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ABSTRACT

This paper presents LCA, a memory Link and Cache-Aware
co-scheduling approach for CMPs. It is based on a novel
application classification scheme that monitors resource uti-
lization across the entire memory hierarchy from main mem-
ory down to CPU cores. This enables us to predict appli-
cation interference accurately and support a co-scheduling
algorithm that outperforms state-of-the-art scheduling poli-
cies both in terms of throughput and fairness. As LCA de-
pends on information collected at runtime by existing mon-
itoring mechanisms of modern processors, it can be easily
incorporated in real-life co-scheduling scenarios with vari-
ous application features and platform configurations.
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1. INTRODUCTION

Chip multiprocessors (CMPs) execute concurrently a large
number of threads, which share hardware resources such as
caches, memory links and memory controllers, This sharing
can create resource contention, which can impact a thread’s
performance compared to isolated execution. Contention-
aware co-scheduling attempts to mitigate the effects of co-
execution and meet a mix of objectives including system
throughput, fairness, QoS, or energy consumption.

Proposed contention-aware scheduling frameworks rely on
an application classification scheme that predicts applica-
tion interference under a co-execution scenario [5,7,8,11,12].
Our classification approach has the following novel objec-
tives: (a) detect contention on both the shared memory
link and LLC; (b) rely only on information that can be
collected at runtime by existing monitoring mechanisms of
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modern processors; and (c¢) require no additional hardware
support. LCA decreases average application interference
and distributes co-execution penalties between applications
in a much fairer way compared to state-of-the-art sched-
ulers, such as the Linux scheduler or prior contention-aware
schemes balancing LLC misses (LLC_MRB) [3,4] or memory
link bandwidth (LBB) [3,10].

2. CLASSIFICATION SCHEME

We focus on contention situations that can occur on the
memory link, the shared LLC or both. We identify the fol-
lowing four application classes:

e N: Applications that restrict their activity to their pri-
vate part of the memory hierarchy or within the core.
They create no contention to the shared resources and
therefore no interference.

e (': Applications with heavy activity on the shared LLC.
The impact of Cs co-execution is difficult to predict.
Cache organization and replacement policies are ex-
pected to handle high activity from different applica-
tions on the LLC efficiently. However, if these exhibit
similar data access patterns, contention will be high.

e LC: Applications with significant activity on both the
LLC and the memory link. These cause some interefence
and thus slowdowns to C applications. On the other
hand, competition between multiple LCs is not high.

e [: Memory link intensive applications. Due to their
streaming nature, they thrash the LL.C which is catas-
trophic for C applications. When co-executing with an
LC, the L will suffer some interference due to the LC’s
medium demands for memory link bandwidth, while
the LC is expected to suffer higher slowdown due to
both memory bandwidth shortage and cache thrashing
by the L application. Finally, multiple Ls compete for
the memory link and a slowdown is expected.

Our classification method is implemented as a decision
tree. First we look at the memory link utilization to dis-
tinguish L from LC applications. When this is too low, we
discern C from N applications using cache link utilization,
reuse location and memory uops to total uops ratio. All data
are collected at runtime by performance counters utilities.



3. SCHEDULING ALGORITHM

The interference pattern between the four classes imposes
a prioritization in the formation of application pairs. Co-
execution of L — C; L — L and L — LC needs to be avoided
as much as possible. Our algorithm is a greedy one with
O(n) complexity that forms pairs in a predefined order. It
starts by working on N applications and co-schedules them
first with all the Ls (that impose the greatest harm), then
with Cs (that suffer the greatest harm) and finally with LCs.
Remaining Cs are first matched with LCs and if needed
with Cs, and then remaining LCs are matched first with Ls
and if needed with LCs. Finaly pairs are created from any
remaining L applications.

4. EVALUATION

Evaluation is performed on an Intel® Xeon® CPU E5-
4620 with 8 cores, private L1 and L2, 16MB 16-way shared
L3 and 64GB memory. The platform runs Debian with ker-
nel 3.7.10. All the schedulers are implemented in userspace.

Each class is populated with four benchmarks from a va-
riety of suites [1,2,9]. All applications run with four threads
and exhibit a single execution phase. To evaluate the perfor-
mance of the system at full load, we define a time window,
in which every application that terminates starts again.
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Figure 1: Average slowdown over standalone execution

Figure 1 illustrates the average speedups across all ap-
plications. FError bars indicate standard deviation. LCA
exhibits similar performance to the optimal scheduler [6],
which demonstrates the efficiency of our classification ap-
proach. More importantly, LCA exhibits significantly lower
deviation than LLC_MRB, LBB and random and even opti-
mal in some cases. This indicates that LCA is much fairer,
as it manages to distribute co-execution penalties more uni-
formly across applications.

S. CONCLUSIONS AND FUTURE WORK

‘We have proposed a novel application classification scheme
that inspects data traffic and resource utilization across the
entire memory hierarchy. Based on this, we devised the
LCA scheduling algorithm which alleviates the effects of re-
source contention. LCA outperforms all other schedulers
both in terms of average application throughput, achieving
performance levels that vary by £2% with respect to opti-
mal performance, and in terms of fairness as it distributes
overheads across applications in a more uniform way.

As future work, we intend to extend this work in the fol-
lowing directions: a) handle more complex scheduling sce-
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narios such as varying number of co-runners and I/O-bound
applications, and b) incorporate our proposed scheduler in
large-scale cloud environments for scheduling cloud work-
loads and managing data-centre resources efficiently.
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