
Brief Announcement: Efficient Concurrent RangeQueries in
B+-trees using RCU-HTM

Dimitrios Siakavaras∗
Computing Systems Laboratory

School of ECE
National Technical University of

Athens
jimsiak@cslab.ece.ntua.gr

Panagiotis Billis∗
Computing Systems Laboratory

School of ECE
National Technical University of

Athens
pbillis@cslab.ece.ntua.gr

Konstantinos Nikas
Computing Systems Laboratory

School of ECE
National Technical University of

Athens
knikas@cslab.ece.ntua.gr

Georgios Goumas
Computing Systems Laboratory

School of ECE
National Technical University of

Athens
goumas@cslab.ece.ntua.gr

Nectarios Koziris
Computing Systems Laboratory

School of ECE
National Technical University of

Athens
nkoziris@cslab.ece.ntua.gr

ABSTRACT
In this work, we exploit RCU-HTM , a synchronization mechanism
that combines Read-Copy-Update (RCU) and Hardware Transac-
tional Memory (HTM) to support linearizable and highly efficient
range queries in a concurrent B+-tree. Range queries in our B+-tree
start with an asynchronized traversal and then perform a horizontal
scan of leaf nodes, by following sibling pointers, using hardware
transactions. Despite its simplicity, our RCU-HTM based B+-tree
with range query support greatly outperforms state-of-the-art map
data structures for range queries in several execution scenarios.

KEYWORDS
Concurrent data structures, search trees, rcu, htm, rcu-htm

ACM Reference Format:
Dimitrios Siakavaras, Panagiotis Billis, Konstantinos Nikas, Georgios Goumas,
and Nectarios Koziris. 2020. Brief Announcement: Efficient Concurrent
Range Queries in B+-trees using RCU-HTM. In Proceedings of the 32nd
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’20),
July 15–17, 2020, Virtual Event, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3350755.3400237

1 INTRODUCTION
1.1 RQs in B+-trees
A range query (RQ) operation in a map data structure returns the set
of key-value pairs with keys in the range (𝑙𝑜𝑤𝐾𝑒𝑦,ℎ𝑖𝑔ℎ𝐾𝑒𝑦). They
are typically met and are highly significant for database and key-
value store systems. Maps with RQ support can be implemented
with a wide variety of underlying data structures, such as hash
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6935-0/20/07.
https://doi.org/10.1145/3350755.3400237

tables, singly-linked lists, skiplists, binary search trees, B+-trees,
etc. Each data structure has different performance characteristics
regarding RQs.

B+-trees are balanced trees with fat nodes, characteristics that
make them good candidates for implementing a map with RQ sup-
port and for this they are used as indexes in several database man-
agement systems and in key-value stores. Moreover, B+-trees are
external trees, that is, their data is stored in the leaves and the inter-
nal nodes contain only keys and are used for routing the traversals
to the appropriate leaves. To facilitate RQs, every leaf contains a
sibling pointer to reference its right sibling. RQs start with a traver-
sal to locate the leaf that contains the first key in the range. Then,
it horizontally scans the leaves, using the sibling pointers, until a
key that is out of the requested range is reached.

1.2 Concurrent RQs in B+-trees
While RQs in a serial version of a B+-tree are simple, in a concurrent
setup the correct implementation of an RQ is challenging. Concur-
rent updaters may modify keys that are in the way of the horizontal
scan of the RQ and this may lead to inconsistent execution. An
example of an erroneous execution of two RQs, concurrently with
two updates is given in Figure 1. Threads T1 and T2 perform an
RQ for the same range of keys, (32 − 54). Threads T3 and T4 insert
keys 42 and 53, respectively. T1 and T2 follow the same path of
leaves, however, the order in which they read the sibling pointers
of each leaf causes them to observe a different ordering of the two
inserts. RQs that use our approach use an HTM transaction to get
a consistent snapshot of this path of leaves. This way they avoid
such inconsistent executions.

1.3 The RCU-HTM Synchronization Technique
RCU-HTM [8] is a synchronization technique that combines two
well known synchronizationmechanisms, Read-Copy-Update (RCU)
andHardware TransactionalMemory (HTM), and provides a generic
method for implementing highly efficient concurrent search trees.
In RCU-HTM , updaters do not directly modify the nodes of the
tree, but they create copies of them and, when their private copy is

https://doi.org/10.1145/3350755.3400237
https://doi.org/10.1145/3350755.3400237


Figure 1: A non-linearizable execution of two RQs that run concurrently with two updates. The two RQ threads observe the
two updates in different order. We only show the leaves that are involved in the four operations.

ready, install it in the shared tree by changing the appropriate child
pointer of a single node. In an RCU-HTM B+-tree the keys (and
their associated values) of a node can never be modified and remain
stable throughout the whole lifetime of the node. We exploit this
characteristic to decrease the size of the HTM transactions used by
our RQs.

Algorithm 1: Range Query operation in RCU-HTM B+-tree.

// Per-thread heap-allocated data

1 __thread int *rquery_keys;
2 __thread void *rquery_values;
3 __thread bptree_node_t *rquery_leaves;
4 int bptree_rcuhtm_rquery (bptree *bpt, int key1, int key2)
5 int nleaves, nkeys;
6 int tx_retries = TX_MAX_RETRIES;
7 bpt_node_t *leaf = bptree_traverse(bpt, key1);

// If only one leaf is involved we can

// avoid transactions

8 if key2 < leaf->keys[leaf->nkeys-1] then
9 rquery_leaves[0] = leaf;

10 nkeys = read_keys_from_leaves(key1, key2, 1);
11 return nkeys;

// First try with HTM transactions

12 while bptree->lock is locked do ; // wait for the lock to be released
13 while tx_retries−− > 0 do
14 if TX_BEGIN() == TM_BEGIN_SUCCESS then
15 if bptree->lock is locked then TX_ABORT();
16 nleaves = get_leaves(leaf, key2);
17 TX_END();
18 break;

// If necessary, resort to the global lock

19 if tx_retries <= 0 then
20 lock_acquire(bptree->lock);
21 nleaves = get_leaves(leaf, key2);
22 lock_release(bptree->lock);

// Now we can read the keys from the leaves.

23 nkeys = read_keys_from_leaves(key1, key2, nleaves);
24 return nkeys;

2 RQS IN AN RCU-HTM B+-TREE
We build on top of an RCU-HTM based B+-tree and extend it to
support very simple, linearizable and efficient RQs. We exploit the

fact that in an RCU-HTM B+-tree the keys of a leaf, and their associ-
ated values, never change1; when a key needs to be added/removed
from a leaf, a copy of that node is created and replaces the old one.
Based on that characteristic, an RQ can quickly take a snapshot of
all the leaves involved in the RQ and then, without the need for
synchronization, read all their key-values pairs.

Our RQs proceed in the following way. First, we traverse the tree
until we reach the leaf with the lowest key in the range. Then, we
start an HTM transaction, which uses the leaves’ sibling pointers to
locate all the leaves with keys inside the range. During this trans-
action we only store pointers to these nodes and we do not have to
copy them. Inside the transaction wewalk the list of sibling pointers
and at each leaf we compare the highest key in the requested range
with the highest key of the leaf. By doing this, we avoid reading
the whole array of keys which, for large node sizes, would result in
adding multiple cache lines in the transactional read-set. By reading
only the highest key, we add one cache line per leaf, thus we greatly
decrease the memory footprint of the transaction.

The C code for the RQ operation in our RCU-HTM B+-tree is
given in Algorithm 1. We first perform an asynchronized traversal
of the tree in line 7 to find the leaf that contains the first key in
the requested range (or the leaf that would contain this key, if the
key is not present in the map). bptree_traverse() performs a
typical traversal following child pointers until the appropriate leaf
is reached. If the reached leaf contains all the keys in the requested
range, we can safely read and return the keys and their associated
values without using transactions (lines 8–11). read_keys_from_
leaves() reads all the leaves in the rquery_leaves array and fills
rquery_keys and rquery_values with the key-value pairs that
are included in the requested range. If additional leaves need to be
scanned, we need to guarantee that the scan is performed atomically
with respect to concurrent update operations.We achieve this either
with an HTM transaction (lines 12–18) or with a global lock that
prevents the execution of concurrent updaters (lines 19–22). In lines
23–24, the array rquery_leaves stores pointers to all these leaves
that contain keys in the requested key range. Since the keys (and
the associated values) inside these leaves can never be modified,
we can safely use read_keys_from_leaves() to scan these leaves
without using any synchronization.

3 EXPERIMENTAL EVALUATION
We conduct our experiments on a dual socket Intel Broadwell-EP
server with two Intel Xeon E5-2699 v4 processors each with 22
physical cores and 44 hardware threads, for a total of 44 and 88

1This is true for internal nodes as well, but it is irrelevant to our work.



Figure 2: Performance of concurrent maps with RQ support.

physical cores and hardware threads respectively. The processors
run at a fixed frequency of 2.2GHz with TurboBoost disabled. Each
core has private 32KB L1 and 256KB L2 caches, while a 56MB L3
cache is shared by all cores. The server has 256GB of RAM running
at 2134MHz. The OS is Debian 8.3 with kernel version 4.7.0.

We use the C++ version of the benchmark code used in [2] that
has been made publicly available in https://bitbucket.org/trbot86/
implementations. Apart from the already provided concurrent maps
(i.e., fg-locking skiplist [6], citrus BST [1], lock-free external BST [5]
and lock-free external (a,b)-tree [2]), we implemented our RCU-HTM
based B+-tree as well as the non-blocking k-ary tree [4] and the
contention adaptive treap [7]. All implementations were compiled
using GCC 4.9.2 with -O3 optimizations enabled.

Our benchmarking methodology consists of two phases. In the
warmup phase a single thread inserts random keys until the tree is
filled with half of the keys of the key range. In the execution phase
we spawn a number of worker threads, which repeatedly perform
lookup, update (insert or delete) and RQ operations with randomly
selected keys. The execution phase lasts for a predefined time dura-
tion, which we currently set to 5 seconds. We have validated that
longer time durations produce similar results. We pin each worker
thread on a single hardware thread. The first 22 threads occupy the
22 physical cores of a single socket, 44 threads span two sockets and
88 threads use hyperthreads. All reported results are the average of
10 independent executions with no significant variance.

We perform experiments with varying operation mixes and RQ
sizes for maps that contain 1M keys. We present the results for four
different workloads in Figure 2. The format of the labels are L%-
U%-R% - rqsize: S where L, U and R are the proportions of lookups,
updates and RQs and S is the size of the requested range. Updates
are equally divided between inserts and deletes, thus the size of the
data structure does not vary significantly throughout the execution.

For the already provided implementations of skiplist, citrus, bst
and abtree we present the results of the lock-free RQ provider since
this provided the best results. For the (a-b)-trees we set 𝑎 = 6 and
𝑏 = 16, as indicated by the authors in [3] and [2]. This means that
a node may contain 6 to 16 keys. For the contention-adaptive treap
we set the maximum number of keys in a leaf to 64 as indicated
in [7]. For the k-ary tree we have set the 𝑘 parameter to 32 as
indicated in [4]. For our B+-tree, we have set the order of the tree
to 8, which means that a node can contain from 8 up to 16 keys.

As depicted in Figure 2, for both the small and the large RQ size,
our RCU-HTM B+-tree performs better than all the other competi-
tors. In the small RQ size, its high performance is attributed to the
low abort ratio for the HTM transactions that RQs execute. In this
case, it reaches up to 2x higher throughput than the second best
implementation. Even when we execute 40% update operations our
B+-tree provides very high performance. For large RQs, none of
the competitors manages to scale and provide efficient concurrent
RQs. Our B+-tree still provides the best performance despite the
large size of its transactions. We observe a performance drop for 44
and 88 threads, which is attributed to NUMA effects due to RCU-
HTM’s node allocating and copying mechanism which stresses the
memory subsystem more than the other implementations.

4 CONCLUSIONS
In this work, we added range query support in a concurrent RCU-
HTM based B+-tree. Our evaluation revealed that, besides its sim-
plicity, our proposed approach provides high performance under a
variety of execution scenarios and outperforms the state-of-the-art
concurrent map implementations with RQ support.

REFERENCES
[1] Maya Arbel and Hagit Attiya. 2014. Concurrent Updates with RCU: Search Tree As

an Example. In Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing (PODC ’14). ACM, New York, NY, USA, 196–205. https://doi.org/10.
1145/2611462.2611471

[2] Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. 2018. Getting to the
Root of Concurrent Binary Search Tree Performance. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 295–306.
https://www.usenix.org/conference/atc18/presentation/arbel-raviv

[3] Trevor Brown. 2017. A Template for Implementing Fast Lock-free Trees Using
HTM. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC ’17). ACM, New York, NY, USA, 293–302. https://doi.org/10.1145/3087801.
3087834

[4] Trevor Brown and Hillel Avni. 2012. Range Queries in Non-blocking k-ary Search
Trees. In Principles of Distributed Systems, 16th International Conference, OPODIS
2012, Rome, Italy, December 18-20, 2012. Proceedings. 31–45. https://doi.org/10.
1007/978-3-642-35476-2_3

[5] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A General Technique for
Non-blocking Trees. In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’14). ACM, New York, NY,
USA, 329–342. https://doi.org/10.1145/2555243.2555267

[6] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[7] Konstantinos Sagonas and Kjell Winblad. 2016. Efficient Support for Range Queries
and Range Updates Using Contention Adapting Search Trees. In Languages and
Compilers for Parallel Computing, Xipeng Shen, Frank Mueller, and James Tuck
(Eds.). Springer International Publishing, Cham, 37–53.

[8] D. Siakavaras, K. Nikas, G. Goumas, and N. Koziris. 2017. RCU-HTM: Combining
RCU with HTM to Implement Highly Efficient Concurrent Binary Search Trees.
In 2017 26th International Conference on Parallel Architectures and Compilation
Techniques (PACT). 1–13. https://doi.org/10.1109/PACT.2017.17

https://bitbucket.org/trbot86/implementations
https://bitbucket.org/trbot86/implementations
https://doi.org/10.1145/2611462.2611471
https://doi.org/10.1145/2611462.2611471
https://www.usenix.org/conference/atc18/presentation/arbel-raviv
https://doi.org/10.1145/3087801.3087834
https://doi.org/10.1145/3087801.3087834
https://doi.org/10.1007/978-3-642-35476-2_3
https://doi.org/10.1007/978-3-642-35476-2_3
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1109/PACT.2017.17

	Abstract
	1 Introduction
	1.1 RQs in B+-trees
	1.2 Concurrent RQs in B+-trees
	1.3 The RCU-HTM Synchronization Technique

	2 RQs in an RCU-HTM B+-tree
	3 Experimental Evaluation
	4 Conclusions
	References

