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Motivation
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• Hardware Transactional Memory (HTM) has become mainstream
o IBM Power8, Blue Gene/Q, zEC12
o Intel Haswell, Broadwell …

• Available on highly multi-threaded machines (10s to 100s of
hardware threads available)

• We need to evaluate it on real-life applications

• Classic data structure
• Widely used for dictionary implementations
• Challenging to devise efficient concurrent implementations using locks 

or atomic primitives
• Their properties favor the usage of HTM

Red-Black trees



Our Contributions
• We have implemented concurrent red-black trees with 

HTM

• We have evaluated then with high number of threads

– Intel Haswell-EP: 56 hardware threads

– IBM Power8: 160 hardware threads

• We have found out that:

– Programming with HTM can be simple …
• … but to get performance one needs to put some extra effort

– Different challenges faced on each system
• Depending on each HTM’s resources

• Different optimizations applied
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Transactional Memory
• Programming model alternative to locks

– Aims to simplify programming (complexity is moved to the TM system)

– Programming effort similar to coarse-grained locking …

– … with performance similar or even better than fine-grained locking

– More robust than locks

• Programming with TM
– Programmer annotates regions of code to be executed atomically (transactions)

– TM system guarantees atomic execution of transactions

– atomic: either all writes become visible (commit) or none of them (abort)

– TM system keeps track of read- and write- sets for each transaction and if a conflict is 
detected some transaction is aborted
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... other code ... 

lock(global_lock);

... critical section ...

unlock(global_lock);

... other code ...

... other code ... 

tx_begin();

... critical section ...

tx_end();

... other code ...

Lock-based code TM code



Transactional Memory
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... other code ... 

lock(global_lock);

... critical section ...

unlock(global_lock);

... other code ...

... other code ... 

tx_begin();

... critical section ...

tx_end();

... other code ...

Lock-based code TM code

Thread 0

lock(L) lock(L) lock(L)

Thread 1 Thread 2

acq.

unlock(L)
acq.

unlock(L)

acq.

unlock(L)

tx_begin()

tx_end() tx_end()

tx_begin() tx_begin()

x conflict
wr A rd B

wr B

rd A

tx_end()

tx_begin()

Thread 0 Thread 1 Thread 2

TM is expected to perform

• better than locks when no coflicts are present

• worse than locks when conflicts arise



Hardware Transactional Memory
• Hardware implementation of TM (HTM)

– ISA extensions to support the transactional model
• xbegin: begins a transaction

• xend: ends a transaction

• xabort: explicitly aborts a transaction with some abort code

– Currently supported on various processors
• IBM Power8, Blue Gene/Q, zEC12

• Intel Haswell, Broadwell …

• On the plus side

• eliminates the overheads of Software TM

• But

• Hardware limitations
• read-/write- sets are limited by the hardware buffers

• Best-effort implementations (a transaction may never commit)
• aborts due to read-/write- set buffers overflow, interrupts, cache line eviction …

• programmer needs to specify non-transactional fallback code
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Red-Black Trees in a nutshell
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1. A node is either red or black
2. The root is always black
3. All leaves are black
4. Every red node must have two black children
5. Every path from a given node to any of its descendant leaves contains the same number of 

black nodes.

Definition

The above properties guarantee that the tree is almost balanced



Red-Black Trees in a nutshell
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Dictionary ADT
• Collection of (key, value) pairs
Supports three operations:
• Lookup(key)
• Insert(key, value)
• Delete(key)

Applications



Internal vs. External RBTs
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Internal

• Both keys and values are stored in every node

External

• Values are only stored in the leaves

• Internal nodes are only used for routing to the appropriate leaf

- Occupy more memory

+ Simplify delete operation

• All our implementations are external trees



Internal vs. External RBTs

8Siakavaras et. al               cslab@ntua

Internal

• Both keys and values are stored in every node

External

• Values are only stored in the leaves

• Internal nodes are only used for routing to the appropriate leaf

- Occupy more memory

+ Simplify delete operation

• All our implementations are external trees



Bottom-Up vs. Top-Down RBTs
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Bottom-Up[1] Top-Down[2]

Example: insert(30)

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.
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1

32

Bottom-Up[1] Top-Down[2]

Example: insert(30)

- 2 traversals

- Less tree modifications (only the necessary)

- Not convenient for fine-grained 

synchronization approaches (threads might 

traverse the tree in opposite directions)

- 1 traversal

- More tree modifications (some could be 

avoided)

- Convenient for fine-grained synchronization 

approaches

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.



A naïve HTM red-black tree: bu-cg-htm

int aborts = MAX_TX_RETRIES;

AGAIN:
while (SGL is taken)

;

int status = xbegin();
if (status == TX_BEGIN_SUCCESS) {

if (SGL is taken)
xabort(0xFF);

rbt_insert(...);
xend();

} else {
if (--aborts > 0)

goto AGAIN;

acquire_lock(SGL);
rbt_insert(...);
release_lock(SGL);

}
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• Bottom-Up external RBT

• Each operation enclosed in a single HTM 

transaction 

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm
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Begin a transaction.

Return values:

1. TX_BEGIN_SUCCESS: a transaction

has just began.

2. != TX_BEGIN_SUCCESS: a previously 

initialized transaction has aborted. 

Return value contains information about

abort reason.

• Bottom-Up external RBT

• Each operation enclosed in a single HTM 

transaction 

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm
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Critical section executed in 

transactional mode

• Bottom-Up external RBT

• Each operation enclosed in a single HTM 

transaction 

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm
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Abort if lock is taken (another thread 

executes in non-transactional mode) 

• Bottom-Up external RBT

• Each operation enclosed in a single HTM 

transaction 

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm
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Execute operation in transactional mode

• Bottom-Up external RBT

• Each operation enclosed in a single HTM 

transaction 

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm
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Commit transaction

• Bottom-Up external RBT

• Each operation enclosed in a single HTM 

transaction 

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm
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Spin until the fallback lock is released

• Bottom-Up external RBT

• Each operation enclosed in a single HTM 

transaction 

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm



Experimental Platforms

Intel Haswell-EP IBM Power8

Processors 2 x Intel Xeon E5-2697 v3 2 x IBM Power8

# Cores 2 x 14 2 x 10

# Threads 56 (2-way SMT) 160 (8-way SMT)

Core clock 2.6 GHz 3.7 GHz

L1 (Data) 32KB, 8-way, 64B block size 64KB,   8-way, 128B block size

L2 256KB,  8-way, 64B block size 512KB, 8-way, 128B block size

L3
35MB, 20-way, 64B block size

(shared per die) 
80MB, 8-way, 128B block size

(shared per die)

Memory 64 GB (4 NUMA regions) 256 GB (4 NUMA regions)
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Experimental Platforms: HTM characteristics

Intel Haswell-EP IBM Power8

Versioning Lazy

Progress guarantees Best effort

Conflict detection Eager

Conflict granularity Cache line

Cache line size 64B 128B

TX read-set
(total / per HW thread)

4MB / 2MB 8KB / 1KB

TX write-set
(total / per HW thread)

22KB / 11KB 8KB / 1KB

12Siakavaras et. al               cslab@ntua
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Explicit
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Abort reasons

Conflict
Transactional conflict

Non-transactional conflict

Capacity

Explicit

Haswell-EP can support larger transactions!



Experimental Setup
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 Written in C, using GCC intrinsics and inline assembly for HTM instructions
 GCC 4.9.2/4.9.1, -O3 optimization
 Nodes are padded and aligned to occupy exactly one cache line

Code

 Tree sizes (3 configurations)
 Medium/Large trees: 2M/20M/100M keys
 Tree initialized to contain half keys in specified range (e.g. 1M keys in the 2M tree)

 Operations Workload (%lookups-%insertions-%deletions)
 Read-intensive: 80-10-10
 Read-write: 50-25-25
 Write-intensive: 20-40-40

HTM Evaluation

 Benchmarks duration is 15 seconds
 Employ empty physical cores before SMT contexts
 10 transactional retries before acquiring SGL
 Results are the average of 20 independent executions (box plots shown when necessary)

Benchmarks Execution



bu-cg-htm: Performance
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Haswell-EP Power8
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Haswell-EP: bu-cg-htm throughput
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Haswell-EP: tuning number of retries
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Haswell-EP: tuning number of retries
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20 retries10 retries

30 retries 50 retries

2M keys (20-40-40)

• Tuning the number of transactional retries is vital to get 

stable and high performance

• As more cores are added in future processors this effect 

will probably become more intense



Haswell-EP: Performance
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• bu-cg-lock: bottom-up coarse-grained locking

• td-fg-lock: top-down fine-grained locking

• td-wf[1]: top-down wait-free (atomic operations, CAS)

[1] A. Natarajan, L. H. Savoie, N. Mittal, Concurrent Wait-Free Red Black Trees, SSS 2013
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• td-wf[1]: top-down wait-free (atomic operations, CAS)

[1] A. Natarajan, L. H. Savoie, N. Mittal, Concurrent Wait-Free Red Black Trees, SSS 2013

Hyperthreading enabled



Haswell-EP: Performance
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• bu-cg-lock: bottom-up coarse-grained locking

• td-fg-lock: top-down fine-grained locking

• td-wf[1]: top-down wait-free (atomic operations, CAS)

bu-cg-htm scales on Haswell-EP for 2 reasons:

1. Absence of conflicts (in most cases threads 

modify disjoint subtrees)

2. HW resources (read-/write- set buffers) are 

large enough (no capacity aborts) for the 

resulting transactions

Generally: transactions manage to commit 

without serializing on the global lock

[1] A. Natarajan, L. H. Savoie, N. Mittal, Concurrent Wait-Free Red Black Trees, SSS 2013
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Power8: bu-cg-htm throughput
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Power8: bu-cg-htm throughput
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hyperthreading enabled

performance collapse

Insertions/deletions 

are more expensive 

than lookups

no hyperthreads

very good scalability



Power8: bu-cg-htm aborts’ breakdown
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SMT contexts
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2M keys (20-40-40)

> 20 threads → capacity aborts due to sharing of TM buffers between multiple

SMT contexts

Capacity aborts → SGL acquisitions → non-transactional conflict aborts



1st optimization: PCL Fallback
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Thread
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SGL Fallback observation:

When some thread acquires the global lock all concurrent transactions are aborted.

Even those executed on other cores than the one acquiring the lock (which do not 

share hardware transactional buffers).
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TRANSACTIONAL BUFFERS
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Thread
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Thread
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Thread
7

Core 0

SGL Fallback observation:

When some thread acquires the global lock all concurrent transactions are aborted.

Even those executed on other cores than the one acquiring the lock (which do not 

share hardware transactional buffers).

TRANSACTIONAL BUFFERS
Thread

0
Thread

1
…

Thread
6

Thread
7

Core 19

. . .

x capacity
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x capacity

. . .

acquire(SGL)

. . . . . .

x x x x x x x

Idea! Before resorting to SGL try to execute transaction alone on its core

i.e. first acquire a PCL (Per-Cpu Lock) that only aborts transactions

on the same core



1st optimization: PCL Fallback
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TRANSACTIONAL BUFFERS
Thread

0
Thread

1
…

Thread
6

Thread
7

Core 0

TRANSACTIONAL BUFFERS
Thread

0
Thread

1
…

Thread
6

Thread
7

Core 19

. . .

x capacity

x capacity

x capacity

. . .

acquire(PCL)

tx_begin()

...

. . . . . .

x x x

Idea! Before resorting to SGL try to execute transaction alone on its core

i.e. first acquire a PCL (Per-Cpu Lock) that only aborts siblings



PCL Fallback: throughput
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solid lines: SGL fallback

dotted lines: PCL fallback



PCL Fallback: aborts’ breakdown
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PCL Fallback: lock acquisitions
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2nd optimization: Fine-grained transactions

• PCL leads to underutilization (1 thread per core executes)

• PCL does not solve the problem of capacity aborts

• Naively enclosing each RBT operation in an HTM transaction results in large 
transactions

• Review example: insert(30)
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Transactional size of each phase:

1. Lookup: proportional to the average depth of the tree 

(typically 20-30 levels)

2. Rebalance: ~97% times < 3 levels, ~75% 1 level



2nd optimization: Fine-grained transactions

• PCL leads to underutilization (1 thread per core executes)

• PCL does not solve the problem of capacity aborts

• Naively enclosing each RBT operation in an HTM transaction results in large 
transactions

• Review example: insert(30)
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Each transaction in bu-cg-htm encloses 2 phases:

1. Lookup phase

2. Rebalance phase

Transactional size of each phase:

1. Lookup: proportional to the average depth of the tree 

(typically 20-30 levels)

2. Rebalance: ~97% times < 3 levels, ~75% 1 level

Idea! Split lookup phase in multiple shorter transactions



2nd optimization: Fine-grained transactions
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• Splitting lookup phase in multiple transactions is not straightforward

• What can go wrong?
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18

8

15

25

13

1610

Τ1: lookup(10)

Τ2: rotate_right(18)

T1 is now on the wrong 

subtree and will not find 

key 10

• Splitting lookup phase in multiple transactions is not straightforward

• What can go wrong?

• We need a way to inform threads about concurrent modifications.

• we add a version number on each node



2nd optimization: Fine-grained transactions
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• A version number is added on each node

• Version number is increased when node is modified

• Fine-grained transactions:

1. Validate the version of current node

2. If current node has changed, abort and restart operation from root

3. Otherwise, move to next node, read its version and commit

version = 10
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Τ1: lookup(10)

Τ2: rotate_right(18)

• A version number is added on each node

• Version number is increased when node is modified

• Fine-grained transactions:

1. Validate the version of current node

2. If current node has changed, abort and restart operation from root

3. Otherwise, move to next node, read its version and commit

version = 1118

8

15

25

13

1610
When T1 tries to move to the 

next node, validation of node 18 

will fail and T1 will restart from 

root
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Fine-grained transactions: throughput
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Fine-grained transactions: throughput
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No optimization

1st optimization (PCL)

2nd optimization (fg-tm)



Fine-grained transactions: aborts/operation

#Threads
bu-cg-htm bu-fg-htm

2M 20M 100M 2M 20M 100M

20 0.02 0.23 0.27 0.001 0.002 0.007

40 6.2 9.7 9.9 0.001 0.003 0.007

60 9.8 9.9 9.9 0.002 0.004 0.01

80 9.9 9.9 9.9 0.009 0.008 0.012

120 9.9 9.9 9.9 0.24 0.17 0.11

160 9.9 9.9 9.9 1.15 1.07 0.85
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• bu-fg-htm manages to keep very low abort rate, independently of tree size



Conclusions & Future work

• Programming with HTM might be simple

– achieving high performance is not

– hardware limitations need to considered

– different HTM systems need different software 
optimizations

• Future Work

– Extend evaluation to more data structures / 
algorithms (e.g. graph algorithms)

– Evaluation on machines with more physical cores / 
hardware threads
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THANK YOU!

QUESTIONS?
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