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Abstract—Despite their proliferation as a dominant comput-
ing paradigm, cloud computing systems lack effective mech-
anisms to manage their vast amounts of resources efficiently.
Resources are stranded and fragmented, ultimately limiting
cloud systems’ applicability to large classes of critical applica-
tions that pose non-moderate resource demands. Eliminating
current technological barriers of actual fluidity and scalability
of cloud resources is essential to strengthen cloud computing’s
role as a critical cornerstone for the digital economy.

ACTiCLOUD proposes a novel cloud architecture that
breaks the existing scale-up and share-nothing barriers and
enables the holistic management of physical resources both
at the local cloud site and at distributed levels. Specifically, it
makes advancements in the cloud resource management stacks
by extending state-of-the-art hypervisor technology beyond the
physical server boundary and localized cloud management
system to provide a holistic resource management within a
rack, within a site, and across distributed cloud sites. On top
of this, ACTiCLOUD will adapt and optimize system libraries
and runtimes (e.g., JVM) as well as ACTiCLOUD-native
applications, which are extremely demanding, and critical
classes of applications that currently face severe difficulties in
matching their resource requirements to state-of-the-art cloud
offerings.

Keywords-cloud computing, resource management, in-
memory databases, resource disaggregation, scale-up, rackscale
hypervisor

I. INTRODUCTION

Since its emergence, cloud computing has become a
dominant computing model enabling cost-effective and flex-
ible access to a wide pool of resources. Large classes
of applications, such as web services, big data analytics,
distributed applications for social networking, storage and
various other home and business applications, have been
smoothly integrated into cloud services, leading to a rapid
growth of the cloud market, expected to continue in the
foreseeable future. To accommodate these demands and
minimize the risk of losing the constantly increasing flow
of customers, Cloud Service Providers (CSPs) have been
relying on the continuous expansion of their IT facilities
while employing simplistic policies to manage resources.
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This approach though appears to be unsustainable for
the next generation of mature cloud computing systems.
The aggregation of IT infrastructures in large CSPs reduces
the infrastructure and administration costs for small orga-
nizations and is more resource efficient due to economies
of scale. However, it is the responsibility of the CSPs to
properly manage these vast pools of resources.

Unfortunately, numerous studies have shown that CSPs
fail to utilize the available resources efficiently, with their
utilization ranging from 10% to 50% [1]–[7] for a number
of reasons. First of all, the “share-nothing” PC system
architecture used in data centers today, confines resource
allocation to the physical bounds of servers, failing to
express the fluidity of system resources that is inherent to
the cloud paradigm, thus leading to resource stranding and
fragmentation. Second, to guarantee availability during short
time frames of peak demands and adhere to Service-Level
Agreements (SLAs), CSPs compromise with severe under-
utilization of resources during non-peak periods [1]. Finally,
both fragmentation and underutilization are exacerbated by
the unpredictability and variability of workloads, as well as
the lack of effective workload consolidation policies that
would take into account resource availability, application
demands and Quality of Service (QoS) levels [8]–[10].

On the application side, cloud computing has successfully
encompassed applications that are either resource conserva-
tive or capable of requesting resources in the “scale-out”
fashion, i.e., they can be easily decomposed to large num-
bers of loosely connected entities adhering to the “share-
nothing” paradigm [10]. However, large classes of important
applications are resource hungry and do not scale out grace-
fully for simplicity, correctness, programmability, and cost-
effectiveness reasons. These applications are characterized
as “scale-up”, since they need to execute on a single
server under the “share-anything” paradigm. As such, they
are typically executed on costly customized infrastructures
under private administration and cannot take advantage of
the cost-effectiveness and flexibility of the cloud [11].

To accommodate such classes of applications, ICT indus-
tries and research communities have started to realize new



data center architectures that rely on the principles of hard-
ware disaggregation and programmable infrastructure [12]–
[16]. To efficiently manage though such disaggregated pool
of resources, the current generation of cloud management
hypervisors, scheduling algorithms, system libraries, and
applications needs to be rethought and redesigned.

ACTiCloud proposes a novel cloud architecture that
breaks the existing scale-up and share-nothing barriers and
enables the holistic management of physical resources both
at the local cloud site and at the distributed levels, targeting
drastically improved utilization and scalability of resources.
Our distributed, hyper-converged, “share-anything”, resource
scale-up and scale-out cloud platform will broaden the
applicability of cloud technology across markets through
richer and more cost effective deployments. This is achieved
through redesign and enhancement of the entire cloud stack,
including the hypervisor, the cloud manager, system li-
braries, language runtimes, and applications with a novel
and holistic set of mechanisms and policies.

The remainder of the paper is structured as follows: Sec-
tion II motivates the need for a novel cloud management
architecture. Section III gives a high-level overview of the
proposed architecture, while Section IV describes in detail
the main ACTiCLOUD components. Section V presents the
optimizations and adaptations needed from system libraries
and applications to take advantage of the various features in
an ACTiCLOUD-enabled infrastructure. Section VI presents
the related work and current advancements in the area.
Finally, Section VII summarizes the paper.

II. MOTIVATION AND APPROACH

Data-intensive applications are resource hungry and do
not scale out gracefully for simplicity, consistency, cor-
rectness, programmability, and cost-effectiveness reasons.
This class comprises numerous applications that are mainly
database-driven. The rise of technologies such as column-
stores [17]–[20]), NoSQL [21]–[25], and NewSQL [26]–
[28] in the last decade, has caused a major paradigm shift
in modern database systems [29]–[31], both in the use of
hardware and in the developed software.

Traditionally, database systems assume that data primarily
reside on disks, and data pages are frequently brought into
or out of the main memory for processing. Therefore, one of
the main focuses of those systems has been to minimize the
disk I/Os. However, enabled by the price decrease of main
memory, and to meet the demand of the rapid growth in the
amount of data and computations to handle, both existing
(e.g., traditional relational databases) and emerging (e.g.,
column stores, NoSQL, and NewSQL) database systems
have shifted their focus to in-memory processing. In this
setting, a database system is heavily tuned to work most
efficiently with data that are already in the main memory.
As long as all processing data are kept in memory, disk I/O
is a secondary or even a non-issue. Consequently, to cope

with the ever increasing performance demands of the data-
intensive applications, modern databases consume steadily
more main memory.

However, state-of-the-art cloud offerings are not able to
match these demands, thus keeping this class of applications
outside the cloud. Since database systems are often the
cornerstones of business critical applications (e.g., online
transaction processing, decision making, and predictions), to
ensure their position in the market, it is extremely important
to embrace the current and anticipate the future evolution
within cloud offerings.

Recently, a number of cutting-edge industrial products
and research projects have emerged targeting resource disag-
gregation and rack-scale computing [12]–[15], [32]. These
approaches envision breaking the physical boundaries of
the long lasting and traditional PC architecture by making
hardware resources managed as independent units. Until
now, in cloud computing systems resource disaggregation
has only been realized for storage systems. As in typical
configurations, storage data is shared across the cloud hosts,
providing both data resilience and increased IO throughput.

Resource disaggregation opens up new opportunities
as well as challenges. On the one hand, the demands
of data-intensive and resource-hungry applications, called
ACTiCLOUD-native applications hereafter, can be matched
by such infrastructures. On the other hand, the management
of the infrastructure and the applications themselves are
becoming more complex, requiring redesign and enhance-
ment of the entire cloud management stack. ACTiCLOUD’s
vision is to architect, design, and develop a novel cloud
management stack to tackle this challenge and enable the
cloud model to embrace the next generation of applications.

ACTiCLOUD targets enhanced resource efficiency by cre-
ating flexible pools of resources that are aggregated from the
available resources across multiple servers hosted at a single
data center. Additionally, it utilizes the existing distribution
of a cloud configuration to further balance loads between
collaborating cloud sites that are geographically distributed.
In this way, CSPs can resort to much more cost efficient
capacity planning, utilizing support from collaborating cloud
sites to accommodate the demands of peak periods. Such
collaboration can be used both between separate public cloud
vendors, and between an enterprise private cloud and their
public cloud partners.

Fig. 1 shows the core concept of ACTiCLOUD. Resources
collected from multiple servers from wide pools at the rack-
scale can be assigned to applications minimizing fragmen-
tation and enabling the execution of applications with large
resource requests. When resources at a site come to end,
applications can be serviced by sibling sites that reside in
remote geographical locations.

ACTiCLOUD aims to break the two critical barriers
that currently hinder true fluidity of cloud resources: the
server barrier and the data center barrier. Although cloud



Figure 1: Core ACTiCLOUD concept.

technologies advertise their ability to provide flexibility and
elasticity in resource provisioning, this is true so far only
for storage resources. These resources can be shared be-
tween multiple servers within a single data center via either
centralized Storage Attached Network (SAN) solutions or
distributed storage platforms (such as Ceph [33] or OnApp
Integrated Storage [34]), and horizontal (i.e., “scale out”)
scalability where additional Virtual Machines (VMs) are
allocated to cover increased demands. The critical resources
of processing cores and main memory remain constrained
to what a physical server can provide, limiting the ability of
the infrastructure to host resource-demanding applications
(especially large-scale in-memory processing) and increase
resource utilization. ACTiCLOUD aims to extend resource
disaggregation beyond storage, to cores and main memory.

Additionally, typical cloud configurations involve sites
that are geographically distributed and disjointly managed
either due to operational needs or scalability restrictions.
Solutions such as WL2 [35] have been proposed recently,
that leverage Software Defined Networking to provide a scal-
able, high-performance, multi-datacenter layer-2 network
architecture, thus enabling tighter cross-site interactions.
ACTiCLOUD builds on top of this technological trend to
provide a set of mechanisms and policies that will sup-
port application migrations between cloud sites that are
geographically distributed [36]. In this way, ACTiCLOUD-
enabled platforms will be able to support policies enforc-
ing geo-based load balancing, improved resource utilization
and service locality (e.g., when traffic comes from various
places, or if there are strict quality/latency requirements, or
if there are regulatory constraints), cost optimization (e.g.,
when resources are cheaper in another place), and service
continuity and geo-redundancy.

By utilizing the ACTiCLOUD approach, we intend to
provide the necessary technological mechanisms to support
resource-demanding, ACTiCLOUD-native applications in
ACTiCLOUD-enabled cloud systems. To this direction, we
optimize system software and managed runtime systems that
are heavily utilized by ACTiCLOUD-native applications,

and two cutting-edge representatives of ACTiCLOUD-native
applications, i.e., a columnar in-memory analytical database
(MonetDB) [18] and a graph database (Neo4j) [37], will be
adapted. At the same time, an ACTiCLOUD-enabled cloud
system continues to support traditional cloud applications
without requiring any adaptation.

III. THE ACTICLOUD ARCHITECTURE OVERVIEW:
ENABLING RESOURCE DISAGGREGATION AND BEYOND

We conceptualize the architecture into two logical dimen-
sions. The first dimension contains management operations
that provide access to the virtualized computing infrastruc-
ture which is the ACTiCLOUD IaaS. The second dimension
contains operations related to optimizations and adaptation
of system libraries and applications in order to enable appli-
cations to run on ACTiCLOUD IaaS. Schematically, these
dimensions provide a layered foundation for the architecture.

Fig. 2 depicts an abstract overview of the ACTiCLOUD
architecture. At the bottom level, namely Disaggregated
Hardware resources, we employ two cutting-edge European
technologies brought in the project by Numascale [12], and
Kaleao [13]. These technologies are capable of supporting
resource disaggregation for typical cloud servers and mi-
croservers respectively, thus providing the mechanisms to
build resource pools at the rack-level by unifying the re-
sources of multiple servers. The Aggregation Layer presents
a cache coherent system to the Rackscale Hypervisor that
takes advantage of that via kernel modules, system libraries
or virtualization elements.

On top of this server architecture, Rackscale Hypervisor
extends a state-of-the-art hypervisor, provided by ONAPP’s
MicroVisor [38], which operates at the rack-scale to provide
a unified management of resources and a single system
image. On top of the rack-scale hypervisor lies the Holistic
Resource Management, which extends the de facto open-
source cloud management software OpenStack [36], [39] to
provide a holistic, autonomous management of resources
both locally and across distributed clouds, thus enabling
both “scale-up” and migration of ACTiCLOUD-native ap-
plications. Those three layers (server, hypervisor, and cloud



Figure 2: High Level ACTiCLOUD Architecture.

manager) provide a novel substrate for resource-efficient
distributed IaaS clouds.

To enable ACTiCLOUD-native applications such as the
next generation business-critical, resource-hungry applica-
tion frameworks (e.g., DataBase-as-a-Service (DBaaS)), dif-
ferent adaptations and optimizations of system libraries and
runtimes are required. First, at the System Library Optimiza-
tion layer, critical system libraries that manage resources
(e.g., Linux libNUMA) and the language runtime (e.g.,
JVM) will be optimized. Then, at a higher level, namely
ACTiCLOUD-Native Applications, in-memory, column-store
OLAP databases (e.g., MonetDB) and graph databases (e.g.,
Neo4j) will evolve to take advantage of the features provided
by ACTiCLOUD IaaS.

IV. THE ACTICLOUD IAAS MAIN BUILDING BLOCKS

This section presents the different building blocks that
make up the underlying ACTiCLOUD IaaS to address
the challenges and opportunities and realize the concepts
presented in the earlier sections.

Fig. 3 shows the different ACTiCLOUD components and
their interactions. The disaggregated hardware resources and
aggregation layer expose themselves and provide moni-
toring features to the rackscale hypervisor. The rackscale
hypervisor provides transparent, isolated, and abstract view
of the hardware resources for each running application.
It allows VMs to effectively share resources at the rack-
level, effectively eliminating the physical server boundaries.
On top of the rackscale hypervisor, the holistic resource
manager dynamically and efficiently schedules resources for
the incoming as well as running applications according to
their requirements. The details of each building block are
presented in the next sections.

A. Disaggregated Hardware Resources and Aggregation
Layer

The ACTiCLOUD architecture will be implemented on
top of two novel European server technologies, i.e., Nu-
mascale and Kaleao, that support resource disaggregation.
However, the proposed architecture, the concepts, and the
majority of the software modules (apart from those that

are specific and optimized for the embraced technologies)
will be compatible to alternative solutions for resource
disaggregation.

In the Aggregation Layer the Numascale platforms link
together commodity servers to form a single unified system,
in which all processors can coherently access and share all
memory and I/O, breaking through the scale-up limitations
within existing data centers. The combined system runs a
single instance of a standard operating system such as Linux.
At the heart of the Numascale platforms is NumaConnect,
implemented with the NumaChip [12] - a single chip that
combines the cache coherent shared memory control logic
with an on-chip high-performance network switch. The
system size can be scaled up to 4K nodes, where each node
can contain multiple processors. Effective memory size is
limited only by the 48-bit physical address range provided by
state-of-the-art processor technologies resulting in a record-
breaking total system main memory of 256TiB.

The Kaleao KMAX platform [13] is a new-generation
server system architecture based on the principles of true
convergence with the hardware design creating a "share-
anything" resource scale-out platform. Its scalable archi-
tecture is constructed from compute units, each defined by
their processing, memory, and IO-bandwidth capabilities. A
node is then created from multiple compute units with local
access to the global and distributed pools of IO resources,
part of which are instantiated locally and thus creating the
physical node circuits. Each node then defines network, and
storage compute units which dynamically create and assign
IO device resources to each virtual machine instantiated
through a technique known as physicalization. Four nodes
are then grouped into a blade and up to 12 blades can be
installed in a single 3U chassis.The KMAX platform today
utilizes its “share-anything” capabilities across storage and
networking, with the ability to expose other resources, such a
memory, into the global pools expected within the roadmap
of Kaleao products. A single 42U rack of such a system
could therefore scale to provide applications access to over
20,000 cores with access up to a 350 TB pool of paged
memory, 14 Tb/s of network access bandwidth and 6 PB of
flash storage.

B. Rackscale Hypervisor

The rack-scale hypervisor implements a thin virtualization
layer for the unified pool of resources that are aggregated
from all the physical servers in the rack and provides virtual
machines that are dynamically adapted to any application re-
source requirement. The hypervisor layer enables an efficient
multi-tenant environment, increasing resource utilization and
allows smart resource management in a power-efficient man-
ner. To this direction, the hypervisor implementation needs
to: a) scale efficiently at rack-level, transcending resource
limits (e.g., core counts or memory sizes) that state-of-the-
art hypervisors currently support, b) incorporate awareness



Figure 3: ACTiCLOUD IaaS Building Blocks.

of resource locality and network topology, and c) extend the
reliability mechanisms at the rack scale to cope with failures
and errors across all components at the rack-level.

Hyper-convergence is the software-defined approach to
resource management that allows storage, compute and
networking resources to be dynamically allocated, resized
and relocated through software virtualization into mul-
tiple application-specific elastic units. Embracing hyper-
convergence, the ACTiCLOUD hypervisor layer is rearchi-
tected to allow distributed storage resources to be used
by any CPU core in the rack with low overhead, while
it allows for fine-grain control of each set of CPU and
memory resources used, depending on their capacity, access
characteristics and network topology.

For rack-scale systems to work efficiently, they need
to be equipped with high bandwidth, low-latency, reliable
network links between the servers. Various emerging in-
terconnects [40], [41] aim at improving communication
performance at the rack level, such as optical interconnects.
The ACTiCLOUD platform is agnostic to the interconnect
used and the rack-scale hypervisor can operate on future
optical interconnects, determining the best links to use at
any time.

Networking, storage, memory, and CPU cores in the
whole rack are managed centrally from a distributed man-
agement and control layer that uses hypervisor-level mecha-
nisms to present a rack-level system view and implement
rack-wide management policies for resources and appli-
cations. The hardware resources located in the servers of
the rack will be tied together in a pool and used for
the deployment of VMs based on their resource needs,
regardless of whether the resources are physically located on
a single server or not. The hypervisor enables upper layer
awareness of the location and connection characteristics
(latency, bandwidth) between pairs of resources via efficient
monitoring APIs. This knowledge combined with the de-

tection of the workloads’ characteristics, allows the holistic
resource manager to provide optimal workload placement.

Finally, when working at the rack-level to provide a
single system view there is an increased chance of a partial
system failure. The ACTiCLOUD platform must be able
to detect and gracefully recover from component failures,
either at a hardware or software level, according to failure
semantics and redundancy levels. Given the large number of
interconnected components, failures should be expected and
the platform will need to incorporate appropriate recovery
mechanisms. Automatic failure detection is the responsibil-
ity of the hyper-converged hypervisor layer. However, cor-
recting failures may require manual hardware replacement
or operator action to restart software components, without
compromising the existing workloads.

C. Holistic Cloud Resource Management

Management of resources in cloud environments has
attracted significant industrial and academic attention. Large
industrial players in cloud resource provisioning, such as
Amazon, Microsoft, Google, and VMware, typically rely
on in-house, commercial software solutions to manage their
own clouds. The main free, open-source competitor to the
above proprietary solutions is OpenStack, which has man-
aged to become the choice of solution in numerous cloud
installations worldwide, including both private and public
clouds at various scales. OpenStack promotes open standards
within the industry and is supported by a wide network of in-
dustrial and academic partners. ACTiCLOUD aims to design
and implement an hierarchy of resource schedulers that will
operate dynamically at the rack, site, and cross-site levels by
extending existing hypervisor policies collaborating with the
hypervisor layer and OpenStack, in order to maximize our
impact and promote cloud interoperability and openness.

Current state-of-the-art research on cloud resource allo-
cation focuses on the server and site levels to optimize



workload consolidation, i.e., the placement of multiple virtu-
alized workloads in the same physical host, a key concept of
cloud computing. Despite the significant benefits, workload
consolidation increases the risk of performance anoma-
lies compared to executions in an isolated environment,
especially for latency-critical workloads [1]. Performance
degradation mainly occurs due to interference of VMs
in the same physical host [42]. Although isolated in its
own virtual hardware sandbox, each VM competes with its
neighbors for access to hardware components that cannot
be exclusively provisioned by the host operating system.
The colocation of applications on multi-tenant systems can
present a challenge whereby one or more applications suffer
from significant performance degradations. To make things
even worse, resource contention may arise unexpectedly at
any time between co-located VMs, severely affecting the
offered QoS.

Several recent research works [1], [5], [8], [42]–[45] pro-
pose scheduling schemes that attempt to optimize workload
coexistence, while avoiding application interference based
on profiling of the considered applications and their interac-
tions. However, these approaches have not been incorporated
in cloud resource managers that either are conservatively
avoiding co-locations of latency critical workloads [1], need
to rely on user information that has doubtful preciseness [5]
or does not even exist, or employ simplistic approaches
based on decisions that are taken randomly, in a round-robin
fashion, or taking into account only CPU utilization [8].

Resource allocation in OpenStack is static and straight-
forward. The nova-compute module interacts with the nova-
scheduler service to determine how to dispatch compute re-
quests. For example, the nova-scheduler service determines
on which physical machine (host) a VM should launch, and
once launched, the VM executes on that machine until the
system administrator decides to migrate it manually. The
filter scheduler is the default scheduler for scheduling virtual
machine instances. It supports filtering and weighting to
make informed decisions on where a new instance should
be created. When the filter scheduler receives a request for
a resource, it first applies filters to determine which hosts
are eligible for consideration when dispatching a resource.
OpenStack includes several filters that consider the proper
matching of requested resources with available ones.

ACTiCLOUD builds on top of the virtualized pools of
resources at the rack-level, and implements an hierarchy
of scheduling modules at the rack, site and cross-site lev-
els. The goal of ACTiCLOUD is to a) better utilize the
available resources in the local ACTiCLOUD-enabled site,
b) distribute load among the distributed cloud according
to the specified policies (e.g. load balance, resilience, and
energy efficiency), and c) enable dynamic decision making
and actions. The hierarchical scheduling module collaborates
with the hypervisor and OpenStack.

Within the rack level, the scheduler considers more elab-

orate allocation schemes for workload consolidation that
minimize application interference. The scheduler takes rack-
scale decisions on application consolidation using fine-
grained information collected from all critical rack-level
components (CPUs, memory modules, interconnection net-
work etc.) and application resource footprints via lightweight
monitoring tools. At the site-level, current scheduling poli-
cies are extended to increase the scheduling awareness of
the underlying, rack-scale server platforms. On top of that,
it implements workload characterization & modelling tech-
niques to model the relationship between the data center’s
resources and applications in order to decide upon more
efficient application collocations that avoid interference and
act accordingly by workload redistributions, in order to bet-
ter meet the objectives of the high-level scheduling policies
enforced.

To realize distributed cross-site resource management,
ACTiCLOUD extends the capabilities of current VM mi-
gration mechanisms with: a) prediction techniques, based
on applications’ memory access patterns and network usage
that will enable a more accurate estimation of migrations
duration as well as the amount of network traffic required,
b) migration scheduling algorithms that take advantage of
the improved estimations about migration times and sizes
not only to decide on the migration order, but also to better
choose the target VMs to migrate as well as the preferred
migration mechanisms (pre-copy, post-copy, migration data
compression, memory pages prioritization, etc.).

V. ENABLING ACTICLOUD-NATIVE APPLICATIONS:
DBAAS

This section discusses optimizations and modifications
required in both system libraries and applications to allow
the exploitation of the ACTiCLOUD architecture’s features.
Fig. 4 shows the expected optimization and modifications
in the system libraries and applications. We focus on the
changes expected in the Linux OS kernel and the Java Virtual
Machine (JVM) for the reasons stated below. We also use
two representative in-memory databases to enable DBaaS
and use the features exposed in an ACTiCLOUD-enabled
system.

A. Optimizing system software and language managed run-
times

To better facilitate large databases in cloud ecosystems,
ACTiCLOUD needs to optimize substrate software libraries
and runtime systems that also significantly affect the man-
agement of resources of the databases in the upper layers.
Regarding software libraries, we need to focus on the way
resources (especially memory) are managed by the guest
operating system, provide optimized extensions of the lib-
NUMA library to make efficient use of the extended NUMA
capabilities of ACTiCLOUD systems, and also adapt kernel
scheduling and OS services within Linux. Moreover, as



Figure 4: Enabling ACTiCLOUD-native applications: DBaaS.

ACTiCLOUD works on a deep stack of resource managers
(hypervisor, cloud management, guest operating system,
language runtimes and database frameworks), we need to
vertically homogenize their operations, resolve inefficiencies
and incompatibilities so as to ensure smooth optimization
across the stack.

Regarding managed runtime languages, these are highly
dependent on virtualization technologies that have seen an
impressive growth since mid-1990s. The emergence of Big
Data has even further increased the importance of virtual-
ization. In particular, application virtualization, such as in
the JVM or Microsoft’s .NET CLR (Common Language
Runtime), has been especially powerful. The vast majority
of big data processing frameworks, such as Hadoop [46],
Spark [47], Flink [48], Neo4j [37], Storm [49], Samza [50],
and many others, rely on JVMs. Some of them (e.g. Samza)
support only JVM-based languages (e.g., Java or Scala),
while other frameworks (e.g., Spark) provide also support
for languages such as Python.

The increase in compute processing power and memory
size has lead to applications operating over increasingly
larger data sets, resulting in high memory requirements.
This stresses the memory system and consequently, in the
context of managed runtime languages, affects the memory
management system offered by the runtime. Garbage collec-
tion, the process of automatic memory management inside a
JVM, is employed by numerous distributed applications in
cloud data centers. Google (AppEngine), Microsoft (Azure),
Twitter, and Facebook totally or partially base their software
on them.

Garbage collection enables a VM to exploit high-level
features of programming languages (e.g. Java, Python) while
increasing productivity and guaranteeing safety. However, it
suffers from many inefficiencies on cloud-based architec-
tures. A major problem of such systems is that they execute
a high number of independent JVMs in order to scale to the
large number of nodes that are used. These JVMs behave

independently of each other, which can have severe perfor-
mance consequences. For example, it has been identified that
the lack of coordination between JVMs regarding when to
perform garbage collection results in significant performance
slowdowns [51] in Apache Spark and Cassandra – often, a
pause in one JVM to perform garbage collection propagates
to the rest due to synchronization requirements, stalling the
whole system. Finally, in latency-critical applications (e.g.,
web servers or databases), these idle intervals can cause
requests to take unacceptably long times; and thus make
a node’s data unavailable.

The major challenge faced by existing JVMs is that they
must evolve to meet the needs of cloud computing. ACTi-
CLOUD will extend and optimize state-of-the-art JVMs to
harness the benefits of the ACTiCLOUD architecture. To this
direction we will change and optimize JVMs in the following
manner: a) JVMs will be able to utilize the extended amount
of resources (both computational and memory) to ensure
peak performance by mitigating the long garbage collection
pauses, b) the garbage collector will be able to manage
memory that is not physically located in the underlying
hardware but in a remote location, c) JVMs will exploit the
unified architecture proposed by the ACTiCLOUD project
to improve node communication and synchronization, and
d) the aforementioned functionalities will be transparent to
the application code.

B. Designing ACTiCLOUD-Native Application: DBaaS
Data warehouse and OLAP applications, such as Business

Intelligence and data analytics, form a major class of critical
applications hosted by cloud systems. Those applications
assist enterprises to gain insights from various business
data at maximal efficiency while for a minimal cost. The
rapid growth of the various types and size of business data
and the importance of assisting business critical decisions
timely have imposed unprecedented demands on the data
warehouse applications. Since the last decade, column-based
Database Management Systems (DBMSs) that are highly



optimized for in-memory query processing have been gener-
ally acknowledged as one of the best underlying technology
to support high-performance data warehouse and OLAP
applications.

MonetDB is an open-source, columnar, SQL:2003 com-
pliant DBMS with full-fledged support for ACID (Atomicity,
Consistency, Isolation, Durability) properties of transactions.
With its in-memory optimized technology, MonetDB focuses
on data-intensive data warehouse analytics, which typically
require scale-up to 100s GiBs of memory and tens to
hundreds of processing cores.

ACTiCLOUD enables MonetDB to advance from a static
DBMS to a dynamic elastic cloud DBMS, a major step
forward in its evolution in the cloud computing era. First of
all, MonetDB will strengthen its scalability both vertically
(i.e. scale-up) and horizontally (i.e. scale-out). First, new
features will be added into MonetDB to thoroughly exploit
the massive computation power and memory volume a
single ACTiCLOUD-enabled rack-scale system can provide
to transparently scale up applications requiring complex
data analytics. Second, MonetDB will collaborate with the
hypervisor and the resource manager of ACTiCLOUD to
quickly react to workload changes by dynamically increasing
or decreasing resource allocations. Finally, MonetDB will
improve its resilience by capitalizing on the geographical
distribution of the underlying cloud platform. We will extend
the naive replication scheme of MonetDB to place database
replicas at strategic locations for better fault-tolerance, per-
formance and availability.

Graph databases are the fastest growing category of data
storage and query technology today. With easy modeling
and powerful query capabilities, graphs are becoming a
common tool for exploitation of big data and are also being
increasingly used as primary operational databases. Graph
data structures can be used to effectively store context-rich
data sets while preserving their complexity. Consequently,
applications that make use of graph databases to mine real-
time insights from their data are able to pose questions not
previously possible, partially due to the high dimensionality
of the data itself (the context-preserving characteristic of
graphs) and partially due to the unique ability of graph
databases to deeply query these graphs. Due to their graph-
optimized storage and query engines, graph databases are
able to not only mine complex patterns from graphical
data with lower latency than traditional and competing
technologies, but to do so with a fraction of the resources.

Neo4j is the world’s first and leading graph database.
Neo4j is optimized for high-performance graph traversals
and safety and its users can query many millions of edges
and vertices per second in a graph, while enjoying the safety
of ACID transactions when writing data into the graph.

Neo4j is optimized for in-memory operation; its cache
subsystem is optimized for graph storage and retrieval under
highly concurrent load. In the absence of sufficient memory

Neo4j will fall back to using slower levels of tiered storage
(disk), permitting its performance to gracefully degrade.
That said, the performance cost of using persistent storage is
significant, users are advised to provide Neo4j with adequate
memory to cache their entire data set whenever possible.
Today’s cloud providers, however, do not offer machine
instances with very large (TiB) RAM at cost-competitive
rates.

To take advantage of ACTiCLOUD-enabled systems,
Neo4j needs to evolve its internal architecture to be aware
of resource access costs. In doing so, the query planner
should, in general, be able to optimize for the cheapest routes
through the graph based both on the graph structure (as per
today) and the cost of accessing pages or subgraphs (by the
end of the project). At single-rack scale, the ACTiCLOUD-
enabled system enables large graph analyses that exceed the
capacity of a single machine to take place. Specifically, using
the ACTiCLOUD stack to provide scale-up capabilities,
Neo4j will be equipped to process graphs that far outstrip
main memory constraints and bring many cores into the
analysis. This obviates the costly need to export graphs to
third-party system (e.g. Hadoop, Spark) for iterative analysis
and instead enables the database to perform that work. At
multi-rack scale, Neo4j will be optimized to adapt to load
by requisitioning hardware resources dynamically from the
underlying cloud management platform.

VI. RELATED WORK

In recent years, several efforts have been undertaken to
improve the control and management resources in cloud
environments by focusing on different but complimentary
issues. DOLFIN [52] and RESERVOIR [53] projects base
their approaches on VM migrations to attain energy ef-
ficiency, while PANACEA [54] and ORBIT [55] projects
aim at fault tolerance. Projects such as CACTOS [56] and
HARNESS [57] support application-specific resource provi-
sioning mechanisms for heterogeneous cloud infrastructures.
RAPID [58] also focuses on resource management but its
solution is specific for an heterogeneous edge computing
cloud architecture that involves mobile devices, edge servers
and cloud servers. ACTiCLOUD goes beyond the state-
of-the-art by working on an holistic resource management
scheme that embraces hierarchically three critical levels: the
rack, local site, and cross-site levels.

MIKELANGELO [59] and IOSTACK [60] propose
new software architectures for cloud systems. MIKELAN-
GELO’s focus is on the software stack on a single cloud
server with a focus on I/O and enabling HPC, without
considering resource disaggregation. IOSTACK on the other
hand embraces the concept of storage disaggregation and
supports computation disaggregation for Map-Reduce style
Big Data applications. Beyond these technologies, ACTi-
CLOUD supports full computation and memory disaggre-
gation applied to the entire ecosystem of data-intensive and



resource-hungry applications (e.g., relational, graph, Map-
Reduce style).

A number of projects focus on cloud applications with a
special objective to improve their management of resources
in terms of elasticity and scalability. This family includes
CLOUDSCALE [61], CONPAAS [62], SEACLOUDS [63],
CELAR [64], and INPUT [65]. These projects support
application-specific resource provisioning and optimization
mechanisms incorporated within specific application’s soft-
ware layers and programming environments. ACTiCLOUD
is agnostic to programming frameworks and to that extent
our approach is orthogonal to the aforementioned projects.

All state-of-the-art research studies address different as-
pects of the issues that cloud environments face by looking at
different levels of the cloud stack. In contrast, ACTiCLOUD
goes beyond by rethinking and redesigning the entire cloud
stack architecture, i.e. the hypervisor, the cloud manager,
system libraries, language runtimes, and applications, to
support the next generation cloud applications.

VII. SUMMARY

ACTiCLOUD proposes a novel cloud architecture that
breaks the existing scale-up and share-nothing barriers. It
enhances resource efficiency by creating flexible pools of
resources that are aggregated from the available resources
across multiple servers hosted at a single data center,
while also taking advantage of the existing distribution
of a cloud configuration to further balance loads between
collaborating cloud sites that are geographically distributed.
Finally, ACTiCLOUD provides all the necessary technologi-
cal mechanisms to support resource-demanding applications
in ACTiCLOUD-enabled cloud systems, with a particular
focus on in-memory database systems.
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