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Abstract—In this paper we introduce RCU-HTM, a technique
that combines Read-Copy-Update (RCU) with Hardware Trans-
actional Memory (HTM) to implement highly efficient concurrent
Binary Search Trees (BSTs). Similarly to RCU-based algorithms,
we perform the modifications of the tree structure in private
copies of the affected parts of the tree rather than in-place.
This allows threads that traverse the tree to proceed without
any synchronization and without being affected by concurrent
modifications. The novelty of RCU-HTM lies at leveraging HTM
to permit multiple updating threads to execute concurrently.
After appropriately modifying the private copy, we execute an
HTM transaction, which atomically validates that all the affected
parts of the tree have remained unchanged since they’ve been
read and, only if this validation is successful, installs the copy in
the tree structure.

We apply RCU-HTM on AVL and Red-Black balanced BSTs
and compare their performance to state-of-the-art lock-based,
non-blocking, RCU- and HTM-based BSTs. Our experimen-
tal evaluation reveals that BSTs implemented with RCU-HTM
achieve high performance, not only for read-only operations,
but also for update operations. More specifically, our evaluation
includes a diverse range of tree sizes and operation workloads
and reveals that BSTs based on RCU-HTM outperform other
alternatives by more than 18%, on average, on a multi-core server
with 44 hardware threads.

Index Terms—Concurrent Data Structures; Binary Search
Trees; HTM; RCU;

I. INTRODUCTION

With the dominance of multi-core architectures concurrent
data structures have become a crucial component of many
multi-threaded applications. In order to benefit from the
rapidly increasing number of cores provided by every new
processor generation, programmers need to carefully design,
implement and tune these data structures. To this direction,
performance is typically the factor that drives most of the
design decisions. In concurrent data structures, performance is
sought in three directions: (i) by exposing as much parallelism
as possible (e.g., by allowing threads that access disjoint parts
of the data structure to execute concurrently), (ii) by minimiz-
ing the extra work imposed by the parallelization scheme, and
(iii) by minimizing the synchronization overheads.

Beyond performance, three more factors are additionally
taken into consideration: Robustness; i.e., the ability of a
concurrent data structure to react to unexpected thread actions
(e.g., thread failure, scheduler decisions). A classic example is
when a thread holding a lock is scheduled out and other threads

can make no progress until the lock is released. Even worse is
the case when a thread fails unexpectedly. The more locks a
data structure requires, the more complex it is to handle such
cases. Programmability; i.e., the effort required to implement a
concurrent data structure. Efficient concurrent data structures
are usually difficult to implement. Complex algorithms and
synchronization patterns typically lead to complex and error-
prone implementations that additionally cannot be reproduced
for alternative problems in a straightforward way. Memory
requirements; i.e., the size of the memory footprint of a
concurrent data structure. Besides size, in concurrent config-
urations it is important to ensure that freed memory is not
being accessed by other threads. In this work our focus is
on performance, however, we also briefly discuss how our
approach affects the other three factors.

We work on concurrent binary search trees (BSTs), a family
of data structures that is widely used in a diverse set of
applications. More specifically, we use BSTs to implement
the dictionary abstract data type that stores a set of key-
value pairs and supports three operations: lookup(key),
insert(key,value) and delete(key). We identify
the following characteristics to be of utmost importance in
order to implement a highly efficient concurrent BST:
Balance: Maintaining the height of the tree almost balanced
is crucial for performance, as highly unbalanced trees may
lead to longer path traversals. There are several balanced
binary search trees (BBST) like Red-Black [14], left-leaning
Red-Black [26], AVL [1], radix trees [22] and B-trees [5].
Concurrent BBSTs are more challenging than BSTs because
the rebalancing operations may modify multiple parts of the
tree, making it hard to correctly synchronize them.
Effective Node organization: Internal BSTs store key-value
pairs in every node of the tree. While they are efficient with
respect to memory requirements, they have the disadvantage
that the deletion of a node with two children is complex.
External trees overcome this complexity by storing key-value
pairs on leaf nodes, i.e., nodes with no children. Non-leaf
nodes contain only keys and are used for routing to the
appropriate leaves. External trees simplify the deletion of a
key-value pair; however, they have two disadvantages: first, all
traversals end at a leaf node, which leads to longer traversal
paths, and, second, they occupy twice as much memory as the
internal ones.



On-time deletion: An alternative way to avoid the complexity
of deleting a node with two children is lazy deletion, i.e., to
mark a node as deleted without physically removing it from
the tree. Several lock-based and lock-free BSTs adopt this
technique; however, it has the side effect of leaving dummy
nodes in the tree, resulting in longer traversal paths. On the
other hand, with on-time deletion, i.e., physically removing
the node from the tree at the time it is logically removed,
traversals don’t encounter dummy nodes.
Asynchronized traversals: Of utmost importance for the
performance of a BST is the efficiency of traversals [17],
[11]. This is the case for two reasons: first, all three supported
operations start with traversing the tree, and second, lookup is
typically the most common operation. It is thus critical to avoid
synchronization during traversals, as it induces high overheads.
Minimal synchronization overhead for updates: Although
the performance of traversals is the most important, it is
also desired to minimize the synchronization required for
updates [17], [11]. Updates that modify disjoint parts of the
tree should be allowed to execute concurrently. Moreover, for
a concurrent implementation to be robust, locks should better
be avoided or the number of necessary lock acquisitions per
operation be kept minimal.

While the above characteristics are highly beneficial in
a concurrent BST, as validated also by our experimental
evaluation, combining all of them in a single implementation
is a challenging task. Several recent related works have im-
plemented BSTs with various combinations of these charac-
teristics [2], [4], [6], [7], [8], [9], [10], [12], [13], [19], [20],
[25]; however, none of them combines all five characteristics.

Non-blocking BSTs [8], [13], [20], [25] are either totally
unbalanced or partially balanced [7]. This is due to the
difficulty of mapping the multiple modifications performed
during rebalance to several distinct atomic modifications that
should be executed using atomic operations (e.g., CAS). More-
over, non-blocking trees are extremelly hard to implement.
Lock-based BSTs [6], [10], [12] are also partially balanced
because the rebalancing of the tree requires several locks to
be acquired. Additionally, during rebalancing, threads may try
to acquire locks in opposite directions, making it hard to avoid
deadlocks.

BSTs based on Read-Copy-Update (RCU) [24], [19], [2]
provide asynchronized traversals; however, they either prohibit
multiple writers using a single global lock [19], or permit
multiple writers by using fine-grain locking at the expense of
not rebalancing the tree [2]. BSTs that exploit Transactional
Memory (TM) [16] allow updates on different parts of the
tree to be executed concurrently but traversals still need
to synchronize with concurrent modifications. Recent TM-
based BSTs fail to provide strictly balanced trees [9] and
asynchronized traversals [9], [28], [27], [4].

In this work we introduce RCU-HTM, a technique that
combines RCU with HTM and manages to get the best of
both worlds. From RCU, we adopt the following technique that
enables asynchronized read-only operations: we perform the
modifications of the tree structure in private copies of the af-

fected parts of the tree rather than in-place. This allows threads
that traverse the tree to proceed without any synchronization
and without being affected by concurrent modifications. What
distinquishes RCU-HTM from previous RCU-only BSTs is the
exploitation of HTM to permit multiple updating threads to
execute concurrently. More specifically, we use HTM in the
following way: prior to installing the modified private copy in
the shared tree, we atomically validate that all the nodes to
be replaced have remained unchanged since they were read.
Both the validation and the installation step are enclosed in
a single HTM transaction and are thus performed in a single
atomic step. If validation fails due to some of the nodes to be
replaced having been modified by other threads, we restart the
operation.

RCU-HTM is applicable to all types of BBSTs, as well as
to unbalanced BSTs. We implement and evaluate two RCU-
HTM based BBSTs, a Red-Black and an AVL tree. To the
best of our knowledge, these are the first BBSTs to combine
all five aforementioned desired characteristics of a concurrent
BST implementation. We compare the performance of RCU-
HTM based BBSTs to two state-of-the-art lock-based [6] and
non-blocking [25] trees, as well as RCU- [19], [2] and HTM-
based [4] BSTs. As our experimental evaluation reveals, RCU-
HTM based BSTs achieve high performance, not only for
read-only operations, but also for updaters, i.e., threads that
modify the tree structure. More specifically, our experiments
on a multi-core server with 44 hardware threads using a diverse
range of tree sizes and operation workloads indicate that RCU-
HTM based BSTs are 18% faster, on average, than other
alternatives.

II. BACKGROUND

A. Balanced Binary Search Trees

BBSTs are BSTs in which the difference between the
shortest and the longest path is kept bounded. By maintaining
the path lengths under certain limits, BBSTs provide efficient
traversals. Several BBSTs have been proposed including, but
not limited to, Red-Black [14], left-leaning Red-Black [26],
AVL [1], radix trees [22] and B-trees [5].

In our work we use BBSTs to implement the dictionary
abstract data type that stores key-value pairs and supports
three operations: (a) lookup(key) searches whether the given
key exists in the dictionary and returns true if it is found,
(b) insert(key, value) inserts a key-value pair in the dictionary
and returns true if it is not already in the tree, otherwise it
returns false, and (c) delete(key) removes a key-value pair and
returns true if the key is in the tree, otherwise it returns false.

Each BBST imposes different balancing criteria and re-
balancing actions. However, the logic is the same: when
adding/removing a node to/from the tree, the balance criteria
may be broken and a series of node modifications needs to be
performed to restore the balance of the tree. For example,
in Red-Black trees these modifications include node color
changes and rotations, while in AVL trees node height changes
and rotations. The generic structure of an insert procedure in
a BBST is presented in Figure 1. The first step is a traversal



1 int bbst insert(bbst t ∗bbst, int key,
void ∗value)

2 {
3 traverse bbst(bbst,key);
4 if (key was found) return 0;
5 insert node and rebalance(bbst,key,value);
6 return 1;
7 }

Figure 1: A sketch of an insert operation in a BBST. The only
difference between various BBSTs is the way in which the
rebalancing is performed.

of the tree to locate the point where the new node is to be
added. The set of traversed nodes is called the access path.
The second step is to insert the new node and, if necessary,
restore the balancing conditions. The rebalancing step may
include several node modifications on or near the access path.

B. Read-Copy-Update

Read-Copy-Update (RCU) [24] is a synchronization pattern
in which updaters first read and copy the parts of the data
structure they will modify and, after modifying their private
copy, replace the old version of the data structure with their
new modified version. This replacement is performed in a sin-
gle atomic step, so that other threads observe either the old or
the new version. This way, RCU enables read-only operations
to proceed without synchronization. However, updaters still
have to be synchronized, otherwise one thread may discard
the modifications performed by another one.

C. Hardware Transactional Memory

Intel provides HTM support in commercial processors with
the introduction of Transactional Synchronization Extensions
(TSX) 1 in Haswell processors and all their successors. TSX is
a set of assembly instructions that are used by the programmer
to enclose critical sections of code which need to be executed
atomically. These critical sections are executed as transactions
whose memory reads and writes are being tracked by the
underlying HTM system. The read memory locations are
kept in the transaction’s read-set and the written ones in
the write-set. If the read- and write-sets do not conflict with
memory accesses from other threads, the transaction commits.
Otherwise, the transaction aborts and none of its memory
writes become visible to other threads. Moreover, a transaction
may suffer from capacity aborts, due to the bounded size
of the hardware buffers that store the read- and write-sets.
When a transaction aborts, either a lock is acquired or the
programmer decides what should be done, depending on the
execution mode of TSX. Apart from conflict and capacity
aborts, a TSX transaction may fail for other reasons such as
cache line eviction, interrupt and/or unsupported instructions.

TSX can be used in two modes, namely HLE and RTM.
We only use RTM because it provides the flexibility to choose
what actions are taken upon a transaction’s abort.

1https://en.wikipedia.org/wiki/Transactional Synchronization Extensions

TSX is a best-effort HTM implementation and provides
no guarantees that any transaction will eventually commit;
persistent aborts may lead to livelock. It is thus the pro-
grammer’s responsibility, when using RTM, to provide an
alternative path of execution that uses no transactions, i.e.,
a non-transactional fallback path. The most common practice
is to retry a transaction for a given amount of times and, if
it fails to commit, fallback to the acquisition of a lock that
allows only a single thread to enter the critical section.

III. RELATED WORK

In this section we provide an overview of related work on
concurrent BSTs with respect to the type of synchronization
used and compare them on the basis of the five desired
concurrent BST characteristics, discussed in Section I. Table I
presents an overview of concurrent BSTs.

Non-blocking BSTs: Non-blocking BSTs use hardware
atomic operations such as Compare-and-Swap (CAS) to syn-
chronize accesses to the tree [7], [8], [13], [20], [25]. Us-
ing CAS, only a single memory location can be atomically
modified. The rebalance phase of BBSTs, on the other hand,
requires several memory locations to be updated in an atomic
step. This limitation of CAS instructions causes the majority
of non-blocking BSTs to be unbalanced [8], [13], [20], [25].
However, even these unbalanced BSTs are extremely hard to
design and implement. The same CAS restriction is the reason
why some non-blocking BSTs use external trees [13], [25]
and others do not support on-time deletion of nodes [8], [20].
Finally, in some cases [8], [20] traversals may need to restart
as they have to help other pending operations.

Lock-based BSTs: Locks have made it possible to build
relaxed balance BSTs [6], [10], [12]. Typically, these relaxed
implementations do not allow the height of the tree to become
as long as in the completely unbalanced trees. However, they
too fail to provide the logarithmic limits of strictly balanced
BSTs when updates are executing. The contention-friendly
AVL tree proposed in [10] performs the rebalancing steps
in a dedicated thread which makes the situation even worse
as a balance violation may not be restored for a long time,
especially in large trees. Finally, most of the lock-based BSTs
fail to provide asynchronized traversals.

RCU-based BSTs: RCU enables asynchronized traversals
but updaters need to be synchronized. Current RCU-based
BSTs [2], [19] sacrifice either updaters’ concurrency to pro-
vide strict balance [19], or the balance of the tree in order
to facilitate the synchronization among updaters using fine-
grained per node locks [2]. Alternative RCU schemes have
been proposed [3], [23] which improve the performance of
RCU-based BSTs. However, these trees are also unbalanced
due to the difficulty of synchronizing updaters.

TM-based BSTs: TM enables the modification of several
memory locations in a single atomic step. This allows the
rebalance phase of a BBST to be performed atomically in
its entirety. HTM-based BST by Avni et al. [4] is strictly
balanced; however, traversals also use HTM transactions and
may restart. Crain et al. [9] use STM in their relaxed AVL tree



Name Type Balanced Internal On-time deletion Asynchronized traversals Synchronization of updaters
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Ellen [13] BST No No Yes Yes CAS

Howley [20] BST No Yes No No CAS

Natarajan [25] BST No No Yes Yes CAS

Chatterjee [8] BST No Yes No No CAS

Brown [7] RBT Relaxed No Yes Yes LLX/SCX/VLX (CAS-based
primitives)

L
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Bronson [6] AVL Relaxed No No No fg locks

Crain-lb [10] AVL Relaxed No No Yes fg locks

Drachsler [12] BST/AVL Relaxed Yes Yes Yes fg locks

R
C

U Howard [19] RBT Yes Yes No Yes RCU (single updater)

Arbel [2] BST No Yes No Yes RCU (multiple updaters with fg locks)

T
M

Crain-tm [9] AVL Relaxed Yes No No STM

Avni [4] All Yes Yes Yes No HTM

RCU-HTM All Yes Yes Yes Yes RCU+HTM

TABLE I: Comparison of concurrent BSTs. The term ”asynchronized traversals” refers to traversals that neither use any
synchronization nor is there any possibility to restart.

but they split the rebalance phase in multiple atomic steps in
order to minimize contention among transactions. They also
need to synchronize traversals.

Wang et al. [29] use HTM to implement a concurrent
B+-tree, which is employed in an OLTP database system.
Contrarily to our approach, they use HTM in a straightforward
way, i.e., they enclose each tree operation, including lookup, in
a single HTM transaction. As previous research suggests [27],
this is far from the most efficient way to use HTM for
parallelizing the operations of BSTs due to the large size of
the transactions. They also use HTM to ensure the atomicity of
their OLTP transactions. They apply Optimistic-Concurrency-
Control (OCC) [21] which differs from our RCU-based ap-
proach in two ways: (i) OCC does not straightforwardly
support asynchronized lookups; extra programming effort and
orchestration of readers and updaters is required. (ii) If OCC
was applied in BBSTs instead of RCU, the writes performed
during rebalancing would be included inside the HTM trans-
actions, while in the case of RCU only a single write is
performed in each transaction.

IV. RCU-HTM ALGORITHM

As shown in Table I, state-of-the-art concurrent BSTs fail
to combine the five characteristics that we define for a highly
efficient implementation. Trees implemented with RCU-HTM
are the first to combine all of them, and, as our experimental
evaluation reveals, this translates to performance benefits.

A. General Concept

RCU-HTM combines RCU and HTM in order to pursue
two goals: (i) allow read-only operations to proceed without
synchronization and restarting, and (ii) allow multiple updaters
to modify different parts of the data structure concurrently.

The first goal is a direct outcome of applying RCU in
BBSTs. Figure 2 presents an example of inserting key 1 in

a BBST using the function of Figure 1. The traversal phase
locates the point where the new node will be added (Figure 2a).
The second phase inserts the new node in its position and
rebalances the tree (Figure 2b). Intuitively, the modifications
that are performed during the call of insert_node_and_
rebalance() can be regarded as replacing a set of nodes
W with a modified set W ′.

In RCU-HTM, a thread that needs to modify a part of the
tree, creates a private copy of this part, modifies it accordingly,
and, finally, installs its modified private copy by swapping
the child pointer of a single tree node. We call this node the
connection point. These steps are shown in Figure 3 for the
insertion of key 1. In this example the set W consists of nodes
with keys 2, 3 and 5 and the connection point is node with
key 7. By using private copies the entire set of modifications
becomes visible to other threads atomically at the time when
the child pointer of node 7 is swapped.

By exploiting RCU, RCU-HTM allows read-only operations
to proceed without synchronization or restarts. However, the
novelty of RCU-HTM lies at the way we use HTM to enable
multiple concurrent updaters. In this case, the operation gets
complicated, because there may exist cases where nodes in W
have been modified by another thread before they have been
replaced by W ′. This leads to modifications being discarded.
To avoid such erroneous executions, we add a validation step
just before installing the modified copy in the tree. More
specifically, when updaters copy nodes of the tree, they also
track down the state of these nodes and, before they install
their modified copy, they validate that all the nodes in W have
remained in the same state. If any of these nodes has changed,
we restart the operation. The validation and installation of the
private copy need to be performed atomically, therefore we
execute these two steps inside an HTM transaction.



(a) Insertion phase 1: Traversal of
the tree.

(b) Insertion phase 2: Insertion of
new node and rebalance the tree.

Figure 2: The two phases when inserting key 1 in an AVL
tree. Nodes in gray have been modified during phase 2.

Figure 3: Performing the modifications in copies rather than
in-place.

B. Implementation Details

Figures 5-10 present the code of our RCU-HTM based
AVL tree. Due to space limitations we provide the code
only for lookup and insert operations but both our AVL
and Red-Black tree implementations are publicly available in
https://github.com/rcu-htm/rcu-htm.

In the code we use the macros TX_BEGIN, TX_END and
TX_ABORT which are wrappers of the corresponding TSX
assembly instructions to begin, commit and abort a transaction.

Figure 5 presents the structures and helper functions used
by our AVL tree. The structure of the tree node (lines 8–14)
is the classic AVL tree node; apart from the key-value pair it
stores the height of the node and pointers to its two children.
To represent the avl tree we use the avl_t structure (lines
16–19), where we maintain a pointer to the root node of the
tree and a lock which is acquired by updaters in the non-
transactional fallback path. The helper functions height()
and balance() return the height and balance of a node, and
rotate_l() performs a left rotation over the given node.
The respective one for right rotation is very similar so we omit
it. Finally, copy_node() creates a copy of a node.
Lookup. The lookup operation of our RCU-HTM based AVL
is given in Figure 6 and is identical to serial AVL trees, as
there is no need for synchronization or restarting. Thanks to
the fact that updaters work on private copies, lookups can
safely traverse the tree and always access consistent parts of
the tree without ever being obstructed or delayed by concurrent
insert and/or delete operations.
Insert. Figure 7 presents the function that inserts a new key-
value pair in our AVL tree. The common execution path of

insertion starts with a traversal (line 90) which, as is the case
for lookups, uses no synchronization or restarts. This is per-
formed in function traverse_with_stack(). The only
difference from lookups is that, while moving downwards, we
also keep track of the traversed nodes by storing pointers to
them in a stack. This stack is later used for the reverse traversal
of the tree in the rebalance phase. If the key is found in the
tree, the function immediately returns (lines 91–92).

If the key is not found, we call insert_node_and_
rebalance() (line 94, Figure 7) that performs the in-
sertion of the new node and the rebalance dictated by the
AVL tree rules. However, instead of directly modifying the
affected nodes, it first copies them locally. Upon completion,
it returns a pointer to the connection point (conn_point
parameter) and a pointer to the root of its private modified
copy (tree_cp_root parameter). Moreover, while copying
nodes, in insert_node_and_rebalance() we maintain
a hash table where we store the children pointers of the copied
nodes. This information is used in the validation phase.

When insert_node_and_rebalance() returns, we
proceed with the validation of the private copy and its instal-
lation in the shared tree. If the validation phase has already
been retried for a configurable number of times, we restart the
operation (lines 98–99). The while loop in line 101 is used
to avoid starting a transaction when the lock is taken. The
if statement in lines 103–115 checks whether a transaction
has just began or has been aborted. In the former case, we
check whether the lock is taken (lines 104–105) and if so we
explicitly abort the transaction. By reading the lock variable
we guarantee that when another thread acquires the lock, all
concurrent transactions are aborted (due to conflict on the lock
variable). Next, we validate the modified copy, install it in the
shared tree and commit the transaction (lines 107–109).

When a transaction aborts, lines 111–114 are executed.
Depending on the abort reason we perform the following
actions: if the transaction aborted due to failure in validating
the copy the operation must be restarted; otherwise, we can
safely retry the validation and installation step.

If the operation has been retried TX_NUM_RETRIES times,
the non-transactional fallback path (Lines 77–88) is executed.
By acquiring the lock, we guarantee that only a single updater
is active (readers are not affected) so there is no need to
perform the validation step prior to installing the modified
copy in the tree.
Delete. The delete operation in RCU-HTM is performed in a
way similar to insertion when the node n to be removed has
less than two children. However, when n has two children, its
removal is more complicated. In this case we need to locate the
successor node s of n (i.e., the node containing the smallest
key that is larger than n’s key), replace n’s key with s’s and
finally remove s from the tree. An example of deleting a node
with two children is depicted in Figure 4a. Key 7 is replaced
by the successor’s key, which in this case is key 9, and the
successor node is removed from the tree. When moving the
successor’s key to the position of the deleted key, traversing
threads searching for that key may incorrectly fail to find it



(a) Inconsistency created when thread T1 searches for key 9 which is moved
up in the tree by a concurrent deletion. T1 fails to find key 9 albeit it is present
in the tree.

(b) Avoiding incosistency with RCU-HTM by replacing the path between nodes
7 and 9 to allow thread T1 to find key 9 in its previous position.

Figure 4: Incosistency due to concurrent delete and lookup.

in its old position. Such an erroneous execution is shown in
Figure 4a, where thread T1 is searching for key 9. T1 is not
notified of the repositioning of key 9 and fails to locate it.

To avoid such problematic cases in RCU-HTM, when a
node with two children is to be removed, we copy the whole
path from the node that contains the key to be deleted to the
successor node. If the copies performed during the rebalance
phase already include all the nodes in this path, no further
action needs to be performed. Figure 4b presents an example
of deleting a node with two children using RCU-HTM. In this
case, T1 is navigated to the node with key 9 even though in
the new version of the tree key 9 is located higher in the tree.

V. CORRECTNESS

In this section we provide an informal correctness proof
for RCU-HTM. To do so, we use the well-known correctness
condition of linearizability [18]. For each of the three opera-
tions we define the linearization point, i.e., the point at which
the operation has taken effect. We omit the analysis of the
linearization point of the delete operation, as it can be defined
in a way similar to that of the insert operation.

Lookup: The reasoning about the linearizability of lookup
in RCU-HTM is identical to other RCU-based implementa-
tions [2], [19]. In all RCU-based algorithms, including RCU-
HTM, updaters commit their copies by modifying one memory
location. In RCU-HTM this is the appropriate child pointer

of the connection point. Since single-word reads and writes
are atomic, readers observe either the old or the new version
of the data structure. Moreover, because RCU-HTM avoids
performing any rotations directly on the tree, traversals never
follow a wrong path. In the following paragraph, we provide
the linearization points of lookup.

A lookup operation that observes an empty tree is linearized
at line 56 when avl->root is read as NULL. When the tree
is not empty, the linearization point is either at line 62 or line
63 when the appropriate child of leaf is read. There is a
time window between the read of leaf->left or leaf->
right and the point at which the lookup operation returns,
during which leaf may have been removed from the tree by
some concurrent insertion or deletion. Even then, however, the
lookup can safely be linearized before this operation.

Insert: An insert operation that finds the key in the tree and
does not modify the tree structure is linearized similarly to a
lookup operation, i.e., at the point when the node containing
the searched key is reached. That is, either line 133 or line 134
of traverse_with_stack(). An insert operation that
does not find the key and modifies the tree is linearized in one
of two points; either at line 109 when a hardware transaction
commits installing the private copy of the operation in the tree,
or at line 78 when avl->avl_lock is acquired.

VI. EXPERIMENTAL EVALUATION

For our experiments we used an Intel Broadwell-EP server
with an Intel Xeon E5-2699 v4 processor with 22 physical
cores and 44 hardware threads. The processor runs at 2.2GHz
and each physical core has its own L1 and L2 cache of sizes
32KB and 256KB respectively. A 56MB L3 cache shared by
all cores is also available and the server is equipped with 64GB
of RAM. The system runs Debian 8.3 with kernel version
4.7.0. For the compilation of all our implementations we used
GCC 4.9.2 with the -O3 optimization flag enabled.
Our evaluation includes the following concurrent BSTs:
- lb-avl2: A relaxed, partially external, lock-based AVL tree

by Bronson et al. [6].
- lf-bst2: An unbalanced, external, non-blocking BST by

Natarajan et al. [25].
- citrus-bst: The Citrus unbalanced, internal BST by Arbel

et al. [2] that uses RCU and fine-grain locks to synchronize
updaters.

- rcu-mrsw-avl: A multi-reader-single-writer RCU-based
AVL tree [19] that synchronizes updaters with a global lock.

- cop-avl: The consistency-oblivious-programming based
AVL tree by Avni et al. [4].

- rcu-htm-avl: An RCU-HTM based internal AVL tree.
- rcu-htm-rbt: An RCU-HTM based internal Red-Black tree.
We evaluate the concurrent BSTs in the following way:
- Each run lasts 2 seconds, during which each thread performs

randomly chosen operations. During this time threads per-
form enough operations to get stable results. We also tried
longer durations and got similar results.

2We use the implementation from ASCYLIB [11].



8 typedef struct avl node s {
9 int key;

10 void ∗value;
11 int height;
12 struct avl node s ∗left,
13 ∗right;
14 } avl node t;
15
16 typedef struct {
17 avl node t ∗root;
18 pthread spinlock t avl lock;
19 } avl t;
20
21 int height(avl node t ∗n) {
22 if (!n) return −1;
23 else return n−>height;
24 }
25
26 int balance(avl node t ∗n) {
27 if (n == NULL)
28 return 0;
29 else
30 return (height(n−>left) −

height(n−>right));
31 }
32
33 avl node t ∗rotate l(avl node t ∗n) {
34 avl node t ∗l = n−>left;
35 n−>left = n−>left−>right;
36 l−>right = n;
37 n−>height = MAX(height(n−>left),

height(n−>right)) + 1;
38 l−>height = MAX(height(l−>left),

height(l−>right)) + 1;
39 return l;
40 }
41
42 avl node t ∗copy node(avl node t ∗src) {
43 avl node t ∗dst;
44 dst = new node(src−>key, src−>value);
45 dst−>height = src−>height;
46 dst−>left = src−>left;
47 dst−>right = src−>right;
48 return dst;
49 }

Figure 5: The structures and helper functions used by our
AVL tree.

51 int avl lookup(avl t ∗avl, int key)
52 {
53 avl node t ∗parent, ∗leaf;
54
55 parent = NULL;
56 leaf = avl−>root;
57
58 while (leaf) {
59 if (leaf−>key == key) return 1;
60
61 parent = leaf;
62 if (key < leaf−>key) leaf = leaf−>left;
63 else leaf = leaf−>right;
64 }
65
66 return 0;
67 }

Figure 6: Lookup operation.

68 int avl insert(avl t ∗avl, int key,
void ∗value)

69 {
70 avl node t ∗node stack[MAX HEIGHT];
71 avl node t ∗tree cp root, ∗conn point;
72 int stack top;
73 hash table t ht;
74
75 int retries = −1;
76 RETRY:
77 if (++retries >= TX NUM RETRIES) {
78 pthread spin lock(&avl−>avl lock);
79 traverse with stack(...);
80 if (stack top >= 0 &&

node stack[stack top]−>key == key) {
81 pthread spin unlock(&avl−>avl lock);
82 return 0;
83 }
84 insert node and rebalance(...);
85 install copy(...);
86 pthread spin unlock(&avl−>avl lock);
87 return 1;
88 }
89
90 traverse with stack(avl, key, node stack,

&stack top);
91 if (stack top >= 0 &&

node stack[stack top]−>key == key)
92 return 0;
93
94 insert node and rebalance(key, value,

node stack, stack top,
&tree cp root, &conn point,
ht);

95
96 int validate retries = −1;
97 VALIDATE AND INSTALL COPY:
98 if (++validate retries >= TX NUM RETRIES)
99 goto RETRY;

100
101 while (avl−>avl lock != LOCK FREE) ;
102
103 if (TX BEGIN() == TM BEGIN SUCCESS) {
104 if (avl−>avl lock != LOCK FREE)
105 TX ABORT(TX ABORT LOCK TAKEN);
106
107 validate copy(avl, key, node stack,

stack top, ht);
108 install copy(avl, key, conn point,

tree cp root);
109 TX COMMIT();
110 } else {
111 if (abort due to validation error)
112 goto RETRY;
113 else
114 goto VALIDATE AND INSTALL COPY;
115 }
116 return 1;
117 }

Figure 7: Insert operation.



118 void traverse with stack(avl t ∗avl,int key,
avl node t ∗node stack[MAX HEIGHT],
int ∗stack top)

119 {
120 avl node t ∗parent, ∗leaf;
121
122 parent = NULL;
123 leaf = avl−>root;
124 ∗stack top = −1;
125
126 while (leaf) {
127 node stack[++(∗stack top)] = leaf;
128
129 if (leaf−>key == key)
130 return;
131
132 parent = leaf;
133 if (key < leaf−>key) leaf = leaf−>left;
134 else leaf = leaf−>right;
135 }
136 }

Figure 8: Helper function to traverse the tree. Keeps the
whole path of traversed nodes in a stack of pointers.

137 void validate copy(avl t ∗avl, int key,
avl node t ∗node stack[MAX HEIGHT],
int stack top, hash table t ht)

138 {
139 avl node t ∗child, ∗∗p, ∗n;
140
141 if (avl−>root != node stack[0])
142 TX ABORT(TX VALIDATION ERROR);
143
144 for (i=0; i < stack top; i++) {
145 if (key < stack top[i]−>key)
146 child = stack top[i]−>left;
147 else
148 child = stack top[i]−>right;
149 if (child != node stack[i+1])
150 TX ABORT(TX VALIDATION ERROR);
151 }
152
153 for (every entry e in ht) {
154 p = e.address; v = e.value;
155 if (∗p != v)
156 TX ABORT(TX VALIDATION ERROR);
157 }
158 }
159
160 void install copy(avl t ∗avl, int key,

avl node t ∗conn point,
avl node t ∗tree cp root)

161 {
162 if (conn point == NULL)
163 avl−>root = tree cp root;
164 else if (key < conn point−>key)
165 conn point−>left = tree cp root;
166 else
167 conn point−>right = tree cp root;
168 }

Figure 9: Helper functions used to validate and install the
private modified copy.

169 void insert node and rebalance(
int key, void ∗value,
avl node t ∗node stack[MAX HEIGHT],
int stack top,avl node t ∗∗cp root,
avl node stack ∗∗conn point,
hash table t ht)

170 {
171 avl node t ∗curr cp;
172
173 ∗cp root = new node(key, value);
174 ∗conn point = node stack[stack top−−];
175
176 while (stack top >= 1) {
177 if (∗conn point == NULL)
178 break;
179 if ((∗cp root)−>height + 1 ≤

(∗conn point)−>height)
180 break;
181
182 curr cp = copy node(∗conn point);
183 curr cp−>height =

(∗cp root)−>height + 1;
184 if (key < curr cp−>key) {
185 curr cp−>left = ∗cp root;
186 ht insert(ht, &(∗conn point)−>right,

curr cp−>right);
187 } else {
188 curr cp−>right = ∗cp root;
189 ht insert(ht, &(∗conn point)−>left,

curr cp−>left);
190 }
191 ∗cp root = curr cp;
192 ∗conn point = (stack top ≥ 0) ?

node stack[stack top−−] : NULL;
193
194 if (balance(curr cp) == 2) {
195 if (balance((∗cp root)−>left) == 1) {
196 ∗cp root = rotate r(∗cp root);
197 } else {
198 (∗cp root)−>left =

rotate l((∗cp root)−>left);
199 ∗cp root = rotate r(∗cp root);
200 }
201 break;
202 } else if (balance(curr cp) == −2) {
203 if (balance((∗cp root)−>right) == −1){
204 ∗cp root = rotate l(∗cp root);
205 } else {
206 (∗cp root)−>right =

rotate r((∗cp root)−>right);
207 ∗cp root = rotate l(∗cp root);
208 }
209 break;
210 }
211 }
212 }

Figure 10: The function used by RCU-HTM that performs the
insert and rebalance phase of an AVL tree by creating copies
of the affected nodes.



- Each software thread is pinned to a hardware thread. Hy-
perthreading is enabled only on 44 thread executions.

- For the transactions of RCU-HTM based trees and cop-avl
we set the number of transactional retries before resorting
to the global lock non-transactional fallback (i.e., the TX_
NUM_RETRIES parameter) to 10.

- To minimize the overheads of memory allocation we use per
thread pre-allocated memory for the node copies in RCU-
HTM. Similarly to previous works [2], [25], we perform no
memory reclamation during our experiments.

- We test our implementations using read-only, read-
dominated and write-only workloads consisting of 100%,
80% and 0% lookups, respectively, while the rest of the oper-
ations are equally divided between insertions and deletions.
The read-only and write-only cases are the best and worst
cases, respectively, for RCU-HTM, while the read-dominated
workload represents a typical application workload.

- As the key range effectively determines the size of the tree,
we evaluate our implementations for ranges of 200, 2K,
20K, 2M and 20M keys, which represent small to large-sized
trees. At the beginning of each run, the tree is initialized to
contain half the keys of the selected range.

- All reported results are the average of 10 independent
executions with no significant variance.
Figure 11 presents the results of the concurrent BSTs for

all workloads and tree sizes.
Read-only workloads. The leftmost column of Figure 11
presents the results for the read-only workloads. As is evident,
for all tree sizes RCU-HTM trees and rcu-mrsw-avl outperform
all other implementations. cop-avl also scales thanks to the
absence of conflicts (which translates to zero abort rate for
its transactions). However, its performance is lower for two
reasons: first, in the small trees, where traversals are very fast,
the cost of starting and ending a transaction is comparable
to the cost of the traversal itself; second, in the large trees
its larger node size (tree nodes in cop-avl have 3 additional
fields to enable the validation of the traversal) results in larger
memory footprint for its traversals. lb-avl does not perform as
well as the rest of the implementations, because at each step
of a traversal the node’s version number is read and validated.
As our results reveal this imposes a high overhead. Finally,
the significance of balancing the tree is evident from the
performance of the two unbalanced implementations, citrus-
bst and lf-bst. Neither of them manages to achieve performance
comparable to the balanced implementations.
Read-dominated workloads. The middle column depicts the
results for the read-dominated workloads, with 80% lookups.
For all tree sizes, except for the smaller one with 200 keys,
RCU-HTM trees outperform all other BSTs. The performance
of the unbalanced non-blocking lf-bst shows that, under high
contention, rebalancing the tree imposes high overheads. This
is the reason why lf-bst is the most performant in the 200
keys case. However, as the tree size increases and contention
is reduced, its performance drops below that of the balanced
trees. This result highlights the importance of balancing the
tree. Similar conclusions can be drawn from the behaviour of

the other unbalanced BST, citrus-bst.
The impact of allowing only a single updater is evident

from the performance of rcu-mrsw-avl. Even with a relatively
low update ratio (i.e., 20% of total operations) its performance
collapses. The HTM-based cop-avl tree scales well for all tree
sizes, except for the smaller one. In this case, it doesn’t scale as
well as RCU-HTM based trees for two reasons: first, traversals
may need to restart, and, second, the transactions executed by
the updaters contain multiple memory writes and are, thus,
prone to aborts.
Write-only workloads. In the rightmost column of Figure 11
we present the results for the write-only workloads, which is
generally the worst case scenario for RCU-based and HTM-
based implementations. In this execution scenario rcu-mrsw-
avl is similar to a single global lock implementation and
provides no scalability. cop-avl does not scale for the 200
and 2K trees, as well as for 44 threads on a 20K tree. RCU-
HTM based trees manage to combine the best of both worlds
by efficiently allowing concurrent writers and by avoiding the
majority of aborts. Even in the most contended cases (i.e., 200
and 2K keys) RCU-HTM scales and provides throughput fairly
competitive to the best performing trees.

Figure 12 summarizes the results of our experiments pro-
viding an overall evaluation of the benefits of RCU-HTM. The
numbers above the bars in Figure 12a represent the average
path length that is been traversed in each implementation.
These numbers validate our argument that a balanced, internal
BST with on-time deletion is, despite its complexity, the best
option in terms of performance, as the unbalanced trees (lf-bst
and citrus-bst) have longer traversal paths. The bars present
geometric means of speedups over the serial executions. We
provide these means averaged over three dimensions:
Tree size. The only case where RCU-HTM is not the best
implementation is for the smaller tree with 200 keys. Even
in this case, however, its performance is competitive to the
best performing, lf-bst. For all other tree sizes RCU-HTM
outperforms all other implementations. An important note
here, is that the second best competitor is not always the
same. This is expected, as different BSTs fit better the different
conditions caused by the combination of workloads and tree
sizes; however, RCU-HTM is consistently the top performing
BST, indicating its robustness across different use cases.
Workload. As is evident from Figure 12b for the read-only
workload RCU-HTM performs equally to rcu-mrsw-avl. This
was expected, as when no updaters are executing the two
implementations execute the same code. However, the perfor-
mance of RCU-HTM for the other two workloads showcases
the benefit of allowing multiple updaters by using HTM. Even
in the worst case scenario for RCU, the write-only workload,
RCU-HTM manages to be competitive with the lock-based and
non-blocking implementations.
Total. In Figure 12c we present the average speedups over
serial for all tree sizes and workloads for the cases of 22 and
44 threads. In both cases RCU-HTM is 18% better than the
second best implementation.



Figure 11: Throughput of concurrent tree implementations. The rows represent different tree sizes and the columns different
workloads. The vertical line in each plot shows the point after which we utilize hyperthreads. Notice the differences in the
y-axis range between the figures.



Figure 12: Geometric means of speedups over serial presented (a) by tree size (22 threads), (b) by workload (22 threads) and
(c) in total (22 and 44 threads). The speedups have been calculated using the execution time of a serial internal AVL tree as
the baseline. The numbers above the bars in (a) present the average number of nodes traversed in each implementation.

VII. DISCUSSION

In this work we mainly focused on the performance of
BSTs. However, when designing and implementing a con-
current data structure, three more factors are typically taken
into consideration: robustness, programmability and memory
requirements. In this section we provide a brief discussion for
each of these factors regarding RCU-HTM based BSTs.

Robustness, i.e., the ability of a data structure to handle
cases such as thread delays or failures; non-blocking imple-
mentations are the most robust, because threads make progress
independently of other thread failures. On the contrary, lock-
based BSTs are the least robust, because when a thread holding
a lock is delayed, other threads wait for the lock to be released
and make no progress. The granularity and the frequency by
which locks are acquired, directly affects the robustness of
a lock-based BST. BSTs implemented with RCU-HTM are
robust for two reasons: first, read-only operations are not
affected by other operations and can never be delayed due
to other thread actions; second, updaters are only delayed by
other updaters in the extremely rare case when an update
operation has restarted for more than TX_NUM_RETRIES
times. In this case the updater will acquire the global lock.
Our experiments validated that this is very uncommon. More
specifically, in the 200 keys tree with 0% lookups, where
we expect the highest number of aborts and therefore retries,
the global lock was acquired by only 1.6% of the update
operations. On every other case this fraction was zero.

Programmability, i.e., the effort required to implement and
maintain a data structure; although this is the hardest to
quantify factor we intend to focus more on it in our future
work. We plan to use metrics such as the percentage of code
or the Halstead complexity metric [15] to compare RCU-HTM
against state-of-the-art BSTs.

Memory requirements, i.e., the size of the memory footprint
required by a data structure; unlike other approaches (e.g.,
lazy deletion and external trees), RCU-HTM trees do not leave
unused nodes in the tree. They stress the memory management
system by creating node copies, however, the replaced nodes
can be reclaimed as soon as no other threads are accessing
them. Our future work aims at exploring ways to safely reclaim
and free these nodes.

VIII. CONCLUSION & FUTURE WORK

In this work we introduced RCU-HTM, a technique that
combines HTM with RCU in an innovative way to implement
highly scalable concurrent BSTs. As our experimental evalua-
tion revealed trees implemented using RCU-HTM outperform
previous RCU- and HTM-based approaches as well as state-
of-the-art non-blocking and lock-based ones for a wide range
of workloads and tree sizes.

As future work we plan to explore how memory reclamation
techniques can be applied to RCU-HTM and investigate their
impact on performance. Moreover, we intend to find other data
structures on which RCU-HTM can be applied with similar
performance benefits.
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APPENDIX

A. Abstract

The artifact contains the source code of the concurrent
tree implementations used in our experimental evaluation,
as well as a serial AVL tree which serves as baseline for
calculating speedups. We also include scripts for executing the
experiments and producing plots similar to Figures 11 and 12.

B. Description
1) Check-list (artifact meta information):
• Algorithm: Concurrent BSTs, AVL tree, Red-Black tree
• Program: C code with inline HTM assembly instructions
• Compilation: gcc 4.9.2 with -O3 flag
• Binary: x86 64 dynamically linked executables
• Run-time environment: Debian jessie 8.3, 4.7.0 kernel
• Hardware: Any Intel processor that supports TSX (Haswell

and all successors)
• Experiment workflow: Clone repo; make; run; create plots
• Publicly available?: Yes

2) How delivered:
The source code of RCU-HTM is provided on github along
with instructions on how to compile and execute it.

3) Hardware dependencies:
To execute RCU-HTM an Intel processor with TSX support is
required. Haswell processors and all their successors provide
this functionality. To check the availability of TSX one needs
to check if flags tm, tm2 and rtm are reported in /proc/
cpuinfo.

4) Software dependencies:
To execute the plot scripts, the following software is necessary:
• python: tested with version 2.7.6.
• python-numpy: tested with version 1.8.2.
• python-matplotlib: tested with version 1.3.1.
In typical Debian/Ubuntu linux distributions the above pack-

ages can be installed using the following commands:

$ apt−get update
$ apt−get install python python−numpy python−

matplotlib

C. Installation

Clone our github repository (https://github.com/rcu-htm/
pact-ae) and execute make command. Upon successfull com-
pilation, the executables are created with their names start-
ing with x. followed by the implementation name (e.g.,
x.avl.int.rcu htm).

D. Experiment workflow

The first step consists of cloning the git repository and
compiling the source code:

$ git clone https://github.com/rcu−htm/pact−ae
$ cd pact−ae
$ make

Upon successfull compilation, the executables should have
been created:

$ ls x.∗
x.avl.bronson x.avl.int.cop
x.avl.int.rcu htm x.avl.int.rcu sgl
x.avl.int.seq x.bst.aravind
x.bst.citrus x.rbt.int.rcu htm

After that point, our provided script can be used to execute
the benchmarks:

$ source ./scripts/source me.sh
$ ./scripts/run.sh

E. Evaluation and expected result

After the execution of run.sh script, a directory has been
created inside the results directory with a filename that consists
of the date and hostname of the machine on which the script
has been executed (e.g., 2017 06 12-15 06-node1).

Inside the directory are the output files for each combination
of executable, init tree size and workload. There is also a
SERIAL directory which includes the results of the serial
execution. Finally, there is also a file called INFORMATION
which contains the parameters of the specific execution.

We provide two scripts that can be used to produce figures,
similar to Figure 11 and 12 in the paper:

$ cd scripts
$ source source me.sh
$ ./create−figure−11−plots.sh ../results/2017

06 12−15 06−node1
$ ./create−figure−12−plots.sh ../results/2017

06 12−15 06−node1 22

The second argument of create-figure-12-plots.
sh is the number of threads for which to create the plots. The
plots can be found in the plots directory.

F. Experiment customization

By modifying appropriately the scripts/source_me.
sh file the following parameters can be set:
• RCU HTM NR EXECUTIONS: Number of times to

repeat each execution.
• RCU HTM RUNTIME: Duration of each benchmark in

seconds.
• RCU HTM WORKLOADS: Different workloads to be

executed.
• RCU HTM INIT SIZES: Different init tree sizes.
• RCU HTM THREADS CONF: Different number of

threads configurations.
• RCU HTM EXECUTABLES: The executables to be

taken into consideration.
• RCU HTM PLOT LABELS: The labels to be used for

each executable in the produced plots.
• RCU HTM SERIAL EXE: The serial tree implemen-

tation to be considered as the baseline for speedup
calculations.

G. Notes

The methodology followed for the submission and review
of this artifact can be found in the following link:
http://ctuning.org/ae/submission-20170414.html


