resources for geospatial data [31]. However, these cloud-
based platforms restrict analyses only to their platform and thus limit the development and
scope of local solutions [32].

The establishment and ease of accessibility for a spectrum of data cubes for different
geographies and applications is a significant first step; however, the configuration, manage-
ment and operation of a data cube remains cumbersome, hindering the advancement of
the state-of-the-art in Earth sciences and the development of more functional applications.
The recent proof-of-concept Data Cube on Demand (DCoD) methodology—tested in two
sites in Bolivia and the Democratic Republic of Congo (DRC) in the field of environmental
monitoring [33]—proposed the use of virtualisation technology to permit rapid operational-
isation. The approach has been reported to have the capability to produce ARD for Landsat
5-7-8 and Sentinel-2 for anywhere in the world [33]. Conventional models for ingesting data
into a cube require design choices to be made for both the temporal and spatial resolution,
cube dimensions and the coordinate reference system [34]. The process is often reliant on
the re-sampling of data and, consequently, does not retain the original resolution and bit
depth, which has been optimised for a specific application only. Furthermore, the fusion
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and inter-operability of heterogeneous data cubes acquired from different sensor systems
are characterised by inherent challenges owing to the variability in (i) the spatial resolution
of different satellites, leading to different pixel sizes, and (ii) the irregular revisit times of
satellites, leading to different reference temporal durations [34]. The data cube also needs
regular updating to ingest the most recent available data.

Here, a Python open-source framework for the automatic generation of on-demand,
temporally matched Sentinel-1 and Sentinel-2 ARD for any location on Earth is detailed.
The platform does not require the archiving of ARD in the form of a data cube as all
processing is executed for the region of interest (ROI) and a timespan dictated by the
requirements of the target user only. SAR data from the Sentinel-1 constellation and
optical images from the Multi-Spectral Instrument (MSI) on the Sentinel-2 constellation
are temporally aligned to enable the mining of their complementary data. The framework
can be utilised to generate collocated, multi-modal and multi-temporal Sentinel-1 (S1) and
Sentinel-2 (S2) ARD for a user-defined ROI. In particular, the following are possible: (a) S1
time series, (b) S2 time series, (c) temporally matched S1 and S2 time series. The platform
is an enabler for creating time series of multi-modal images with customised temporal
resolution, the data foundation that facilitates the development of a variety of downstream
applications and services, such as crop mapping [35], deforestation mapping [4], urban
fabric mapping [36] and burned area mapping [37,38].

The remainder of the article is organised as follows. Section 2 details the proposed
framework, including its configurable parameters, the scene discovery algorithm for the
selection of Sentinel tiles, the alternatives for data download, as well as the SAR and optical
processing pipelines. Results for an ROI in the United Kingdom are presented in Section 3
as an illustration of the process flow, together with a discussion of the main challenges
addressed by the proposed ARD framework and an example of its application to crop
monitoring. Conclusions are drawn in Section 4.

2. ARD Framework

The stages of the proposed framework are presented in Figure 1: (i) selection of ROI;
(ii) configuration of dates of interest, maximum cloud coverage threshold, Sentinel-1 and
Sentinel-2 bands of interest; (iii) selection of satellite products; (iv) download of products;
(v) processing and finally (vi) cropping of the image in patches. All output images are
geo-referenced and saved using the GeoTIFF file format in a folder following the nam-
ing convention described in Appendix A. The framework is made publicly available
(on GitHub: https://github.com/cidcom/Sentinel1-Sentinel2-ARD (accessed on 31 Jan-
uary 2022)) and is implemented in the Python programming language, with processing
performed using the Graph Processing Tool (GPT) from the ESA SNAP toolbox [39].

Selection of ROI

Configure dates, cloud
threshold, S1 and S2 bands

Selection of satellite
products

Processing in SNAP GPT

Crop to create patches

Download satellite tiles

Copernicus 
 (using sentinelsat)

Google Cloud 
 (using gsutil)

Amazon Web
Services

Alaska Satellite
Facility

Figure 1. Overview of the proposed ARD framework.

https://github.com/cidcom/Sentinel1-Sentinel2-ARD
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The processing steps for Sentinel-1 and Sentinel-2 products vary depending upon the
application but certain common steps need to be performed to render the data available for
immediate analysis. The CEOS Analysis Ready Data for Land (CARD4L) initiative defines
the minimum set of requirements for both radar and optical sensors [40,41]. In summary,
general metadata, quality metadata, measurement-based or radiometric calibration and
geometric calibration are required for all sensors. Solar, view-angle and atmospheric
correction are required for optical sensors, while radiometric correction for both incidence
angle and topography is required for radar sensors.

2.1. User-Defined Configuration

The proposed ARD framework incorporates a set of configurable parameters to cus-
tomise the characteristics of the end-product according to the requirements of the user.
The selection of Sentinel-1 and Sentinel-2 bands and masks is user-defined, including the
ability to select only Sentinel-1 and/or Sentinel-2. The Sentinel-1 mission comprising the
Sentinel-1A satellite and its twin Sentinel-1B provides SAR data operating in the C-band
of the electromagnetic spectrum. The high revisit frequency of the Sentinel-1 mission
(6 days) and its global coverage together with its active sensing and ability to penetrate
clouds make it ideal for all-weather Earth observation [42]. The main acquisition mode
of Sentinel-1 for land is the Interferometric Wide (IW) swath mode. Sentinel-1 satellites
have a single transmitter chain and can provide dual-polarisation (VV+VH or HH+HV) or
single-polarisation (HH or VV) radar data in the IW mode depending upon the geographic
location. The Sentinel-1 Level-1 Ground Range Detected (GRD) product is generated from
the Single Look Complex (SLC) product by multi-looking and projecting the flange range to
the ground range. GRD provides the radar backscatter amplitude and intensity information,
while the phase information is not retained. The framework offers the possibility to select
the VV and/or VH polarisation bands from the Sentinel-1 GRD product depending on
the application.

The Sentinel-2 mission comprising Sentinel-2A and Sentinel-2B satellites has a com-
bined revisit frequency of 5 days and provides MSI imagery with 13 optical spectral bands
in the visible and near-infrared spectrum at spatial resolutions of 10 m, 20 m and 60 m for
each band [43]. The Sentinel-2 Level-2A products used in the framework are ortho-rectified
Bottom of Atmosphere (BoA) reflectance with atmospheric correction already applied.
Note that the Level-2A product contains all multi-spectral bands except band 10 as this
band does not contain any surface information [44]. The Level-2A product contains water
vapour maps, Aerosol Optical Thickness (AOT) maps, cloud masks for opaque clouds,
cirrus clouds included in the Level-1C product, scene classification masks for the detection
of dark feature shadow, cloud shadow, vegetation, non-vegetation, water, thin cirrus clouds,
medium- and high-probability clouds, snow and ice. The proposed ARD framework per-
mits the configuration of bands and masks of interest to reduce the final product size and
processing requirements based on user/application requirements.

The temporal frequency of the time series data can be chosen with consideration
of the satellite orbital tracks. For example, the Sentinel-2 satellite mission has a revisit
frequency of 5 days, but the overlap between neighbouring tracks can increase further
the revisit frequency if the target ROI falls within the overlapped region. Sentinel-1 and
Sentinel-2 data are combined with the closest temporal match to completely cover the ROI
in the case when multi-mode data are requested by the user. For the Sentinel-2 products,
filtering can be executed based on the cloud cover so that only minimally cloud-affected
Sentinel-2 products are chosen. Moreover, ML applications commonly ingest satellite data
in the form of rectangular image patches; the framework allows cropping into patches of
customised sizes with user-defined vertical and horizontal overlap between the patches to
accommodate this requirement.

The parameters of the ARD framework used during configuration and run-time are
summarised in Tables A1 and A2, respectively, in Appendix A.
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2.2. Sentinel Scene Discovery

A description of the selected scene discovery mechanism is useful in order to pro-
vide clarity on the terminology used within the framework. ESA provides the following
definitions related to Sentinel-1 and Sentinel-2 data [45]:

• Products: “Products are a compilation of elementary granules of fixed size, along with a single
orbit. A granule is the minimum indivisible partition of a product (containing all possible
spectral bands).”

• Tiles: “For Level-1C and Level-2A Sentinel-2 products, the granules, also called tiles, are
approximately 100 × 100 km2 ortho-images in UTM/WGS84 projection.”

The following terms are introduced with respect to the proposed framework:

• Patches: rectangular or square cut-outs of defined pixel sizes from the complete image.
• Scene: a collection of images covering the entire spatial extent of the target ROI.

The scene discovery algorithm, shown in Figure 2, starts with the selection of an
ROI and the required temporal frequency. The subsequent step is the process of selecting
Sentinel products for every date in the time sequence. The selection of the option to obtain
Sentinel-1 and Sentinel-2 pairs that cover the target ROI depends on which of the two data
sources is considered the primary and secondary satellite, the latter being configurable
by the user. The Sentinelsat API queries the Copernicus Data Hub for the metadata on
all Sentinel products intersecting with the ROI, including footprints, date of acquisition
and percentage of cloud cover within the given temporal duration. The footprint is then
used to select the primary product (P1) with the largest overlap to the target ROI, (Rr),
resulting in an intersection (RP1). Subsequently, all secondary products (S1) overlapping
with RP1 and with close temporal match are queried; the largest secondary product RS1 is
selected. Secondary products are searched again until the complete RP1 area is covered.
The next primary product is then selected to cover the remaining part of the ROI (Rr-RP1).
The process is repeated iteratively until all the target ROI is covered. Finally, all subsets
of the ROI are collected and then rearranged in descending order of the overlapping area
with the target ROI and named R1, R2, etc. An example of the procedure is illustrated in
the case study presented in Section 3.1.

Input Desired ROI

Query all the primary
products intersecting

the ROI

Choose Primary Data
Source S1 or S2

End

Select the primary and
secondary products

covering ROI

Name the ROI subsets as  
, ,  and so on 

 in descending order of
their area

Select primary product  
( )  with the largest
intersection with the
remaining ROI ( ) 

Query all the
secondary products

covering the
intersection 

Select the secondary
product ( ) with the

largest intersection to  
  

  

Yes

NoYes
A

B

A

B
No

Start

Figure 2. Flow chart for the selection of Sentinel-1 and Sentinel-2 products.

2.3. Data Download and Access

A list of the generated products is forwarded to the download stage on the completion
of the scene discovery stage. The framework can ingest data from various data sources,
thus enabling instantaneous access to products. The Python Sentinelsat API [46] can query
and download data from the Copernicus Open Access Hub [47]. However, the retention
policy mandates shifts of old data from the online archive to the Long-Term Archive (LTA);
the retention period is 18 months for Copernicus Sentinel-2 L2A. Older products in the LTA
can only be accessed upon a trigger generated by a request for each individual product
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24 h in advance. The framework implements data retrieval from other platforms that
mirror the Copernicus hub, such as the Alaska Satellite Facility (ASF) for Sentinel-1 [48],
Google Cloud Storage for Sentinel-2 [49] and Amazon Web Services (AWS) for Sentinel-1
and Sentinel-2 [50,51], limiting the delay for obtaining data. Authentication of the right to
access is required from Copernicus, Google Cloud, AWS or ASF to initiate downloading.
The downloading stage implements the caching of products to prevent re-downloads of
existing products, a considerable time-consuming step.

2.4. Processing Pipelines

The batch processing of Sentinel products is accomplished using the Graph Processing
Tool of the ESA SNAP toolbox [39]. The following sections present the processing pipeline
for Sentinel-1 and Sentinel-2 products, their collocation, patch creation and output genera-
tion. The processing graph described here is provided with the ARD framework; however,
custom processing graphs can also be defined, in recognition that applications have the
need to alter the processing and its parameters. For instance, there may be a need to disable
speckle filtering, change the speckle filtering kernel size or modify calibration or collocation
procedures and parameters.

Sentinel-1 products are distributed in the World Geodetic System coordinate reference
system, namely the WGS84 (EPSG:4326), whereas the Universal Transverse Mercator (UTM)
coordinate system is used by default for Sentinel-2 products. The UTM coordinate system
divides the Earth into 60 zones, each 6° wide in longitude and 8° in latitude, transforming
the latitude and longitude from the spherical coordinate system to specific zone numbers
with corresponding x and y coordinates. The UTM system is preserved for Sentinel-2
products and also followed by Sentinel-1 products through a projection from WGS84 to the
corresponding UTM zone, thus maintaining consistency between products.

2.4.1. Sentinel-1 Product Processing

Sentinel-1 products must be processed before they are analysis-ready [52]. The frame-
work adopts a standard processing workflow for GRD products [53] and best practices for
the preparation of Sentinel-1 SAR data for the data cube [54]. Informed by reported work,
the processing pipeline for Sentinel-1 products implemented in the framework is shown in
Figure 3. The Level-1 GRD product must be radiometrically calibrated so that acquisitions
captured on different dates can be compared with consideration of the global incidence
angle, converting the radar backscatter intensity to the normalised radar cross-section (σ0).
SAR data are impacted by ‘salt-and-pepper’ speckle noise and, although speckle filtering is
not a requirement for ARD [40], it is nevertheless performed on the calibrated normalised
radar cross-section to minimise further post-processing. Speckle filtering is performed
using a Lee-Sigma filter with a window size of 7 × 7, σ of 0.9 and target window size
of 3 × 3 [55]. Range Doppler terrain correction is then executed using a Shuttle Radar
Topography Mission Height (SRTM) 1 sec HGT Digital Elevation Model (DEM) [56] to
remove geometric distortions such as foreshortening, layover and shadow. For illustration,
the evolution of the VV band of SAR data through the different stages of the pipeline is
shown in Figure 4. The final two steps in the Sentinel-1 processing pipeline are clipping
to the required area and the band extractor operation, which selects the bands required in
the final product. The cropping of the satellite image to the ROI is implemented in two
steps; the subset operator in SNAP crops the tile to the bounds of the ROI to bring down
the size of the raster file and reduce the processing time in SNAP, followed by cropping of
the image to the exact cut-line of the ROI using the Python Geospatial Data Abstraction
Library (GDAL) [57].

Radiometric
Calibration

Speckle
Filtering

Terrain
Correction

Subset
(Clipping)Sentinel-1 Processed

Sentinel-1BandExtractor

Figure 3. Processing pipeline for Sentinel-1. The suggested framework implements this pipeline
using the Graph Processing Tool (GPT) of the ESA SNAP toolbox.
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(a) (b) (c) (d)

Figure 4. Example of intermediate processing outputs for a Sentinel-1 SAR image (VV polarisation):
(a) Subset of the original VV band, (b) Radiometrically calibrated VV band, (c) Speckle filtering
output, (d) Terrain-corrected VV band.

2.4.2. Sentinel-2 Product Processing

The processing pipeline for Sentinel-2 products is shown in Figure 5 and follows
the procedure recommended by ESA [58]. Sentinel-2 products contain different bands
at different spatial resolutions of 10 m, 20 m and 60 m and consequently re-sampling is
required to harmonise all bands to the same spatial resolution of 10 m. Masks are obtained
from the original product using the BandMaths operator and merged with the re-sampled
product using the BandMerge operator. Similarly to the Sentinel-1 processing pipeline,
a subset operation in SNAP performs the cropping. The configurable bands are passed as
parameters to the band extractor operator to only select the bands and masks required by
the user.

Subset
(Clipping)Resample Processed

Sentinel-2Sentinel-2 BandExtractor

Figure 5. SNAP processing pipeline for Sentinel-2.

2.4.3. Collocation of Sentinel-1 and Sentinel-2 Products

Similar processing steps are followed with the addition of the collocation step when the
framework is configured to produce Sentinel-1 and Sentinel-2 pairs; the processing pipeline
for collocated Sentinel-1 and Sentinel-2 products is shown in Figure 6. The collocation with
bilinear interpolation is performed within the ESA SNAP toolbox by selecting Sentinel-2 as
the master product and retaining the UTM projection to maintain the accurate pixel-level
alignment between neighbouring tiles required for mosaicking. Collocated tiles are cropped
to the boundary of the ROI.

Radiometric
Calibration

Speckle
Filtering

Terrain
Correction

Subset
(Clipping)

Sentinel-1 BandExtractor

Collocation

BandExtractor
ResampleSentinel-2

Processed
Sentinel-1

Processed
Sentinel-2

Figure 6. SNAP processing pipeline for collocated Sentinel-1 and Sentinel-2.

2.5. Patch Creation and Output

The final step in the proposed ARD framework is the creation of patches that are
appropriate for input to ML and DL workflows. The ARD framework permits configura-
tions with bespoke patch sizes and overlap between patches in the horizontal and vertical
directions. The output pair images are created in a GeoTIFF format containing the bands
and masks selected by the user.
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2.6. Docker and Parallel Processing

The pipeline, structured around the Metaflow [59] Python framework for the design
and management of data science projects, ensures that the multiple steps required to
process each satellite product are carried out in the correct order, whilst providing the
flexibility to allow end users to extend the framework to shape the ARD for a particular
application. Where tasks are able to be processed independently—such as the calibration,
filtering and terrain correction of each Sentinel-1 product, or the collocation of matching
Sentinel-1 and Sentinel-2 products—the framework can scale horizontally, to fully utilize
computing resources and reduce the required processing time, i.e., tasks will be deployed
in parallel across each available CPU core.

The generation of ARD is characterised by a number of dependencies. Data sources
must be queried, data downloaded, images processed and collocated and optionally cut
into separate patches of suitable size for specific applications, e.g., training ML models.
The framework specifies all dependencies via a Dockerfile, which can be created and de-
ployed using Docker [60], provisioning a consistent environment managing all necessary
dependencies for the preparation of ARD. Docker images are suitable for use on either a
personal or office-scale computing infrastructure, and can be readily converted to container
images suitable for deployment on a high-performance computing (HPC) infrastructure,
such as Singularity [61].

3. Results

A case study showing the generation of combined Sentinel-1 and Sentinel-2 ARD for a
region in Scotland is presented for the purposes of providing evidence of the functionality
and ease of use of the framework. Inherent challenges in Sentinel products and framework
optimisations are then discussed, including the selection of Sentinel-2 products based
on local cloud coverage criteria and the avoidance of “no-data” regions at the boundary
of Sentinel-1 products. Furthermore, the effect of tile overlaps and an example of the
application of the proposed ARD framework to crop monitoring are detailed.

3.1. Case Study: ARD Generation

The framework is exercised for a number of locations around the globe to generate
collocated multi-modal and multi-temporal data, showcasing the automated end-to-end
pipeline. The user can secure Sentinel-1 and Sentinel-2 ARD by specifying the required
ROI and time window; for the case study, a region in Scotland, UK, shown in Figure 7, has
been selected. The primary product was set as Sentinel-2 and, as a consequence, Sentinel-2
products intersecting with the ROI (violet) are discovered first and the largest product
selected (red box), as shown in Figure 7a. After the selection of the primary product is
completed (in this case, Sentinel-2), the secondary Sentinel-1 product (blue box) is selected
for the above primary product, as shown in Figure 7b. Note that other candidate Sentinel-1
products are not selected either because they do not cover the ROI or because their time
difference with the primary Sentinel-2 product is greater. The remaining primary products
and their corresponding secondary products are subsequently selected in decreasing order
of their intersection area with the ROI. All subsets of the ROI are collected in this manner,
shown in Table 1. Figure 8 shows the result of the entire scene discovery process and,
in particular, illustrates (a) all Sentinel-2 segments that cover the ROI and (b) and (c)
the Sentinel-1 and Sentinel-2 mosaics for the target ROI. Both mosaics, as they are now
collocated, can be segmented in patches to create pairs, as shown in Figure 9. Image pairs
are analysis-ready—for example, aligned with the needs of developing ML algorithms for
downstream services and for further analysis.
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-4.000
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-2.000
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0.000 2.000

(a)

58.000 58.000

56.000 56.000

-8.000

-8.000

-6.000

-6.000

-4.000

-4.000

-2.000
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0.000

0.000 2.000

(b)

Figure 7. Example of selection of Sentinel-1 and Sentinel-2 products for the ROI shown in violet:
(a) Selection of Sentinel-2 product shown in red from all the available overlapping Sentinel-2 products
in black, (b) Selection of Sentinel-1 product shown in blue corresponding to the Sentinel-2 product
selected in (a) from all the available overlapping Sentinel-1 products in black. The intersection of the
ROI and Sentinel-2 is shown in orange. Base layer © OpenStreetMap contributors in EPSG:32630
UTM projection in Quantum Geographic Information System (QGIS) software.

Table 1. Example of Sentinel-1 and Sentinel-2 product selection showing the overlap with the ROI
selected in Figure 7.

ROI Subset ROI Subset
Area (%) Sentinel Tiles

R1 60.91
Sentinel-1: S1A_IW_GRDH_1SDV_20210421T175920_20210421T175945_037552_046DBA_1823

Sentinel-2: S2B_MSIL2A_20210422T113309_N0300_R080_T30VVH_20210422T130934

R2 30.79
Sentinel-1: S1B_IW_GRDH_1SDV_20210422T175020_20210422T175045_026583_032CA4_6AA2

Sentinel-2: S2B_MSIL2A_20210422T113309_N0300_R080_T30VWH_20210422T130934

R3 8.29
Sentinel-1: S1B_IW_GRDH_1SDV_20210422T175020_20210422T175045_026583_032CA4_6AA2

Sentinel-2: S2B_MSIL2A_20210422T113309_N0300_R080_T30VWJ_20210422T130934

(a) (b) (c)

Figure 8. Example of Sentinel-1 and Sentinel-2 ARD generated with the proposed framework for
the ROI selected in Figure 7: (a) ROI division, (b) Sentinel-1 mosaicking shown in false colour
composite with red channel as VV, green channel as VH and blue channel as VV/VH, (c) Sentinel-2
RGB mosaicking. Base layer © OpenStreetMap contributors.
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(a) (b)

Figure 9. Collocated Sentinel-1 and Sentinel-2 patch: (a) False colour composite of a Sentinel-1 patch
(red channel as VV, green channel as VH and blue channel as VV/VH), (b) RGB colour composite of
a Sentinel-2 patch.

3.2. Challenges and Optimisations

Examples of the manner in which the framework treats a number of challenges in
building ARD data, particularly cloud cover and “no-data” regions at the boundary of
Sentinel-1 products, are described as additional evidence of its utility.

3.2.1. Sentinel-2 Product Selection Based on Cloud Criteria

A number of applications that make use of satellite imagery, such as land cover
classification, crop identification or crop growth monitoring, are founded on cloud-free
optical images for operation.

The degree of cloud coverage—referred to as the cloud fraction—is measured as the
ratio of the area covered by the cloud (irrespective of cloud type) to the total observed
area. The global cloud cover fraction can be estimated by the analysis of satellite images or
by using synoptic reports taken from ground-based weather stations. The average global
cloud cover fraction has been calculated—based on data retrieved from 12 satellite image
datasets—to be 68% for clouds of optical depth greater than 0.1, increasing to 72% when
sub-visible cirrus clouds are also considered [62]. The global cloud fraction as determined
by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor from the Terra
and Aqua satellites is 67%, with lower cloud coverage in land areas (55%) than over the
ocean (72%) [63].

The creation of a minimum cloud-free mosaic for Sentinel-2 optical images is a chal-
lenge for areas subject to significant cloud cover, necessitating the strategic selection of tiles.
The least cloud-affected tile must be chosen among all the tiles covering a particular ROI
within the given time window. Ideally, the cloud fraction should be assessed during the
initial selection of the tiles to avoid unnecessary downloads and processing. Sentinel-2
products contain information on the degree of cloud cover evaluated over the entire tile.
However, the cloud cover for a particular ROI cannot be determined from tile information
alone. In instances where the ROI is cloud-free while the rest of the tile is not, the latter will
not be selected if only the average cloud cover statistics are considered. As an example,
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the tile captured on 21 July 2020 is 19.24% cloud-covered, as shown in Figure 10 for a group
of farms in Scotland; however, closer inspection shows significant cloud cover over the
ROI (Figure 10a). For a tile captured two days later, on 23 July 2020, the cloud coverage is
90.83% but the ROI is cloud-free (Figure 10b). Therefore, accurate per-pixel metadata are
required to guide the tile selection process based on cloud coverage.

(a) (b)

Figure 10. Sentinel-2 RGB image patch for a group of farms (highlighted in red) in
Scotland acquired two days apart: (a) Copernicus cloud percentage for the whole tile
(S2A_MSIL2A_20200721T113321_N0214_R080_T30VWH_20200721T141936) is 19.24%, but the
ROI is covered with cloud. (b) Copernicus cloud percentage for the whole tile
(S2B_MSIL2A_20200723T112119_N0214_R037_T30VWH_20200723T132450) is 90.83%, but the ROI is
cloud-free.

In the proposed framework, Sentinel-2 Level-2A scene classification masks (cloud
medium probability, cloud high probability, thin cirrus) are downloaded to determine
the exact cloud-free area over the ROI. The resultant outputs inform the selection of
tiles with minimum cloud coverage, and thus situations such as the one presented in
Figure 10 are avoided. In addition, other scene classification masks can be used for semantic
enrichment, providing additional information on the presence of vegetation, snow, water,
cloud shadows, etc.

3.2.2. “No-Data” Values in Sentinel-1 Products

The Sentinel-1 product footprint is used for the selection of tiles covering the ROI,
performed prior to downloading products so that only the required data are obtained and
processed. However, the footprint provided by the Copernicus product can be larger than
the region where data are present, creating a margin of “no-data” values at the boundary
of the product, as shown by the yellow region in Figure 11. The mismatch between the
original footprint and the region where data are available can lead to the erroneous selection
of products when the ROI overlaps with the “no-data” region. One potential solution is
to download all the Sentinel-1 products intersecting with the ROI and to process them
with the SNAP pipeline to determine the exact footprint. However, this option increases
both the download and processing time and memory requirements significantly. Thus,
the framework introduces a buffered boundary inside the original footprint, as shown in
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green in Figure 11, which is then used for the selection of products. The latter approach
implements faster product selection, while ensuring that only regions where data are
available are downloaded and processed.

Figure 11. Sentinel-1 tile S1A_IW_GRDH_1SDV_20191012T063817_20191012T063842_029422_0358AF
_5701 Amplitude VH footprint. The footprint provided by Copernicus is highlighted in red, no-data
layer is highlighted in yellow, buffered footprint is highlighted in green.

3.3. Effect of Tile Overlap

The required number of tiles necessary to fully cover the region varies depending
on the location of the target ROI. A case study for an ROI of approximately 51.2 km ×
51.2 km in Scotland for the week from the 3 May 2021 to the 9 May 2021 is analysed to give
an indication of the processing times required by the framework to generate multi-modal
ARD as a function of the required number of tiles for full coverage. Sentinel-2 products
are available in pre-defined tiles of approximately 100 km × 100 km area and 800 MB file
size [45], with each tile assigned a unique identifier [64]. In this case study, three ROIs of
equal area are defined, A, B and C, as shown in Figure 12, spanning one, two and four
tiles, respectively, dependent on their location on the Sentinel-2 tile grid. Each Sentinel-
2 product could require multiple Sentinel-1 products to generate paired ARD patches.
The framework is executed for scene discovery, download and processing of Sentinel-1
and Sentinel-2 products. Both the VV and VH polarization bands are downloaded and
processed for Sentinel-1, while, for Sentinel-2, all spectral bands in Level-2A, along with
opaque cloud, cirrus cloud and scene classification masks for cloud shadow and medium-
and high-probability thin cirrus, are downloaded and processed. The patch size is set to
256 × 256 pixels.

The framework is executed on a 10-physical-core CPU (Intel i9-10900X) Linux server
with 126 GB RAM and 9 TB storage. The time required to produce multi-modal ARD for
the three scenarios, i.e., A, B, C, is shown in Table 2. The selection time includes the time
for querying products using the Sentinelsat API and selecting Sentinel-1 and Sentinel-2
products using the scene discovery algorithm, as discussed in Section 2.2. The processing
time includes the processing for Sentinel-1 and Sentinel-2 products, collocation using the
SNAP GPT and the creation of patches, as described in Section 2.4. The total time is the
aggregate of selection and processing times. The download time is not considered due to
the variability of network connections and data provider. As shown in Table 2, the time
for processing increases if the ROI falls within the boundaries of the Sentinel-2 tile grid,
attributable to the increased number of tile pairs processed. However, the processing
time does not scale linearly, due to the varying number of overlapping segments for
each collocation.
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Figure 12. Regions of interest covering one, two and four Sentinel-2 tiles shown by A, B and C,
respectively. The Sentinel-2 tile grid is shown in black, with the tile ID at the centre of each tile. Base
layer © OpenStreetMap contributors.

Table 2. Time requirement for the generation of ARD for regions of interest covering one, two and
four Sentinel-2 tiles, shown as A, B and C, respectively, in Figure 12.

Scenario Sentinel-2 Tile
Coverage

Selection Time
(s)

Processing
Time (s) Total Time (s)

A 1 1.2 267.8 269.0
B 2 2.2 343.4 345.7
C 4 3.4 442.7 446.2

3.4. Application: Multi-Modal and Multi-Temporal ARD for Crop Monitoring

Vegetation has been proven to strongly absorb the blue and red bands of the visible
segment of the electromagnetic spectrum and reflect the near-infrared wavelengths [65];
these characteristics form the basis for the detection of vegetation on the surface of the
Earth from satellite sensor data. The Normalised Difference Vegetation Index (NDVI) [66],
calculated as the ratio of the difference in reflectance between the near-infrared and the red
band to the sum of reflectance between the near-infrared and the red band, as shown in
Equation (1), has been defined in this context:

NDVI =
NIR − RED
NIR + RED

(1)

The NDVI ranges from −1 to 1, with negative values indicating clouds and water,
positive values close to 0 corresponding to no vegetation and dense vegetation correspond-
ing to a value close to 1. The NDVI has been used to monitor the growth of crops and for
the estimation of crop yield [67,68]. An example of the variation of NDVI for a field of
peas in Scotland for the period of 29 May 2020 to 12 August 2020 is shown in Figure 13.
Figure 13a shows the time series of the mean NDVI along with sample RGB and NDVI
cloud-free images; Figure 13b shows the mean of SAR VV and VH polarisation normalised
radar cross-section (RCS) along with Sentinel-1 false colour composite images for the field
for all available acquisitions in the period. Evident in Figure 13a is that NDVI values are
lower before sowing (May–June 2020), viz. when the soil is bare, and after harvest (August
2020); the NDVI increases with crop growth (July–August 2020). A similar trend can be
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observed in the SAR data shown in Figure 13b, illustrating the potential to facilitate further
studies in these applications that combine Sentinel-1 and Sentinel-2 data [69–71].

(a) (b)

Figure 13. Example of Sentinel-1 and Sentinel-2 multi-temporal attributes from the 29 May 2020 to
the 12 August 2020 for a field growing peas in Scotland. (a) Mean NDVI trend for Sentinel-2 for the
cloud-free acquisitions along with examples of RGB images and NDVI maps. (b) Mean of Sentinel-1
VV and VH polarisation normalised radar cross-section (RCS) along with examples of Sentinel-1 false
colour composite images.

4. Conclusions

The pairing of Sentinel-1 and Sentinel-2 data and the use of their complementary
information has considerable potential in a wide range of applications, including land cover
classification, crop growth monitoring and deforestation mapping. However, the generation
of reliable multi-modal and multi-temporal ARD from low-level Sentinel products remains
a challenge. Here, a flexible, user-centric framework is introduced for the on-demand
selection, download and processing of Sentinel-1 and Sentinel-2 data for a user-defined
ROI and time window. The tool can be configured to meet specific user requirements,
enabling rapid access to combined ARD for downstream applications with global coverage.
The framework is built in Python and containerised using Docker to ensure a consistent
environment treating all necessary dependencies.

The framework selects the minimum number of satellite tiles required to cover a partic-
ular ROI within a specific timeframe, optimising the time-consuming process of download-
ing Sentinel products. Furthermore, when multi-source data are required, the framework
follows a standard pipeline for processing Sentinel-1—radiometric calibration, speckle filter-
ing, terrain correction—and Sentinel-2—re-sampling—products, the subsequent collocation
of these products and their clipping to the shape of the ROI. Additionally, challenges inher-
ent to Sentinel data, such as the presence of “no-data” regions in Sentinel-1 products and a
more appropriate selection of Sentinel-2 products based on local cloud masks instead of
tile-level cloud percentages, are addressed. The ability to generate time series of collocated
Sentinel-1 and Sentinel-2 ARD is demonstrated, providing further insight to users through
time-dependent trends relevant to specific applications, e.g., crop growth monitoring.

The current version of the framework is applicable to Sentinel-1 GRD products that
provide radar backscatter amplitude; however, it could be extended to include Sentinel-1
Level-1 Single Look Complex (SLC) products; the latter’s intrinsic phase information can
be useful in applications such as land cover mapping and crop monitoring, which rely on
interferometric coherence to detect changes in the SAR signal. Moreover, the framework
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could be extended to include data from other Sentinel missions, providing a wider variety
of EO ARD, such as Sentinel-3 data relevant to marine observation and land monitoring,
and Sentinel-4 and Sentinel-5 data enabling the potential to monitor air quality.
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Appendix A

Appendix A.1. Naming Convention

The framework adopts a consistent naming convention and folder structure, as shown
in Figure A1. Sentinel-1 and Sentinel-2 data are stored in the S1 and S2 folder, respectively,
and contain the ROI in the Clipped folder and the corresponding patches in the Patches
folder. S1_id and S2_id are the universally unique identifiers (UUIDs) for Sentinel-1 and
Sentinel-2, respectively. ROI subsets are numbered in descending order to their overlapped
area with the region of interest, i.e., ROI1 is the Sentinel-2 tile that has the largest intersection
with the ROI and so on. start_row_px and start_col_px are the top left corner row and
column pixel numbers for the cropped patches of the ROI, and row_size and col_size are
the number of pixels in the patch for the rows and columns, respectively. The clipped
Sentinel-1 tiles are stored in the following manner:

S1_roi<ROI_no>_<S1_id>.tif

For instance,

S1_roi1_2c522712-e4a5-4bec-a828-4c8d5c0930f4.tif

The generated Sentinel-1 patches are stored in the following manner:

S1_<S1_id>_<start_row_px>_<start_col_px>_<row_size>x<col_size>.tif

For instance,

S1_2c522712-e4a5-4bec-a828-4c8d5c0930f4_0_0_256x256.tif

The generated Sentinel-2 patches are stored following similar naming conventions
as Sentinel-1. For collocated Sentinel-1 and Sentinel-2, the patches follow the naming
convention shown below.

S1_<S1_id>_S2_<S2_id>_<start_row_px>_<start_col_px>_<row_size>x<col_size>.tif

https://scihub.copernicus.eu/
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For instance,

S1_2c522712-e4a5-4bec-a828-4c8d5c0930f4_S2_8a9cbfaa-1a59-4dd4-ad28-
5ee48cc5866e_0_0_256x256.tif

Region

Start Date

ROI Subset No.

S1

Clipped

Patches

S2

Clipped

Patches

Figure A1. Folder structure.

Appendix A.2. Configuration Parameters

Table A1. Parameters used in configuration of the ARD Framework.

Parameter Description

Name This will set the name of the folder as per convention mentioned
in Appendix A.

dates Pair of dates (in format YYYYMMDD) specifying the start and
end of the period of interest.

geojson Geojson string representing the ROI.

cloudcover
Pair of integers (in range 0..100) specifying lower and upper
threshold for cloud cover at the tile level for queries of Sentinel-2
products.

cloud mask filtering This option is set to build maximum cloud-free Sentinel-2 image
based on per pixel cloud mask from scene classification mask.

size Pair of integers specifying the row and column size, in pixels,
of patch to generate.

overlap
Pair of integers specifying the horizontal and vertical overlap
between patches, where 0 indicates no overlap, while 1 indicates
maximum overlap.

bands_S1 The polarization bands required for Sentinel-1 GRD products.

bands_S2 The multi-spectral and mask bands required for Sentinel-2 Level-
2A products.

callback_snap Configurable function used to run custom processing for each set
of (potentially) multi-modal, multi-temporal products.

callback_find_products Configurable function used to identify sets of multi-modal, multi-
temporal products.
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Table A2. Parameters used for ARD framework run-time.

Parameter Description

Rebuild This will delete any earlier processed products and rebuild the
processed products.

Skip week This will skip all weeks that do not yield products covering com-
plete ROI.

Primary product

This option will select primary product as Sentinel-1 or Sentinel-2.
The default primary product is set as Sentinel-2. The secondary
products are selected around the primary product within the
“Secondary Time Delta” days.

Skip secondary
This will skip the listing and processing of secondary product.
This option is used when only one out of Sentinel-1 or Sentinel-2
products is relevant.

External Bucket This will check for Long-Term Archived (LTA) products from
AWS, Google, Sentinelhub, ASF.

Available area This option will list part of an ROI that matches the required
specifications, even if the whole ROI is not available.

Secondary Time Delta This option specifies the delta time between primary and sec-
ondary products in days.

Primary product frequency This option selects the frequency in days between primary prod-
ucts.
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