
Massively Concurrent Red-Black Trees
with Hardware Transactional Memory
Dimitrios Siakavaras, Konstantinos Nikas, Georgios Goumas and

Nectarios Koziris

National Technical University of Athens (NTUA)

School of Electrical and Computer Engineering (ECE)

Computing Systems Laboratory (CSLab)

{jimsiak,knikas,goumas,nkoziris}@cslab.ece.ntua.gr

http://research.cslab.ece.ntua.gr

PDP 2016

http://research.cslab.ece.ntua.gr/

Motivation

2Siakavaras et. al cslab@ntua

• Hardware Transactional Memory (HTM) has become mainstream
o IBM Power8, Blue Gene/Q, zEC12
o Intel Haswell, Broadwell …

• Available on highly multi-threaded machines (10s to 100s of
hardware threads available)

• We need to evaluate it on real-life applications

• Classic data structure
• Widely used for dictionary implementations
• Challenging to devise efficient concurrent implementations using locks

or atomic primitives
• Their properties favor the usage of HTM

Red-Black trees

Our Contributions
• We have implemented concurrent red-black trees with

HTM

• We have evaluated then with high number of threads

– Intel Haswell-EP: 56 hardware threads

– IBM Power8: 160 hardware threads

• We have found out that:

– Programming with HTM can be simple …
• … but to get performance one needs to put some extra effort

– Different challenges faced on each system
• Depending on each HTM’s resources

• Different optimizations applied

Siakavaras et. al cslab@ntua 3

Transactional Memory
• Programming model alternative to locks

– Aims to simplify programming (complexity is moved to the TM system)

– Programming effort similar to coarse-grained locking …

– … with performance similar or even better than fine-grained locking

– More robust than locks

• Programming with TM
– Programmer annotates regions of code to be executed atomically (transactions)

– TM system guarantees atomic execution of transactions

– atomic: either all writes become visible (commit) or none of them (abort)

– TM system keeps track of read- and write- sets for each transaction and if a conflict is
detected some transaction is aborted

Siakavaras et. al cslab@ntua 4

... other code ...

lock(global_lock);

... critical section ...

unlock(global_lock);

... other code ...

... other code ...

tx_begin();

... critical section ...

tx_end();

... other code ...

Lock-based code TM code

Transactional Memory

Siakavaras et. al cslab@ntua 4

... other code ...

lock(global_lock);

... critical section ...

unlock(global_lock);

... other code ...

... other code ...

tx_begin();

... critical section ...

tx_end();

... other code ...

Lock-based code TM code

Thread 0

lock(L) lock(L) lock(L)

Thread 1 Thread 2

acq.

unlock(L)
acq.

unlock(L)

acq.

unlock(L)

tx_begin()

tx_end() tx_end()

tx_begin() tx_begin()

x conflict
wr A rd B

wr B

rd A

tx_end()

tx_begin()

Thread 0 Thread 1 Thread 2

TM is expected to perform

• better than locks when no coflicts are present

• worse than locks when conflicts arise

Hardware Transactional Memory
• Hardware implementation of TM (HTM)

– ISA extensions to support the transactional model
• xbegin: begins a transaction

• xend: ends a transaction

• xabort: explicitly aborts a transaction with some abort code

– Currently supported on various processors
• IBM Power8, Blue Gene/Q, zEC12

• Intel Haswell, Broadwell …

• On the plus side

• eliminates the overheads of Software TM

• But

• Hardware limitations
• read-/write- sets are limited by the hardware buffers

• Best-effort implementations (a transaction may never commit)
• aborts due to read-/write- set buffers overflow, interrupts, cache line eviction …

• programmer needs to specify non-transactional fallback code

5Siakavaras et. al cslab@ntua

Red-Black Trees in a nutshell

6Siakavaras et. al cslab@ntua

1. A node is either red or black
2. The root is always black
3. All leaves are black
4. Every red node must have two black children
5. Every path from a given node to any of its descendant leaves contains the same number of

black nodes.

Definition

The above properties guarantee that the tree is almost balanced

Red-Black Trees in a nutshell

7Siakavaras et. al cslab@ntua

Dictionary ADT
• Collection of (key, value) pairs
Supports three operations:
• Lookup(key)
• Insert(key, value)
• Delete(key)

Applications

Internal vs. External RBTs

8Siakavaras et. al cslab@ntua

Internal

• Both keys and values are stored in every node

External

• Values are only stored in the leaves

• Internal nodes are only used for routing to the appropriate leaf

- Occupy more memory

+ Simplify delete operation

• All our implementations are external trees

Internal vs. External RBTs

8Siakavaras et. al cslab@ntua

Internal

• Both keys and values are stored in every node

External

• Values are only stored in the leaves

• Internal nodes are only used for routing to the appropriate leaf

- Occupy more memory

+ Simplify delete operation

• All our implementations are external trees

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

Bottom-Up[1] Top-Down[2]

Example: insert(30)

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

Bottom-Up[1] Top-Down[2]

Example: insert(30)

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

2

Bottom-Up[1] Top-Down[2]

Example: insert(30)

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

Bottom-Up[1] Top-Down[2]

Example: insert(30)

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

Bottom-Up[1] Top-Down[2]

Example: insert(30)

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

Bottom-Up[1] Top-Down[2]

Example: insert(30)

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

Bottom-Up[1] Top-Down[2]

Example: insert(30)

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

Bottom-Up[1] Top-Down[2]

Example: insert(30)

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

3 When the new key is inserted no leaf->root traversal is

necessary
[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1 Root->leaf (top-down) traversal (read-only phase)

1

2 Insert the new key

3

3 Leaf -> Root traversal (bottom-up) to fix

red-black tree violations

2

1 Root -> Leaf (top-down) traversal

Bottom-Up[1] Top-Down[2]

Example: insert(30)

2 Perform necessary modifications on the way to the leaf

3 When the new key is inserted no leaf->root traversal is

necessary
[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

Bottom-Up vs. Top-Down RBTs

9Siakavaras et. al cslab@ntua

1

32

Bottom-Up[1] Top-Down[2]

Example: insert(30)

- 2 traversals

- Less tree modifications (only the necessary)

- Not convenient for fine-grained

synchronization approaches (threads might

traverse the tree in opposite directions)

- 1 traversal

- More tree modifications (some could be

avoided)

- Convenient for fine-grained synchronization

approaches

[1] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 3rd ed., 2009.
[2] R. A. Tarjan, Efficient top-down updating of red-black trees, Tech. Rep. TR-006-85, Department of Computer Science, Princeton University, 1985.

A naïve HTM red-black tree: bu-cg-htm

int aborts = MAX_TX_RETRIES;

AGAIN:
while (SGL is taken)

;

int status = xbegin();
if (status == TX_BEGIN_SUCCESS) {

if (SGL is taken)
xabort(0xFF);

rbt_insert(...);
xend();

} else {
if (--aborts > 0)

goto AGAIN;

acquire_lock(SGL);
rbt_insert(...);
release_lock(SGL);

}

Siakavaras et. al cslab@ntua 10

• Bottom-Up external RBT

• Each operation enclosed in a single HTM

transaction

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm

A naïve HTM red-black tree: bu-cg-htm

int aborts = MAX_TX_RETRIES;

AGAIN:
while (SGL is taken)

;

int status = xbegin();
if (status == TX_BEGIN_SUCCESS) {

if (SGL is taken)
xabort(0xFF);

rbt_insert(...);
xend();

} else {
if (--aborts > 0)

goto AGAIN;

acquire_lock(SGL);
rbt_insert(...);
release_lock(SGL);

}

Siakavaras et. al cslab@ntua 10

Begin a transaction.

Return values:

1. TX_BEGIN_SUCCESS: a transaction

has just began.

2. != TX_BEGIN_SUCCESS: a previously

initialized transaction has aborted.

Return value contains information about

abort reason.

• Bottom-Up external RBT

• Each operation enclosed in a single HTM

transaction

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm

A naïve HTM red-black tree: bu-cg-htm

int aborts = MAX_TX_RETRIES;

AGAIN:
while (SGL is taken)

;

int status = xbegin();
if (status == TX_BEGIN_SUCCESS) {

if (SGL is taken)
xabort(0xFF);

rbt_insert(...);
xend();

} else {
if (--aborts > 0)

goto AGAIN;

acquire_lock(SGL);
rbt_insert(...);
release_lock(SGL);

}

Siakavaras et. al cslab@ntua 10

Critical section executed in

transactional mode

• Bottom-Up external RBT

• Each operation enclosed in a single HTM

transaction

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm

A naïve HTM red-black tree: bu-cg-htm

int aborts = MAX_TX_RETRIES;

AGAIN:
while (SGL is taken)

;

int status = xbegin();
if (status == TX_BEGIN_SUCCESS) {

if (SGL is taken)
xabort(0xFF);

rbt_insert(...);
xend();

} else {
if (--aborts > 0)

goto AGAIN;

acquire_lock(SGL);
rbt_insert(...);
release_lock(SGL);

}

Siakavaras et. al cslab@ntua 10

Abort if lock is taken (another thread

executes in non-transactional mode)

• Bottom-Up external RBT

• Each operation enclosed in a single HTM

transaction

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm

A naïve HTM red-black tree: bu-cg-htm

int aborts = MAX_TX_RETRIES;

AGAIN:
while (SGL is taken)

;

int status = xbegin();
if (status == TX_BEGIN_SUCCESS) {

if (SGL is taken)
xabort(0xFF);

rbt_insert(...);
xend();

} else {
if (--aborts > 0)

goto AGAIN;

acquire_lock(SGL);
rbt_insert(...);
release_lock(SGL);

}

Siakavaras et. al cslab@ntua 10

Execute operation in transactional mode

• Bottom-Up external RBT

• Each operation enclosed in a single HTM

transaction

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm

A naïve HTM red-black tree: bu-cg-htm

int aborts = MAX_TX_RETRIES;

AGAIN:
while (SGL is taken)

;

int status = xbegin();
if (status == TX_BEGIN_SUCCESS) {

if (SGL is taken)
xabort(0xFF);

rbt_insert(...);
xend();

} else {
if (--aborts > 0)

goto AGAIN;

acquire_lock(SGL);
rbt_insert(...);
release_lock(SGL);

}

Siakavaras et. al cslab@ntua 10

Commit transaction

• Bottom-Up external RBT

• Each operation enclosed in a single HTM

transaction

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm

A naïve HTM red-black tree: bu-cg-htm

int aborts = MAX_TX_RETRIES;

AGAIN:
while (SGL is taken)

;

int status = xbegin();
if (status == TX_BEGIN_SUCCESS) {

if (SGL is taken)
xabort(0xFF);

rbt_insert(...);
xend();

} else {
if (--aborts > 0)

goto AGAIN;

acquire_lock(SGL);
rbt_insert(...);
release_lock(SGL);

}

Siakavaras et. al cslab@ntua 10

Code executed on abort

• Bottom-Up external RBT

• Each operation enclosed in a single HTM

transaction

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm

A naïve HTM red-black tree: bu-cg-htm

int aborts = MAX_TX_RETRIES;

AGAIN:
while (SGL is taken)

;

int status = xbegin();
if (status == TX_BEGIN_SUCCESS) {

if (SGL is taken)
xabort(0xFF);

rbt_insert(...);
xend();

} else {
if (--aborts > 0)

goto AGAIN;

acquire_lock(SGL);
rbt_insert(...);
release_lock(SGL);

}

Siakavaras et. al cslab@ntua 10

Retry in transactional mode

• Bottom-Up external RBT

• Each operation enclosed in a single HTM

transaction

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm

A naïve HTM red-black tree: bu-cg-htm

int aborts = MAX_TX_RETRIES;

AGAIN:
while (SGL is taken)

;

int status = xbegin();
if (status == TX_BEGIN_SUCCESS) {

if (SGL is taken)
xabort(0xFF);

rbt_insert(...);
xend();

} else {
if (--aborts > 0)

goto AGAIN;

acquire_lock(SGL);
rbt_insert(...);
release_lock(SGL);

}

Siakavaras et. al cslab@ntua 10

Execute operation in non-transactional

mode (SGL fallback path)

• Bottom-Up external RBT

• Each operation enclosed in a single HTM

transaction

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm

A naïve HTM red-black tree: bu-cg-htm

int aborts = MAX_TX_RETRIES;

AGAIN:
while (SGL is taken)

;

int status = xbegin();
if (status == TX_BEGIN_SUCCESS) {

if (SGL is taken)
xabort(0xFF);

rbt_insert(...);
xend();

} else {
if (--aborts > 0)

goto AGAIN;

acquire_lock(SGL);
rbt_insert(...);
release_lock(SGL);

}

Siakavaras et. al cslab@ntua 10

Spin until the fallback lock is released

• Bottom-Up external RBT

• Each operation enclosed in a single HTM

transaction

• Single global lock (SGL) fallback path.

code: insert operation in bu-cg-htm

Experimental Platforms

Intel Haswell-EP IBM Power8

Processors 2 x Intel Xeon E5-2697 v3 2 x IBM Power8

Cores 2 x 14 2 x 10

Threads 56 (2-way SMT) 160 (8-way SMT)

Core clock 2.6 GHz 3.7 GHz

L1 (Data) 32KB, 8-way, 64B block size 64KB, 8-way, 128B block size

L2 256KB, 8-way, 64B block size 512KB, 8-way, 128B block size

L3
35MB, 20-way, 64B block size

(shared per die)
80MB, 8-way, 128B block size

(shared per die)

Memory 64 GB (4 NUMA regions) 256 GB (4 NUMA regions)

11Siakavaras et. al cslab@ntua

Experimental Platforms: HTM characteristics

Intel Haswell-EP IBM Power8

Versioning Lazy

Progress guarantees Best effort

Conflict detection Eager

Conflict granularity Cache line

Cache line size 64B 128B

TX read-set
(total / per HW thread)

4MB / 2MB 8KB / 1KB

TX write-set
(total / per HW thread)

22KB / 11KB 8KB / 1KB

12Siakavaras et. al cslab@ntua

Abort reasons

Conflict
Transactional conflict

Non-transactional conflict

Capacity

Explicit

Experimental Platforms: HTM characteristics

Intel Haswell-EP IBM Power8

Versioning Lazy

Progress guarantees Best effort

Conflict detection Eager

Conflict granularity Cache line

Cache line size 64B 128B

TX read-set
(total / per HW thread)

4MB / 2MB 8KB / 1KB

TX write-set
(total / per HW thread)

22KB / 11KB 8KB / 1KB

12Siakavaras et. al cslab@ntua

Abort reasons

Conflict
Transactional conflict

Non-transactional conflict

Capacity

Explicit

Haswell-EP can support larger transactions!

Experimental Setup

13Siakavaras et. al cslab@ntua

 Written in C, using GCC intrinsics and inline assembly for HTM instructions
 GCC 4.9.2/4.9.1, -O3 optimization
 Nodes are padded and aligned to occupy exactly one cache line

Code

 Tree sizes (3 configurations)
 Medium/Large trees: 2M/20M/100M keys
 Tree initialized to contain half keys in specified range (e.g. 1M keys in the 2M tree)

 Operations Workload (%lookups-%insertions-%deletions)
 Read-intensive: 80-10-10
 Read-write: 50-25-25
 Write-intensive: 20-40-40

HTM Evaluation

 Benchmarks duration is 15 seconds
 Employ empty physical cores before SMT contexts
 10 transactional retries before acquiring SGL
 Results are the average of 20 independent executions (box plots shown when necessary)

Benchmarks Execution

bu-cg-htm: Performance

14Siakavaras et. al cslab@ntua

Haswell-EP Power8

50

OPTIMIZING FOR HASWELL-EP

Siakavaras et. al cslab@ntua

Haswell-EP: bu-cg-htm throughput

Siakavaras et. al cslab@ntua 16

Haswell-EP: tuning number of retries

17Siakavaras et. al cslab@ntua

20 retries10 retries

30 retries 50 retries

2M keys (20-40-40)

Haswell-EP: tuning number of retries

17Siakavaras et. al cslab@ntua

20 retries10 retries

30 retries 50 retries

2M keys (20-40-40)

• Tuning the number of transactional retries is vital to get

stable and high performance

• As more cores are added in future processors this effect

will probably become more intense

Haswell-EP: Performance

18Siakavaras et. al cslab@ntua

• bu-cg-lock: bottom-up coarse-grained locking

• td-fg-lock: top-down fine-grained locking

• td-wf[1]: top-down wait-free (atomic operations, CAS)

[1] A. Natarajan, L. H. Savoie, N. Mittal, Concurrent Wait-Free Red Black Trees, SSS 2013

Haswell-EP: Performance

18Siakavaras et. al cslab@ntua

• bu-cg-lock: bottom-up coarse-grained locking

• td-fg-lock: top-down fine-grained locking

• td-wf[1]: top-down wait-free (atomic operations, CAS)

[1] A. Natarajan, L. H. Savoie, N. Mittal, Concurrent Wait-Free Red Black Trees, SSS 2013

Hyperthreading enabled

Haswell-EP: Performance

18Siakavaras et. al cslab@ntua

• bu-cg-lock: bottom-up coarse-grained locking

• td-fg-lock: top-down fine-grained locking

• td-wf[1]: top-down wait-free (atomic operations, CAS)

bu-cg-htm scales on Haswell-EP for 2 reasons:

1. Absence of conflicts (in most cases threads

modify disjoint subtrees)

2. HW resources (read-/write- set buffers) are

large enough (no capacity aborts) for the

resulting transactions

Generally: transactions manage to commit

without serializing on the global lock

[1] A. Natarajan, L. H. Savoie, N. Mittal, Concurrent Wait-Free Red Black Trees, SSS 2013

57

OPTIMIZING FOR POWER8

Siakavaras et. al cslab@ntua

Power8: bu-cg-htm throughput

Siakavaras et. al cslab@ntua 20

Power8: bu-cg-htm throughput

Siakavaras et. al cslab@ntua 20

Insertions/deletions

are more expensive

than lookups

Power8: bu-cg-htm throughput

Siakavaras et. al cslab@ntua 20

Insertions/deletions

are more expensive

than lookups

no hyperthreads

very good scalability

Power8: bu-cg-htm throughput

Siakavaras et. al cslab@ntua 20

hyperthreading enabled

performance collapse

Insertions/deletions

are more expensive

than lookups

no hyperthreads

very good scalability

Power8: bu-cg-htm aborts’ breakdown

0

2

4

6

8

10

1 5 10 20 40 60 80 100 120 140 160

A
b

o
rt

s/
O

p
e

ra
ti

o
n

Number of threads

transactional conflict non-transactional conflict capacity explicit

max 10 transactional retries per operation

• transactional conflicts: close to zero → non-conflicting operations on red-black tree

• non-transactional conflicts: due to global lock acquisition from other threads

• capacity: read-/write- set overflows

• explicit: due to global lock found taken

Siakavaras et. al cslab@ntua 21

2M keys (20-40-40)

Power8: bu-cg-htm aborts’ breakdown

0

2

4

6

8

10

1 5 10 20 40 60 80 100 120 140 160

A
b

o
rt

s/
O

p
e

ra
ti

o
n

Number of threads

transactional conflict non-transactional conflict capacity explicit

max 10 transactional retries per operation

• transactional conflicts: close to zero → non-conflicting operations on red-black tree

• non-transactional conflicts: due to global lock acquisition from other threads

• capacity: read-/write- set overflows

• explicit: due to global lock found taken

Siakavaras et. al cslab@ntua 21

2M keys (20-40-40)

> 20 threads → capacity aborts due to sharing of TM buffers between multiple

SMT contexts

Power8: bu-cg-htm aborts’ breakdown

0

2

4

6

8

10

1 5 10 20 40 60 80 100 120 140 160

A
b

o
rt

s/
O

p
e

ra
ti

o
n

Number of threads

transactional conflict non-transactional conflict capacity explicit

max 10 transactional retries per operation

• transactional conflicts: close to zero → non-conflicting operations on red-black tree

• non-transactional conflicts: due to global lock acquisition from other threads

• capacity: read-/write- set overflows

• explicit: due to global lock found taken

Siakavaras et. al cslab@ntua 21

2M keys (20-40-40)

> 20 threads → capacity aborts due to sharing of TM buffers between multiple

SMT contexts

Capacity aborts → SGL acquisitions → non-transactional conflict aborts

1st optimization: PCL Fallback

22Siakavaras et. al cslab@ntua

TRANSACTIONAL BUFFERS
Thread

0
Thread

1
…

Thread
6

Thread
7

Core 0

SGL Fallback observation:

When some thread acquires the global lock all concurrent transactions are aborted.

Even those executed on other cores than the one acquiring the lock (which do not

share hardware transactional buffers).

TRANSACTIONAL BUFFERS
Thread

0
Thread

1
…

Thread
6

Thread
7

Core 19

. . .

x capacity

x capacity

x capacity

. . .

acquire(SGL)

.

x x x x x x x

1st optimization: PCL Fallback

22Siakavaras et. al cslab@ntua

TRANSACTIONAL BUFFERS
Thread

0
Thread

1
…

Thread
6

Thread
7

Core 0

SGL Fallback observation:

When some thread acquires the global lock all concurrent transactions are aborted.

Even those executed on other cores than the one acquiring the lock (which do not

share hardware transactional buffers).

TRANSACTIONAL BUFFERS
Thread

0
Thread

1
…

Thread
6

Thread
7

Core 19

. . .

x capacity

x capacity

x capacity

. . .

acquire(SGL)

.

x x x x x x x

Idea! Before resorting to SGL try to execute transaction alone on its core

i.e. first acquire a PCL (Per-Cpu Lock) that only aborts transactions

on the same core

1st optimization: PCL Fallback

23Siakavaras et. al cslab@ntua

TRANSACTIONAL BUFFERS
Thread

0
Thread

1
…

Thread
6

Thread
7

Core 0

TRANSACTIONAL BUFFERS
Thread

0
Thread

1
…

Thread
6

Thread
7

Core 19

. . .

x capacity

x capacity

x capacity

. . .

acquire(PCL)

tx_begin()

...

.

x x x

Idea! Before resorting to SGL try to execute transaction alone on its core

i.e. first acquire a PCL (Per-Cpu Lock) that only aborts siblings

PCL Fallback: throughput

24Siakavaras et. al cslab@ntua

solid lines: SGL fallback

dotted lines: PCL fallback

PCL Fallback: aborts’ breakdown

25Siakavaras et. al cslab@ntua

0

2

4

6

8

10

A
b

o
rt

s/
O

p
e

ra
ti

o
n

Number of threads

transactional conflict non-transactional conflict capacity explicit

S
G

L
P

C
L

2M keys

PCL Fallback: lock acquisitions

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160

G
lo

b
al

 lo
ck

 a
cq

u
is

it
io

n
s

(%
 o

f
to

ta
l o

p
er

at
io

n
s)

Number of threads

bu-cg-htm(SGL) bu-cg-htm(PCL)

26Siakavaras et. al cslab@ntua

8
0

-1
0

-1
0 5

0
-2

5
-2

5

2
0

-4
0

-4
0

Percentage of operations executed serially

2nd optimization: Fine-grained transactions

• PCL leads to underutilization (1 thread per core executes)

• PCL does not solve the problem of capacity aborts

• Naively enclosing each RBT operation in an HTM transaction results in large
transactions

• Review example: insert(30)

27Siakavaras et. al cslab@ntua

2nd optimization: Fine-grained transactions

• PCL leads to underutilization (1 thread per core executes)

• PCL does not solve the problem of capacity aborts

• Naively enclosing each RBT operation in an HTM transaction results in large
transactions

• Review example: insert(30)

27Siakavaras et. al cslab@ntua

Each transaction in bu-cg-htm encloses 2 phases:

2nd optimization: Fine-grained transactions

• PCL leads to underutilization (1 thread per core executes)

• PCL does not solve the problem of capacity aborts

• Naively enclosing each RBT operation in an HTM transaction results in large
transactions

• Review example: insert(30)

27Siakavaras et. al cslab@ntua

Each transaction in bu-cg-htm encloses 2 phases:

1. Lookup phase

2nd optimization: Fine-grained transactions

• PCL leads to underutilization (1 thread per core executes)

• PCL does not solve the problem of capacity aborts

• Naively enclosing each RBT operation in an HTM transaction results in large
transactions

• Review example: insert(30)

27Siakavaras et. al cslab@ntua

Each transaction in bu-cg-htm encloses 2 phases:

1. Lookup phase

2. Rebalance phase

2nd optimization: Fine-grained transactions

• PCL leads to underutilization (1 thread per core executes)

• PCL does not solve the problem of capacity aborts

• Naively enclosing each RBT operation in an HTM transaction results in large
transactions

• Review example: insert(30)

27Siakavaras et. al cslab@ntua

Each transaction in bu-cg-htm encloses 2 phases:

1. Lookup phase

2. Rebalance phase

Transactional size of each phase:

1. Lookup: proportional to the average depth of the tree

(typically 20-30 levels)

2. Rebalance: ~97% times < 3 levels, ~75% 1 level

2nd optimization: Fine-grained transactions

• PCL leads to underutilization (1 thread per core executes)

• PCL does not solve the problem of capacity aborts

• Naively enclosing each RBT operation in an HTM transaction results in large
transactions

• Review example: insert(30)

27Siakavaras et. al cslab@ntua

Each transaction in bu-cg-htm encloses 2 phases:

1. Lookup phase

2. Rebalance phase

Transactional size of each phase:

1. Lookup: proportional to the average depth of the tree

(typically 20-30 levels)

2. Rebalance: ~97% times < 3 levels, ~75% 1 level

Idea! Split lookup phase in multiple shorter transactions

2nd optimization: Fine-grained transactions

28Siakavaras et. al cslab@ntua

18

8

15 25

13 16

10

Τ1: lookup(10)

Τ2: rotate_right(18)

• Splitting lookup phase in multiple transactions is not straightforward

• What can go wrong?

2nd optimization: Fine-grained transactions

28Siakavaras et. al cslab@ntua

18

8

15

25

13

1610

Τ1: lookup(10)

Τ2: rotate_right(18)

• Splitting lookup phase in multiple transactions is not straightforward

• What can go wrong?

T1 is now on the wrong

subtree and will not find

key 10

2nd optimization: Fine-grained transactions

28Siakavaras et. al cslab@ntua

18

8

15

25

13

1610

Τ1: lookup(10)

Τ2: rotate_right(18)

T1 is now on the wrong

subtree and will not find

key 10

• Splitting lookup phase in multiple transactions is not straightforward

• What can go wrong?

• We need a way to inform threads about concurrent modifications.

• we add a version number on each node

2nd optimization: Fine-grained transactions

29Siakavaras et. al cslab@ntua

18

8

15 25

13 16

10

Τ1: lookup(10)

Τ2: rotate_right(18)

• A version number is added on each node

• Version number is increased when node is modified

• Fine-grained transactions:

1. Validate the version of current node

2. If current node has changed, abort and restart operation from root

3. Otherwise, move to next node, read its version and commit

version = 10

2nd optimization: Fine-grained transactions

29Siakavaras et. al cslab@ntua

Τ1: lookup(10)

Τ2: rotate_right(18)

• A version number is added on each node

• Version number is increased when node is modified

• Fine-grained transactions:

1. Validate the version of current node

2. If current node has changed, abort and restart operation from root

3. Otherwise, move to next node, read its version and commit

version = 1018

8

15

25

13

1610

2nd optimization: Fine-grained transactions

29Siakavaras et. al cslab@ntua

Τ1: lookup(10)

Τ2: rotate_right(18)

• A version number is added on each node

• Version number is increased when node is modified

• Fine-grained transactions:

1. Validate the version of current node

2. If current node has changed, abort and restart operation from root

3. Otherwise, move to next node, read its version and commit

version = 1118

8

15

25

13

1610

2nd optimization: Fine-grained transactions

29Siakavaras et. al cslab@ntua

Τ1: lookup(10)

Τ2: rotate_right(18)

• A version number is added on each node

• Version number is increased when node is modified

• Fine-grained transactions:

1. Validate the version of current node

2. If current node has changed, abort and restart operation from root

3. Otherwise, move to next node, read its version and commit

version = 1118

8

15

25

13

1610
When T1 tries to move to the

next node, validation of node 18

will fail and T1 will restart from

root

2nd optimization: Fine-grained transactions

30Siakavaras et. al cslab@ntua

Coarse-grained transactions

1 large transaction

Fine-grained transactions

Multiple short transactions

2nd optimization: Fine-grained transactions

30Siakavaras et. al cslab@ntua

Coarse-grained transactions

1 large transaction

Fine-grained transactions

Multiple short transactions

2nd optimization: Fine-grained transactions

30Siakavaras et. al cslab@ntua

Coarse-grained transactions

1 large transaction

Fine-grained transactions

Multiple short transactions

2nd optimization: Fine-grained transactions

30Siakavaras et. al cslab@ntua

Coarse-grained transactions

1 large transaction

Fine-grained transactions

Multiple short transactions

2nd optimization: Fine-grained transactions

30Siakavaras et. al cslab@ntua

Coarse-grained transactions

1 large transaction

Fine-grained transactions

Multiple short transactions

2nd optimization: Fine-grained transactions

30Siakavaras et. al cslab@ntua

Coarse-grained transactions

1 large transaction

Fine-grained transactions

Multiple short transactions

2nd optimization: Fine-grained transactions

30Siakavaras et. al cslab@ntua

Coarse-grained transactions

1 large transaction

Fine-grained transactions

Multiple short transactions

2nd optimization: Fine-grained transactions

30Siakavaras et. al cslab@ntua

Coarse-grained transactions

1 large transaction

Fine-grained transactions

Multiple short transactions

2nd optimization: Fine-grained transactions

30Siakavaras et. al cslab@ntua

Coarse-grained transactions

1 large transaction

Fine-grained transactions

Multiple short transactions

2nd optimization: Fine-grained transactions

30Siakavaras et. al cslab@ntua

Coarse-grained transactions

1 large transaction

Fine-grained transactions

Multiple short transactions

2nd optimization: Fine-grained transactions

30Siakavaras et. al cslab@ntua

Coarse-grained transactions

1 large transaction

Fine-grained transactions

Multiple short transactions

Fine-grained transactions: throughput

31Siakavaras et. al cslab@ntua

Fine-grained transactions: throughput

31Siakavaras et. al cslab@ntua

No optimization

Fine-grained transactions: throughput

31Siakavaras et. al cslab@ntua

No optimization

1st optimization (PCL)

Fine-grained transactions: throughput

31Siakavaras et. al cslab@ntua

No optimization

1st optimization (PCL)

2nd optimization (fg-tm)

Fine-grained transactions: aborts/operation

#Threads
bu-cg-htm bu-fg-htm

2M 20M 100M 2M 20M 100M

20 0.02 0.23 0.27 0.001 0.002 0.007

40 6.2 9.7 9.9 0.001 0.003 0.007

60 9.8 9.9 9.9 0.002 0.004 0.01

80 9.9 9.9 9.9 0.009 0.008 0.012

120 9.9 9.9 9.9 0.24 0.17 0.11

160 9.9 9.9 9.9 1.15 1.07 0.85

32Siakavaras et. al cslab@ntua

• bu-fg-htm manages to keep very low abort rate, independently of tree size

Conclusions & Future work

• Programming with HTM might be simple

– achieving high performance is not

– hardware limitations need to considered

– different HTM systems need different software
optimizations

• Future Work

– Extend evaluation to more data structures /
algorithms (e.g. graph algorithms)

– Evaluation on machines with more physical cores /
hardware threads

33Siakavaras et. al cslab@ntua

101

THANK YOU!

QUESTIONS?

ACKNOWLEDGMENT

Intel Corporation and IBM Hellas for kindly providing the two servers.

I-PARTS project of Action ARISTEIA, co-financed by European Union (European

Social Fund) and Hellenic national funds through the Operational Program

Education and Lifelong Learning (NSRF 2007-2013).

Siakavaras et. al cslab@ntua

