Combining HTM and RCU to Implement
Highly Efficient Balanced Binary Search Trees

Dimitrios Siakavaras, Konstantinos Nikas, Georgios Goumas and Nectarios Koziris

National Technical University of Athens
School of Electrical and Computer Engineering
Computing Systems Laboratory

{jimsiak,knikas,goumas,nkoziris}@cslab.ece.ntua.gr

Abstract

In this paper we combine Hardware Transactional Memory
(HTM) with Read-Copy-Update (RCU) to implement highly
scalable concurrent balanced Binary Search Trees (BSTs).
The two key features of our approach are: a) read-only op-
erations require no synchronization or restarts and b) tree
modifications are first performed in private copies of sub-
trees, then HTM is used to validate their consistency, and
upon successful validation, the copy is installed back in the
shared tree by modifying only a single pointer.

Our approach can be applied to any type of balanced
BSTs (e.g., Red-Black, AVL, B-trees) and for the purpose
of this paper we test it in an AVL tree. As our experimen-
tal evaluation reveals, the proposed AVL tree implementa-
tion achieves higher throughput and scalability compared to
previous approaches for parallelizing balanced BSTs with
HTM. More specifically on a machine comprising 22 phys-
ical cores (44 hardware threads) our tree outperforms other
alternatives by 70% and 220%. As shown, this gain is at-
tributed both to the much faster read-only operations and to
the reduction in abort ratios thanks to the reduction of trans-
actions’ write-sets.

Keywords Hardware Transactional Memory, Read-Copy-
Update, Concurrent Data Structures, Balanced Binary Search
Trees

1. Introduction

Balanced Binary Search Trees (BSTs) are used in a wide
range of applications. Their properties allow for highly effi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

TRANSACT 17, February 4-8, 2017, Texas, Austin, USA.

Copyright © 2017 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

cient indexing of information and, contrary to unbalanced
BSTs, they manage to bound the time to search. How-
ever, when dealing with concurrent implementations, there
are two major challenges. First, when rebalancing the tree,
threads may traverse and modify nodes in opposite direc-
tions, making it extremely difficult to apply fine-grained
synchronization mechanisms (e.g., fine-grain locking). Sec-
ond, when removing a node with two children, its successor
needs to be found and removed. The successor may be many
links away from that node and removing it requires exclusive
access to the whole path.

In order to overcome the difficulty imposed by the re-
balancing operations, researchers have either turned their at-
tention to the less challenging unbalanced BST [I-3] or to
relaxing the balancing conditions [4-8]. In a relaxed balance
BST, the rebalancing rules are less strict at the expense of
allowing the height of the tree to become unbalanced.

To overcome the problem of removing a node with two
children, some concurrent tree implementations are based on
external representation of the tree structure. External trees,
as opposed to internal ones, store the actual information on
leaf nodes (i.e., nodes with no children) and the internal
nodes are used only for routing to the appropriate leaf. This
way, the removal of a node entails deleting a leaf node and
no successor needs to be found. On the other hand, external
trees occupy twice as much memory as internal ones (i.e., to
store N keys an external tree requires (N — 1) + N memory
space) and traversals have to follow longer paths as they
always end at a leaf node.

The advent of Hardware Transactional Memory (HTM)
on modern processors such as Intel’s Haswell and successors
and IBM’s Power8, gives the opportunity to devise simple,
yet scalable concurrent implementations of complex data
structures including balanced BSTs. The most straightfor-
ward approach to parallelizing a balanced BST with HTM
is to enclose each operation in a single transaction making
it atomic (we refer to this approach as cg-htm, where cg
stands for coarse-grained). While such an implementation is
extremely simple, it has been shown that, under certain con-

ditions, its performance is poor and highly unstable [7]. The
main reason for this is its large transactions, both in terms of
memory footprint and duration. Current HTM implementa-
tions are not well suited for such long transactions.

In order to overcome the problems of cg-htm, previous
work combines HTM with Consistency Oblivious Program-
ming (COP) [B] (we refer to this approach as cop-htm). In
cop-htm an operation is split in three phases: a) traversal of
the tree from the root to the appropriate leaf, b) validation
that the traversal ended up at the correct leaf and ¢) modifi-
cations of tree nodes as dictated by the rebalancing rules.
The first phase is performed without any synchronization
and thus the traversal may end up at a wrong path of the
tree due to concurrent rotations. The second and third phase
are performed within a single HTM transaction that guaran-
tees their atomic execution. The third phase is only relevant
to insertion and deletion.

Cop-htm manages, in general, to overcome the limitations
of cg-htm, however, it also has some drawbacks that limit
scalability. The first one is that read-only operations, such as
lookups or insertions and deletions that have no side effects
(i.e., insertions that find the key in the tree and deletions that
do not find the key in it), may have to be restarted. As these
read-only operations are the majority in most workloads, it is
highly desirable to allow them to proceed without restarting
regardless of concurrent modifying operations. The second
drawback is that the rebalancing operations which may re-
quire several tree modifications are performed in an HTM
transaction. This results in a transaction with a relatively
large write-set, which is, potentially, vulnerable to aborts.
Moreover, by enclosing the whole rebalance operation in a
single transaction, concurrent traversals may falsely cause
the rebalancing transaction to abort. This may occur when a
traversing thread reads a field of a node that has been modi-
fied by an ongoing rebalance transaction. The HTM system
will report this as a conflict and cause the transaction to
abort.

Our solution: In this paper we propose an alternative way
of using HTM to implement concurrent balanced BSTs. Our
approach, which we call rcu-htm, combines HTM with the
Read-Copy-Update technique (RCU) [9] in order to achieve
two goals: a) allow read-only operations to proceed inde-
pendently of concurrent modifications on the tree, without
the danger of following a wrong path, in which case they
would have to be restarted and b) use transactions that per-
form only a single write on shared data, thus being less vul-
nerable to aborts.

RCU is a well-known technique, where threads that need
to update a part of a data structure, first create a private
copy of the affected part, then apply the appropriate mod-
ifications on the private copy, and finally install the modified
part in the shared data structure in an atomic fashion. This
allows threads that only read parts of the data structure to

insert(1)

Figure 1. Insertion and rebalance performed in place in
an AVL tree. The numbers above the tree nodes represent
the height of each node. Nodes in gray are those that are
modified. In the specific example rebalancing consisted of 3
height updates (nodes 2,3,5) and a right rotation over node
5.

proceed without any synchronization, thus resulting in ex-
tremely fast traversals of the data structure. RCU’s main aim
is to permit multiple readers to execute concurrently with a
single updater. To enable multiple updaters to execute simul-
taneously, synchronization among them is necessary, which
is typically achieved with fine-grain locking mechanisms.
RCU has been applied to BSTs, but these implementations
either allow only a single updater [I0] or are restricted to
unbalanced BSTs and updaters are synchronized with fine-
grain locking [I[T, I2]. As we explain in Section B, our ap-
proach combines the positives of these two implementations
and provides a balanced BST while allowing concurrent up-
daters.

In our approach, traversal of the tree is performed with-
out any synchronization and modifications are first being ap-
plied on private copies, in exactly the same way as in RCU.
We then we exploit HTM to validate that the replaced part
of the tree has remained intact since it has been read and
avoid having simultaneous modifications discard each other.
This allows us to permit multiple updating threads to op-
erate on the tree. Our evaluation reveals that with this ap-
proach we are able to implement highly scalable concurrent
balanced BSTs which outperform the two afforementioned
HTM-based implementations, cg-htm and cop-htm, by up to
220% and 70% respectively.

2. Background

In this section we provide a brief overview of the necessary
background. In this paper, we focus on the widely used AVL
balanced BST, however, our approach is generic and can be
applied to other types like Red-Black trees and B-trees.

2.1 AVL Trees

An AVL tree is a self-balancing binary search tree in which
the heights of the left and right child branches of a node
differ by no more than one. When inserting or deleting a
node of the tree, a rebalancing phase may be necessary
which potentially updates node height and rotates nodes. An
example insertion in an AVL tree is shown in Figure .

The process of rebalancing the tree becomes a bottleneck
for concurrent tree implementations, because many parts of
the tree may need to be modified and many locks need to
be acquired. Moreover, the structure of the tree makes it dif-
ficult to guarantee that no deadlock occurs. This has led to
the idea of relaxing the balance of the tree and several con-
current relaxed trees have been proposed [d—f]. While these
implementations perform well in most common scenarios,
there are cases where some paths of the tree become very
long.

Another factor that complicates the implementation of
concurrent BSTs is the deletion of a node with two chil-
dren. In that case the operation proceeds as follows: a) the
immediate successor is found, b) the key of the successor
replaces the key of the node with two children and c) the
successor node is removed from the tree. A thread perform-
ing a deletion in this way needs to have exclusive access to
the whole path between the node with the key to be deleted
and its successor. To avoid this complexity, external trees
can be used, on which the actual information is stored on
leaf nodes. Internal nodes in this case contain only keys and
are used solely for routing purposes. In external trees there is
no need to remove a node with two children, thus simplify-
ing the delete operation; on the other hand they occupy much
more memory than their internal counterparts and, typically,
they entail longer path traversals.

2.2 Concurrent AVL trees with HTM

Using HTM the complexity related to balanced BSTs is
delegated to the underlying TM system. Programmers do
not have to cope with acquiring and releasing locks on tree
nodes; they only need to mark the regions of code that need
to be executed in an atomic fashion as part of a transaction.

2.2.1 Coarse-grained HTM

The most straightforward approach to implement concurrent
balanced BSTs with HTM is to enclose each tree opera-
tion in an HTM transaction []. This way the entire op-
eration (e.g., the traversal of the tree and the rebalancing)
is performed in an atomic way and the synchronization
among multiple threads is handled by the HTM system.
This approach is slightly more complicated than a coarse-
grained locking scheme but performs relatively good in sev-
eral cases. However, it may suffer from severe performance
slowdowns. By including the traversal phase in the transac-
tion, all the nodes in the path are added in the transaction’s
read-set. This, apart from increasing the size of the transac-
tion, may lead to unnecessary aborts when higher levels of
the tree are modified.

2.2.2 Consistency-Oblivious-Programming HTM

Consistency Oblivious Programming (COP) [8] has been
used as a way to avoid executing the traversal phase inside
a transaction. Using this approach a tree operation is split
in the three following phases: a) traverse the tree using no

synchronization, b) validate that the traversal has navigated
to the correct node and, if validation is successful, ¢) perform
the insertion/deletion and rebalancing. The validation step
is necessary because asynchronized traversals may follow a
wrong path of the tree due to concurrent modifications (an
example is shown in Figure [2(a]).

To guarantee correctness, steps (b) and (c) are performed
within an HTM transaction. In cop-htm transactions are
smaller and less vulnerable to spurious and unnecessary
aborts in comparison to cg-htm. However, there are two
shortcomings. First, traversals, although not acquiring any
locks, may follow a wrong path and need to restart from
the root. Second, transactions enclose the whole rebalance
process which may perform multiple writes.

3. Our Approach

Our approach combines HTM with principles drawn from
RCU and can be used to implement concurrent BSTs with
the following two characteristics:

a) Read-only operations, such as lookups or insertions and
deletions with no side effects (i.e., insertions that find
the key in the tree and deletions that do not find the
key in it), do not require any synchronization and can
proceed independently of concurrent modifications of the
tree without any chance of restarting. Practically, trees
implemented with our approach require no changes in the
source code of the serial version of these operations.

b) Tree modifications use HTM transactions whose majority
of memory accesses are reads and contain only a single
write. This way we manage to avoid unnecessary and
spurious aborts.

In the next paragraphs we explain in detail how we
perform modifications and the three basic tree operations,
lookup(), insert() and delete() in our rcu-htm based internal
AVL tree.

3.1 Modifications

In rcu-htm, we perform modifications of the tree in private
copies, rather than in place. An example is given in Figure D.
Figure shows a rotation performed with in place mod-
ifications of the tree, while Figure represents the case
where private copies are used. After applying the appropri-
ate modifications on the private copies, the child pointer of a
single node needs to be updated (in this case the left child of
node 7) so as to point to the modified copy. Given that a write
in a single memory location is atomic, the modifications are
becoming atomically visible to other threads.

3.2 Lookup

When modifications are performed in private copies, the
lookup operation can proceed without synchronization and
it never follows a wrong path of the tree, in which case it
would have to restart from the root. The lookup operation in

T1: lookup(2)

J8\ T1: lookup(2)

(a) Lookup operation being led to the wrong subtree by a concurrent rotation.
T1 will incorrectly conclude that key 2 is not in the tree.

T1: Iook\u;p(Z) RN
iy ’.‘

(b) Lookup is kept on the right track when rotation is being performed in
a copy and not in place. Gray nodes are the private copies and nodes with
broken outline are the ones being replaced. Now T1 will find key 2 because
although nodes 3 and 4 are no longer part of the tree their child pointers have
been kept intact.

Figure 2. An illustration of how lookups can benefit when
modifications are performed using private copies and not in
place.

rcu-htm is performed in exactly the same way as in a serial
internal AVL tree.

Figure D illustrates how lookups avoid synchronizing
when modifications are performed in copies rather than
in place. In Figure thread T1 searching for key 2 has
reached node with key 4, when another thread performs a
right rotation over the same node as part of some rebalanc-
ing operation. The rotation leads the traversal of T1 to the
wrong path and key 2 cannot be found, albeit it is present
in the tree. Figure presents the case when modifications
are performed in private copies. Now, T2 creates a copy of
nodes 3 and 4 that it will modify, performs the rotation on
the copied nodes, 3’ and 4’, and then swaps the left child of
node 7 to point to node 3’. This way, the original nodes 3
and 4 become inaccessible from the root of the tree, while
T1’s lookup is still able to navigate to the correct node that
contains key 2. The only modification performed on shared
data is the swap of node 7’s child pointer and, since this is
a single memory location, it is performed atomically. This
is why reader threads do not need any synchronization; they
will either see the whole modification or nothing. For ex-
ample in Figure thread T1 could either see T2’s change
and walk through node 3’ or, as is the case in the example,
not observe the change and go through node 4.

3.3 Insert

The insert operation in rcu-htm is split in the following four
phases:

1. Traversal: Traverse the tree until either the key to be
inserted is found, or the node that will be the parent of the
new node has been reached (we refer to this node as the
insertion point). If the key is found in the tree, no further
action is required and the operation returns. Otherwise
the next steps need to be performed.

2. Modifications: Perform the insertion and rebalance the
tree by making copies of the affected nodes and applying
the modifications in these private copies. Conceptually,
when this step ends, a modified copy of the whole af-
fected path has been created.

3. Validation: Validate that the copied path has not been
modified by any other thread while the current thread was
copying it. This step ensures that when the current thread
installs its private copy, modifications performed by other
threads are not discarded.

4. Installation: Install the private copy in the shared tree
data structure. As already mentioned, this is done by
swapping the child pointer of a single node (we refer to
this node as the connection point).

The first two phases are performed without any synchro-
nization, whereas the last two are executed within a single
HTM transaction, so as to appear as a single atomic opera-
tion.

3.3.1 Traversal

Every insertion starts with a traversal of the tree, which ends
either at a node that contains the key to be inserted or at
the node under which the new node with the inserted key
is going to be attached. When the key is found in the tree,
the operation immediately returns and no further actions
are required. As is the case for lookups, this traversal is
performed with no synchronization and without the danger
of restarting. The only difference with the traversal of a
lookup is that, in this case, while moving down the tree we
maintain a stack of pointers to the traversed nodes which is
later used for the reverse traversal (i.e., moving towards the
root) of the tree, performed during the rebalancing phase.
We refer to this set of pointers as the access path stack. We
don’t use parent pointers for the reverse traversal, because it
would complicate our approach.

3.3.2 Modifications

When the traversal reaches the insertion point, the second
phase starts, where the tree modifications take place. In the
case of AVL trees, the modifications involve node height
updates and rotations. An example insertion in an AVL tree
with in place modifications is presented in Figure [. The
insertion of a node with key 1 as the left child of node 2

tree_cp_root

tree_cp_root
connection_point

connection_point

SANANR
5 ©
0, 0

(b)

3
tree_cp_root connection_point

tree_cp_root

QN

tree_cp_root cgonnection_point

connection_point

tree_cp_root connection_point

Figure 3. Insertion and rebalance using private copies in an AVL tree. In gray color are the private copies and nodes with
broken outline are nodes that are no longer accessible from the root of the tree.

causes three node heights to be updated (nodes 2,3,5) and
one right rotation over node 5.

In rcu-htm the modifications are performed in the follow-
ing way: during the reverse traversal, when a node is to be
modified, we create a copy on which we perform the appro-
priate modifications. This way, we eventually create a modi-
fied copy of the affected path. Figure B shows the individual
steps performed as part of an insertion in an AVL tree using
rcu-htm. At each step we maintain two pointers, tree_cp_root
and connection_point. The first points to the root of the mod-
ified copy, while the second points to the node of the shared
tree where the private copy should be attached.

At the first step (Figure B(a)), the private copy contains
only the newly created node with key 1. As we move up-
wards towards the root of the tree performing only node
height updates (Figures B(b}- B(d]), copies of nodes 2,3 and 5
are added in the copy. The right rotation around node 5’ (Fig-
ure B(e]) concludes the necessary modifications of the rebal-
ance phase. Now, the private copy is ready to be installed
in the shared tree data structure by swapping the left child of
node 7. However, the private copy needs to be validated first.

3.3.3 Validation and Installation

When the appropriate modifications have been performed in
the private copy, the next two steps are its validation and
installation in the shared tree. These two steps need to be

performed in an atomic way, so we execute both inside a
single HTM transaction. The aim of the validation phase is
to ensure that the nodes that will be replaced have not been
modified since the current thread read them. Otherwise, if
we replace a node that has been altered, that modification
will be lost. Such an example is given in Figure .

To validate that the private copy can safely be installed
in the shared tree, we need to ensure that the following two
conditions are true:

a) The connection_point is reachable from the root of the
tree. This way, we make sure that when tree_cp_root is
attached in the tree, it is also reachable from the root. We
do so by traversing the tree from the root, searching for
the key of the connection_point. If the traversal does not
find the connection_point the validation fails.

a) All the nodes that will be replaced by the private copy
have not been modified since they were copied. This way,
we ensure that no modifications made by other threads are
discarded.

If those two conditions are not true, the validation fails
and we explicitly abort the transaction and restart the whole
insert operation. If validation is successful, we can safely
install the modified copy by swapping the appropriate child
pointer of connection_point to point to tree_cp_root.

TN

e Tl:insert(2) 15}

T1: insert(2) e /a\ '3/
;
\ T2: rotate right over node 5 . et
oNc IR

Figure 4. An example of a rotation performed by a thread
T2 discarding the modifications of another thread T1. In the
specific example T1’s insertion of key 2 is discarded and the
newly added node with key 2 is not reachable from the root
of the tree.

3.4 Delete

The delete operation in rcu-htm is performed in a way sim-
ilar to insertion when the node to be removed has less than
two children. However, when it has two children, its removal
is more complicated. In that case we need to find the node
containing the smallest key that is larger than the key to be
deleted (that node is called the successor) and remove it after
replacing its key with the key to be deleted. An example of
deleting a node with two children is depicted in Figure p(a].
Key 7 is replaced by the successor’s key, which in this case
is key 9, and the successor node is removed from the tree.

When moving the successor’s key to the position of the
deleted key, traversing threads searching for that key may
incorrectly fail to find it in its old position. Such an erro-
neous execution is shown in Figure p(a], where thread T1 is
searching for key 9. T1 is not notified of the repositioning of
key 9 and can never find it in the tree.

To avoid such problematic cases in rcu-htm, when a node
with two children is to be removed we copy the whole path
from the node that contains the key to be deleted to the suc-
cessor node. If the copies performed during the rebalance
phase already include all the nodes in this path, no further
action needs to be performed. Figure presents an exam-
ple of deleting a node with two children using rcu-htm. In
this case, T1 will be navigated to the node with key 9 re-
gardless of the fact that in the new version of the tree key 9
is located higher in the tree.

3.5 Memory management

As is also the case for every concurrent data structure im-
plementation that allows threads to access nodes even when
they have been removed from the data structure, in rcu-htm it
is not straightforward to release the memory of the removed
nodes. When a thread removes a set of nodes from the tree by
replacing them with modified copies, it is not safe to imme-
diately free them as other threads may still keep references
on them. One possible solution could be the use of an epoch-
based memory allocator, such as ssmem used in [3]. In this
work we have not dealt with this problem and none of the
implementations of our experimental evaluation releases the

(a) Deletion of key 7 from the tree. Key 7 is replaced by key 9 and the
successor node (the one which previously contained key 9) is removed from
the tree. Thread T1 will incorrectly conclude that key 9 is not in the tree.

- ‘
' ! _7 i
e s K \7’26\4— ~T1: lookup(9)

<. <
4y 7

P
® i XA
@ T :2'9 é&
(b) Deletion of key 7 using rcu-htm. By replacing the whole path connecting

nodes 7 and 9 we allow thread T1 to successfully find key 9 in its previous
position.

Figure 5. Removal of a node with two children from an
internal AVL tree.

allocated memory. It remains, though, an open future direc-
tion to explore how a memory reclamation scheme affects
our concurrent trees.

4. Experimental Evaluation

For our experiments we used a dual socket Intel Broadwell-
EP server. The main characteristics of the server are summa-
rized in Table @M. However, to avoid NUMA-related perfor-
mance issues which are beyond the scope of this paper, in
our experiments we only employ one socket.

Our evaluation includes the following concurrent AVL
implementations:

® cg-htm: An internal AVL tree with each operation en-
closed in an HTM transaction.

® cop-htm: An internal AVL tree that uses the COP [§]
approach in order to synchronize the tree operations.

e rcu-htm: An internal AVL tree on which we have applied
our proposed approach.

To evaluate the concurrent AVL implementations, we per-
form random operations varying the number of threads, the

Table 1. The characteristics of the server used for our exper-
iments. Note that although this is a dual socket server only
one socket is utilized in our experiments.

Name ‘ ‘ Broadwell-EP
Processors 2 x Intel Xeon E5-2699 v4

Cores 2x22

Threads 88

Core clock 2.2 GHz

L1 (Data) 8-way, 32 KB, 64B block size
L2 8-way, 256 KB, 64B block size
L3 20-way, 56 MB, 64B block size (shared per die)
Memory 64 GB

oS Debian 8.3

Linux Kernel 4.7.0

GCC 4.9.2 with -O3 optimization

mixture of lookup, insert and delete operations as well as the
key range, in the following way:

e Each run lasts 2 seconds, during which each thread per-
forms randomly chosen operations.

e Each software thread is pinned to a hardware thread.
Moreover, we only enable hyperthreads when all physical
cores have been fully occupied. So executions with less
than 44 threads do not have hyperthreading enabled.

e For the transactions of cop-htm and rcu-htm we set the
number of retries to 10 and for the transactions of cg-htm
to 50. We do so because previous research has shown that
coarse-grained HTM tree implementations benefit from
many retries [[].

¢ In order to minimize the overheads of memory allocation
we use jemalloc ¥ allocator, which is designed to perform
better in multi-threaded environments.

¢ To test our implementations under various contention lev-
els we use three workloads, namely 100-0-0, 80-10-10
and 20-40-40, with 100%, 80% and 20% of operations re-
spectively being lookups in the tree, i.e., read-only traver-
sals, while the rest are equally divided between inser-
tions and deletions. These workloads represent a read-
only, read-dominated and write-dominated access pattern
on the tree respectively.

® As the key range effectively determines the size of the
tree, we evaluate our implementations for ranges of 2K,
20K and 2M keys, which represent medium to large-sized
trees. At the start of each run the tree is initialized to
contain half the keys of the selected range.

e All reported results are the average of 20 independent
executions. We observed no variance in the results of
different executions.

Uhttp://jemalloc.net/

Figure B presents the throughput achieved by the three
concurrent AVL implementations for all tree sizes and oper-
ation mixes. In all cases rcu-htm outperforms the other two
implementations. At best, in the case of 2K keys and 20-40-
40 workload, it is 70% better than cop-htm and 220% than
cg-htm.

In the read-only workloads, all implementations scale
well because there are no data conflicts and transactions are
small enough to fit in the hardware HTM buffers, therefore,
there are also no capacity aborts. Even in this case, though,
rcu-htm provides higher throughput than the other two al-
ternatives. This can be attributed to the fact that in rcu-htm
read-only operations impose no overhead at all. On the con-
trary, both cg-htm and cop-htm require a transaction to be
executed, so they suffer the overhead of starting and com-
miting transactions.

In the read-dominated and write-dominated workloads
the trend is similar. In both cases rcu-htm provides better
scalability. Despite the fact that insertions and deletions are
much slower due to the copying of nodes they include, rcu-
htm manages to compensate for that overhead. There are
two facts that justify rcu-htm’s dominance. First, traversals
on the tree are performed without any synchronization and
never need to restart, making them extremely fast. Second,
the transactions used for insertions and deletions perform
only a single write, thus are far less vulnerable to aborts than
the transactions of the other two approaches.

Figure [presents the number of committed and aborted
transactions of the three implementations for all workloads
in the case of 2K keys. In all cases rcu-htm executes signifi-
cantly fewer transactions and, consequently, has less aborts.
This fact justifies its performance gain observed in Figure B.
For example, in the read-only workload, even though in
both cg-htm and cop-htm all transactions manage to com-
mit, these two implementations have to pay the overhead of
starting and committing transactions. Rcu-htm on the other
hand avoids this overhead for the read-only operations.

5. Summary and Future Work

In this work we have combined HTM with RCU and im-
plemented highly scalable concurrent balanced BSTs. Our
approach manages to outperform previous htm-based con-
current balanced BSTs by as much as 70% and 220%.

For future work, we mainly identify two directions. First,
we plan to extend our experimental evaluation with rcu-htm
Red-Black and B-trees and compare them with state-of-the-
art concurrent BSTs [[-f]. Second, we intent to explore how
memory reclamation techniques can be applied to our con-
current trees and the impact they have on their performance.

Acknowledgments

We would like to thank Intel Corporation for kindly provid-
ing the server for our experimental evaluation.

2K keys (100-0-0) 2K keys (80-10-10) 2K keys (20-40-40)

450 . 180 70 . |
*—x cg-htm ! !
400 !
> cop-htm ! 60 !
350/ | @@ rou-htm ! :
— | 500 s
g 300 | !
3 . !
2 40
S0 ‘
= i
£200 20 !
2 I
E 150 3
= 0 20} i
\
100 . 1
, |
50 : 10 |
1 i
0 0 L : 0 L L 1
4 @ k4 @ 5 o) T 7 @ 7 &) [T e <@ g & 5 > L4
250 20K keys (100-0-0) 160 20K keys (80-10-10) . a0 20K keys (20-40-40)
h
140 :
h
120} !
= \
8 H
o 100 .
2 .
3 : 80 .
3 !
= 1 1
] i ool X |
8 i i i
‘= 1] I
= I ' |
| 40 h |
i h |
H |
| " . |
i i i
| h i
I] I
. h)
’ > ¥ 3 7 X = 05] v & 7 EN w7) I3 & A EY %
80 ‘ 2M keys (100-0-0) ‘ | 70 ‘ZM keys (80-1040)‘ : 45 ‘2M keys (20-40-40) .
. | h
| I 0 h
70 : 60 ' ,
i I H
35 h
60 ' |
— ! 50 ' '
2 ' ' 30 '
5% ! :
§ 40 . 25 >
<40
2 30 20 H
= |)
2 . : 15 i
= | 20 i h
20 ! | 10 H
| I h
10 i 1o i 5/ :
0 : 0 . 0 H
7 <@ v 4 75 <2 L4 4 < i4 @) > e 7 o 14 & ’e > %

Figure 6. Performance of concurrent AVL implementations. In the x-axis is the number of threads and in the y-axis the
throughput in million operations per second. The vertical line in each plot represents the point after which hyperthreading is
enabled.

500 2K keys (100-0-0) 1300 2K keys (80-10-10) 180

M Aborted transactions O Committed transactions M Aborted transactions [Committed transactions

2K keys (20-40-40)

M Aborted transactions 0O Committed transactions
700

~
&
)

e
=
8

100

:memm D m@ﬁﬂﬁ % EE%%

16
Number Dl Threzds Numher nf Threads Numhel‘ ﬂ' Threads

>-
1=
3

Number of Transactions (Millions)
]
3

Number of Transactions (Millions)
o}
4

Number of Transactions (Millions)

v
]

._.
15
8
cop-htm
r(u -htm
cg-htm
cop htm
reu-htm

:g htm

cg-htm
cop htm
Teu hitm

-
=
=

Figure 7. Number of committed and aborted transactions of the three implementations for the 2K tree and all workloads.

References

[1] A. Natarajan and N. Mittal, “Fast Concurrent Lock-free Bi-
nary Search Trees,” in Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’14, (New York, NY, USA), pp. 317-328, ACM,
2014.

[2] S. V. Howley and J. Jones, “A Non-blocking Internal Binary
Search Tree,” in Proceedings of the Twenty-fourth Annual
ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 12, (New York, NY, USA), pp. 161-171, ACM,
2012.

[3] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel, “Non-
blocking Binary Search Trees,” in Proceedings of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, PODC 10, (New York, NY, USA),
pp- 131-140, ACM, 2010.

[4] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun, “A Prac-
tical Concurrent Binary Search Tree,” in Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP *10, (New York, NY, USA),
pp- 257-268, ACM, 2010.

[5] D. Drachsler, M. Vechev, and E. Yahav, ‘“Practical Concurrent
Binary Search Trees via Logical Ordering,” in Proceedings
of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 14, (New York,
NY, USA), pp. 343-356, ACM, 2014.

[6] T. Brown, F. Ellen, and E. Ruppert, “A General Technique
for Non-blocking Trees,” in Proceedings of the 19th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, (New York, NY, USA), pp. 329-
342, ACM, 2014.

[7] D. Siakavaras, K. Nikas, G. Goumas, and N. Koziris, “Mas-
sively Concurrent Red-Black Trees with Hardware Transac-
tional Memory,” in 2016 24th Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Process-
ing (PDP), pp. 127-134, Feb 2016.

[8] H. Avni and B. Kuszmaul, “Improving HTM Scaling with
Consistency-Oblivious Programming,” TRANSACT, 2014.

[9] P. E. Mckenney and J. D. Slingwine, “Read-Copy Update:
Using Execution History to Solve Concurrency Problems,” in
Parallel and Distributed Computing and Systems, (Las Vegas,
NV), pp. 509-518, Oct. 1998.

[10] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “Scalable
Address Spaces Using RCU Balanced Trees,” in Proceedings
of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS XVII, (New York, NY, USA), pp. 199-210, ACM,
2012.

[11] M. Arbel and H. Attiya, “Concurrent Updates with RCU:
Search Tree As an Example,” in Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing, PODC
’14, (New York, NY, USA), pp. 196-205, ACM, 2014.

[12] A. Matveev, N. Shavit, P. Felber, and P. Marlier, “Read-log-
update: A lightweight synchronization mechanism for con-

current programming,” in Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP ’15, (New York, NY,

USA), pp. 168-183, ACM, 2015.

[13] T. David, R. Guerraoui, and V. Trigonakis, “Asynchronized
Concurrency: The Secret to Scaling Concurrent Search Data
Structures,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS *15, (New York, NY,
USA), pp. 631-644, ACM, 2015.

	Introduction
	Background
	AVL Trees
	Concurrent AVL trees with HTM
	Coarse-grained HTM
	Consistency-Oblivious-Programming HTM

	Our Approach
	Modifications
	Lookup
	Insert
	Traversal
	Modifications
	Validation and Installation

	Delete
	Memory management

	Experimental Evaluation
	Summary and Future Work

