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Abstract—Hardware Transactional Memory (HTM) is nowa-
days available in several commercial and HPC targeted pro-
cessors and in the future it will likely be available on systems
that can accommodate a very large number of threads. Thus, it
is essential for the research community to target on evaluating
HTM on as many cores as possible in order to understand the
virtues and limitations that come with it.

In this paper we utilize HTM to parallelize accesses on a classic
data structure, a red-black tree. With minimal programming
effort, we implement a red-black tree by enclosing each operation
in a single HTM transaction and evaluate it on two servers
equipped with Intel Haswell-EP and IBM Power8 processors,
supporting a large number of hardware threads, namely 56 and
160 respectively. Our evaluation reveals that applying HTM in
such a simplistic manner allows scalability for up to a limited
number of hardware threads. To fully utilize the underlying
hardware we apply different optimizations on each platform.

I. INTRODUCTION

Multi-core systems are nowadays ubiquitous and the number
of cores comprising a processor chip is growing at a fast pace.
However, multi-threaded applications that can take full advan-
tage of this growing number of cores are hard to implement,
as the programmer needs to carefully synchronize concurrent
accesses to shared data.

The most common approach to synchronization is locking,
where only one thread is allowed to enter a critical sec-
tion at any time, a mechanism known as mutual exclusion.
By controlling the granularity of such critical sections, a
programmer can trade-off performance for programmability.
Coarse-grained locking is simple to implement but can lead
to serialization of accesses and thus loss of performance. On
the other hand, fine-grained locking enables more parallelism
and often higher performance, but it is considerably harder
to implement and much more error-prone. In general, locking
approaches suffer from subtle problems like priority inversion,
convoying, deadlock and lack of robustness. To avoid these
pitfalls, non-blocking algorithms have been proposed that
use hardware-supported atomic instructions (e.g. compare-and-
swap). However, non-blocking approaches are also very hard
to implement.

Transactional Memory (TM) [1] is a programming paradigm
that aims to combine the simplicity of coarse-grained locking
with the performance of fine-grained locking. Specifically,
with TM a programmer annotates regions of code, called

transactions, that should be executed atomically; the under-
lying TM system executes multiple transactions in paral-
lel and serializes them only if a conflict is detected. In a
non-conflicting execution a transaction commits, otherwise
it aborts. To enable conflict detection all reads and writes
performed inside a transaction are tracked in the read-set and
write-set respectively. The combination of these two sets is
the transaction’s footprint.

Until recently, most of the research on TM has concentrated
on software implementations (STM) or simulated hardware.
STM generally scales well, however, it imposes high single
thread overheads because all shared memory accesses inside
a transaction are instrumented. Nowadays, Hardware TM
(HTM) is avalaible in Intel Haswell [2] (and successors), IBM
Power8 [3], Blue Gene/Q [4], and zEC12 [5] processors. HTM
has very low overhead, but it comes with two significant
limitations. First, the transaction’s footprint is limited by
the hardware buffers that maintain the read and write sets.
Second, apart from conflicts a transaction may abort for several
other reasons, e.g. a timer interrupt or a system call. As a
consequence, all currently available HTM systems implement
a best-effort TM, which means that no progress guarantees are
provided and the programmer is responsible for implementing
a non-transactional execution path (fallback path) to guarantee
progress. The most common fallback path is using a single
global lock (SGL) to serialize all accesses.

In this paper we utilize HTM to parallelize the access
to red-black trees (RBTs), a classic data structure, widely
used to implement the dictionary abstract data type. We first
implement a straightforward concurrent RBT by just enclosing
each operation in a single HTM transaction and using an SGL
fallback path to ensure forward progress. Such a simplistic
implementation is representative of the simplicity of the TM
programming model. However, as our evaluation reveals, to
achieve scalability for high number of threads, the programmer
needs to take several things under consideration.

We perform our experimental evaluation on two multi-core
servers, one equipped with Intel’s Haswell-EP accommodating
56 hardware threads and one with IBM’s Power8 providing
160 hardware threads. In order to enable scalability for these
high number of threads, we face different challenges and resort
to different solutions on each processor. On Haswell-EP the
large transactional buffers provided allow the straightforward



HTM RBT to scale to a large number of threads. However,
the programmer needs to carefully tune the number of transac-
tional retries before serializing on the global lock. On the other
hand, on Power8 the sharing of transactional resources be-
tween several hardware threads hurts the performance severely.
In this case, increasing the number of transactional retries does
not help. Therefore, we propose two ways to cope with the
problem: an alternative fallback path that uses a per-cpu lock
and a method to split the large transactions to a sequence of
smaller fine-grained ones.

The rest of the paper is organized as follows. Section II
presents the characteristics of the two HTM implementations
that we have used in our study and Section III provides
background information on RBTs. In Section IV we explain
the details of the straightforward HTM RBT implementation.
Sections V and VI provide the optimizations that we applied
for each HTM implementation. Finally, we discuss related
work in Section VII and draw conclusions on Section VIII.

II. HARDWARE TRANSACTIONAL MEMORY

Intel and IBM have recently shipped processors with HTM
support, namely Haswell [2] and Power8 [3]. The ISA of each
of the two processors has been extended with a set of instruc-
tions that allows a programmer to use the HTM infrastucture.
The instructions provided are the following (Haswell/Power8):

• xbegin/tbegin: Marks the start of a transaction.
• xend/tend: Marks the end of a transaction.
• xabort/tabort: Explicitly aborts a transaction. In both

processors a representative code can be passed to the
abort instruction to enable the distinction among different
abort reasons.

The basic TM characteristics of the two HTM implementa-
tions are similar:

• Lazy data versioning: Both implementations use lazy
versioning. All memory writes performed inside a trans-
action become visible to other threads only after the
transaction successfully commits.

• Eager conflict detection: Upon the detection of a conflict
the transaction immediately aborts.

• Cache line granularity: Both Haswell and Power8 detect
conflicting operations at a cache line granularity. This can
result in false conflicts when concurrent threads modify
disjoint parts of a cache line.

• Strong isolation: Both processors provide strong isola-
tion, meaning that a conflict is detected even if the
conflicting access occurs in non-transactional code.

• Best-effort: Both implementations are best-effort HTMs.
As no forward progress is guaranteed using only transac-
tional mode, a transaction may always fail to commit and
therefore a non-transactional fallback path is necessary.

In general, a transaction may fail to commit (abort) for
various reasons including:

• Data conflict: When another thread executing in trans-
actional or non-transactional mode writes to a memory
location that has been added to the transaction’s read or

write set. While Power8 distinguishes between transac-
tional and non-transactional conflicts, Haswell just reports
both as conflicts.

• Capacity abort: When the transaction’s footprint has ex-
ceeded a size limit imposed by the HTM implementation.
Table I presents the hardware transactional buffers’ sizes
of each HTM [6], [7], which we have also validated
with micro-benchmarks on our servers. It is evident that
Haswell-EP can support larger transactions. Note also
that in Haswell-EP these buffers are shared among 2
hyperthreads in each core, while in Power8 between 8
SMT contexts.

• Explicit abort: When the programmer explicitly aborts
the transaction.

• Other: A transaction may abort due to several other
reasons including interrupts, unsupported instructions,
system calls etc.

TABLE I
THE SIZE OF THE TRANSACTIONAL BUFFERS OF THE HTMS.

Haswell-EP Power8

Read set (Total / Per
HW thread) 4MB / 2MB 8KB / 1KB

Write set (Total /
Per HW thread) 22KB / 11KB 8KB / 1KB

III. RED-BLACK TREES

A. Definition

Red-black trees [8] (RBTs) are a class of height-balanced
binary search trees. In addition to the properties of a binary
search tree, an RBT must also satisfy the following which
guarantee that the tree remains balanced:

1) A node is either red or black.
2) The root is always black.
3) All leaves are black.
4) Every red node has two black child nodes.
5) Every path from a given node to any of its descendant

leaves contains the same number of black nodes.
RBTs are most commonly used as the underlying imple-

mentation of the dictionary abstract data type, where key-value
pairs are stored in the nodes of the tree. Three operations are
supported on the set of key-value pairs:

• Lookup: Searches for a node containing a given key.
• Insert: Adds a node with a given key.
• Delete: Unlinks the node containing a specific key from

the tree.

B. Implementation details

1) Internal/External: Depending on the underlying organi-
zation of the key-value pairs in the nodes of the tree, RBTs
are categorized as internal or external. Internal RBTs store
key-value pairs on every node. On the other hand, external
RBTs store the values in the leaves, while the internal nodes
are used only for routing purposes. An RBT implemented both
ways is shown in Figure 1. In the external tree square shapes
denote the leaves, which contain the key-value pairs. All the
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Figure 1. An RBT tree in internal and external format.

other nodes contain only keys and are used for routing to the
appropriate leaf.

The two formats entail different requirements and chal-
lenges in their implementation. An important one is that in
order to remove a node with two children from an internal
RBT, we must first find its successor (the leaf node with
the greater key that is less than the key of that node), swap
their keys and delete the successor leaf node. In a concurrent
implementation this operation would require exclusive access
to every node between these two nodes. On the other hand, a
deletion in external RBTs involves only leaf nodes. To avoid
such complex situations we focus in this work on external
RBTs.

2) Bottom-Up/Top-Down: The classic RBT implementa-
tion [9] is called bottom-up. Insertion and deletion consist of
two phases: first a traversal of the tree in a top-down manner,
i.e. from the root towards the leaves, to locate the place where
the node with the new key is going to be inserted or the
node that is going to be unlinked from the tree; second, if
needed, a traversal of the tree in a bottom-up manner, i.e.
from the leaf towards the root, modifying parts of the tree by
recoloring and/or rotating nodes to restore the RBT properties
and rebalance the tree.

Bottom-up RBTs are very efficient for serial configurations
but fine-grained concurrency is very hard to be applied, as
multiple threads might traverse the tree in opposite directions
acquiring locks in their way, possibly leading to deadlock.
Tarjan [10] proposed a top-down RBT implementation which
performs insertion and deletion in a single top-down pass. To
achieve this, while traversing the tree from the root to the
appropriate leaf, modifications are proactively performed in
order to guarantee that no bottom-up traversal of the tree is
required. In this case, in a concurrent configuration, all threads
acquire locks in the same direction avoiding the possibility
of deadlock. However, as top-down implementations perform
typically more tree modifications for each operation, they
impose more overhead.

IV. AN HTM-BASED RBT

A. Implementation

HTM is expected to provide a performance boost, with little
programming effort, in cases where there is enough parallelism
and threads are expected to rarely modify the same data. RBTs
are an example of such a data structure as they provide a large

number of disjoint paths that can be concurrently modified.
The straightforward way to parallelize RBTs with HTM is
to enclose each operation of a bottom-up RBT in a single
transaction and use a single global lock (SGL) fallback path
to guarantee forward progress, as presented in Figure 2. We
refer to this implementation as bu-cg-htm.

1: int aborts = MAX TX RETRIES; /* Maximum number of transactional retries. */
2:
3: while (SGL is taken)
4: /* Avoid lemming effect. */ ;
5:
6: /* Begin transaction. On abort we return here with status != OK. */
7: int status = TX BEGIN();
8: if (status == OK) {
9: /* Transactional mode. */

10: /* Put SGL into read-set, abort if already taken. */
11: if (SGL already taken) {
12: TX ABORT();
13: }
14: rbt insert key(...); /* Execute operation in transactional mode. */
15: TX END(); /* Commit transaction. */
16: } else {
17: /* Non-transactional fallback path. Executed on abort. */
18: if (− − aborts > 0) {
19: goto line 3; /* Retry in transactional mode. */
20: }
21: acquire lock(SGL);
22: rbt insert key(...); /* Execute operation in non-transactional mode. */
23: release lock(SGL);
24: }

Figure 2. Insertion in bu-cg-htm.

The while loop (lines 3–4) is necessary to avoid the lem-
ming effect [11]. In transactional mode (lines 8–15) we first
add the SGL into the read set so when it is acquired all
concurrent transactions are aborted. If SGL is already taken,
we explicitly abort the transaction. Otherwise, we execute
the operation and commit the transaction. If a transaction
aborts, the fallback path is executed (lines 16–24), where we
either retry the operation in transactional mode or, if we have
exceeded the maximum number of retries, the SGL is acquired
and the operation is executed non-transactionally.

B. Evaluation

For our experiments we have used two dual socket servers,
equipped with Intel’s Haswell-EP and IBM’s Power8 proces-
sors. The main characteristics of the two systems are shown
in Table II. In all the experiments we first utilize any empty
physical cores of each system before employing hyperthreads
or SMT contexts.

We compare bu-cg-htm against the following concurrent
RBTs:

• bu-cg-lock: A bottom-up RBT with each operation pro-
tected by a single global lock. This version does not scale
as it serializes all accesses on the tree and we use it only
as a baseline.

• td-fg-lock: A top-down RBT [10] on which we have
applied fine-grained locking.

• td-wf : A wait-free RBT implementation [12] based on
Tarjan’s [10] top-down approach.

To evaluate the concurrent RBT implementations, we per-
form random operations varying the number of threads, the



TABLE II
PLATFORMS’ CONFIGURATION

Name Haswell-EP Power8

Processors 2 x Intel Xeon E5-2697
v3 2 x Power8

# Cores 2 x 14 2 x 10

# Threads 56 160

Core clock 2.6 GHz 3.7 GHz

L1 (Data) 8-way, 32 KB, 64B
block size

8-way, 64 KB, 128B
block size

L2 8-way, 256 KB, 64B
block size

8-way, 512 KB, 128B
block size

L3
20-way, 35 MB, 64B
block size (shared per

die)

8-way, 80 MB, 128B
block size (shared per

die)

Memory 64 GB 256 GB

OS Debian 8.1 Ubuntu 14.04

Linux Kernel 4.0.4 3.16.0

GCC 4.9.2 with -O3
optimization

4.9.1 with -O3
optimization

proportion of lookup, insert and delete operations as well as
the range of the values that the keys are selected from, in the
following way:

• Each run lasts 15 seconds, during which each thread
performs randomly chosen operations.

• Each software thread is pinned to a hardware thread.
• Unless otherwise noted, for each transaction we set the

number of retries in transactional mode to 10.
• To avoid false conflicts we use padding and alignment

so that each node of the tree occupies exactly one cache
line.

• To test our implementations under various contention
levels we use three workloads, namely 80-10-10, 50-25-
25 and 20-40-40, with 80%, 50% and 20% of operations
respectively being lookups in the tree, i.e. read-only
traversals, while the rest are equally divided between
insertions and deletions. These workloads represent a
read-dominated, read-write and write-dominated access
pattern on the tree respectively.

• As the key range effectively determines the size of the
tree, we evaluate our implementations for ranges of 2M,
20M and 100M keys, which represent medium to large-
sized trees. At the start of each run the tree is initialized to
contain half the keys of the selected range. Due to space
limitations, in the rest of the paper we will only provide
the results of the 2M key range as the other ranges lead
to similar conclusions.

• All reported results are the average of 20 independent ex-
ecutions. In cases where a large variation is observed we
provide box plots with median, minimum and maximum
values.

Figure 3 presents the throughput achieved by bu-cg-htm on
our servers. It is evident that the straightforward HTM imple-
mentation fails to utilize efficiently the underlying hardware
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Figure 3. Total throughput of bu-cg-htm on the two servers for the write-
dominated workload.

resources, and exhibits different behavior on the two systems.
On Haswell-EP, as we increase the number of threads, perfor-
mance becomes unstable and most of the executions exhibit
very low throughput. On the other hand, on Power8, when
multiple SMT contexts are employed, performance collapses.

V. OPTIMIZING FOR HASWELL-EP

Figure 4(a) presents the results obtained from the execution
of bu-cg-htm, on Haswell-EP, with the number of transactional
retries set to 10. It scales up to 13 threads but after that point it
has unstable behavior with high variability on total throughput.
Stable performance was achieved by increasing the number of
transactional retries. Figures 4(b), 4(c) and 4(d) depict the total
throughput for 20, 30 and 50 transactional retries respectively.
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(b) bu-cg-htm with 20 retries
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(c) bu-cg-htm with 30 retries
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Figure 4. Execution of bu-cg-htm with 2M key range and write-dominated
workload with various number of transactional retries.

Figure 5 presents the performance of all concurrent RBTs
on Haswell-EP. The HTM-based RBT scales up to 56 threads
and outperforms all other implementations. This is due to the
conflict free nature of RBTs and the large transactional buffers
of Haswell-EP that permit almost all transactions to commit,
thus increasing parallelism.
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Figure 5. Throughput of concurrent RBT implementations for 2M key range and the three workloads on Haswell-EP.

VI. OPTIMIZING FOR POWER8

Figure 6(a) depicts the throughput achieved by bu-cg-htm,
on Power8, for the 2M key range and the three operation
mixtures. We observe that bu-cg-htm scales up to 20 threads,
but after that point the performance collapses. To investigate
the reasons for this, Figure 6(b) depicts the breakdown of
aborts per RBT operation for the write-dominated workload.
Up to 20 threads, bu-cg-htm suffers close to zero aborts per
operation, which allows the performance to scale. For more
threads, when we employ more SMT contexts per core, the
sharing of the hardware transactional buffers between multiple
concurrent transactions causes a huge increase of capacity
aborts. Repetitive capacity aborts lead the transactions to the
SGL fallback path, which causes the non-transactional conflict
aborts.

Our first attempt in order to avoid the observed performance
degradation was to try different number of transactional retries,
similar to Haswell-EP. However, this offered no performance
improvement. Therefore, we devised two ways to cope with
the hardware limitations of Power8 HTM infrastructure: an
alternative to the SGL fallback path and a method to split the
large transactions of bu-cg-htm to smaller fine-grained ones.

A. Per-cpu lock fallback

As explained, the HTM buffers of Power8 are large enough
to fit a single transaction of bu-cg-htm but cannot support
multiple transactions from multiple concurrent SMT threads.
When using the SGL fallback path, repetitive capacity aborts
lead to the acquisition of SGL, aborting all concurrent trans-
actions, even those that execute on different cores and do not
share resources with the one that resorts to the SGL fallback
path. Here, we implement and evaluate a different approach
which we refer to as per-cpu lock (PCL) fallback.

The main characteristics of our proposed PCL fallback path
are the following:

• Apart from SGL, we maintain a global array of locks,
with one entry for each physical core. Each lock entry is
padded to the size of the cache line to avoid false sharing.

• When a transaction begins, it adds to its read set the
SGL together with the corresponding PCL, i.e. the lock
for the physical core where the transaction is executed. If
either of them is owned by another thread, the transaction
explicitly aborts.
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Figure 6. Performance characteristics of bu-cg-htm on Power8.

• When repetitive capacity aborts occur, the corresponding
PCL is acquired causing other transactions executing on
the same core to abort. The transaction is then retried,
while the rest of the SMT contexts wait for it to complete.
It is essential to retry in transactional mode to ensure
consistency with concurrent transactions running on other
cores.

• If capacity aborts still occur after the acquisition of the
PCL, we resort to the SGL fallback path and the operation
is executed in non-transactional mode.

• If a transaction aborts for any other reason, we resort to
the SGL fallback path.

In order for the PCL to be effective, threads need to be
pinned at hardware threads. Otherwise, a thread that has
acquired the PCL of core C1 could be migrated by the OS
scheduler to another core C2. This would allow other threads
to execute on core C2 while core C1 would remain idle.
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Figure 7. Performance characteristics of bu-cg-htm with PCL fallback.

The PCL fallback allows a transaction to execute using
all the available HTM resources of a core without affecting
threads executing on other cores. The dotted lines of Fig-
ure 7(a) show the achieved throughput for the three different
workloads when the PCL fallback is used. The PCL is acquired
after 5 capacity aborts and if 5 more occur we resort to SGL.
Figure 7(b) presents the breakdown of aborts for 2M key
range and the write-dominated workload for both SGL and
PCL cases. It is evident that PCL decreases the aborts per
operation, which in turn results in performance gains. Finally,
Figure 7(c) depicts the operations percentage that resort to
SGL acquisition and execute in non-transactional mode for all
workloads. With PCL, almost every operation completes in
transactional mode.

However, we still fail to utilize efficiently all the available
SMT threads, as capacity aborts in a core lead to only one
of the SMT contexts operating in transactional mode, while
the others wait for it to finish. Therefore, our implementation
with PCL fallback still fails to scale for more than 40 threads,
although it manages to provide better throughput than when
using the SGL fallback.

B. Fine-grained transactions

To achieve full SMT thread utilization and scalability we
need to split the large transactions of the coarse-grained HTM
RBT to a sequence of smaller fine-grained ones.

The larger portion of an RBT operation is the lookup phase,
i.e. the top-down traversal that starts from the root and ends at
the appropriate leaf. Therefore, it makes sense to try and split
this phase in several transactions. Doing so while preserving
the correctness of the traversal is challenging. To clarify this,
we need to explain why synchronization is required in the
lookup phase. In general, a thread traversing the tree performs
a set of distinct steps until a leaf is reached. At each step, the
thread holds a reference to the node that it currently examines
(the current node) and forwards the current node variable to
point to the next appropriate child. If no synchronization is
used, a concurrent rotation around the current node could
lead the traversing thread to a wrong subtree (rotations on
upper or lower levels of the tree do not affect the correctness).
Figure 8(a) illustrates such an erroneous traversal. Thread T1
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is in the middle of a lookup for key 10. It is currently at
node with key 8 and moves to the node with key 18. At that
point thread T2 performs a right rotation around node 18 as
a result of an insertion or deletion. Thread T1 is unaware of
that rotation and ends up traversing the wrong subtree.

Coarse-grained HTM RBT avoids such situations by adding
every traversed node in the transaction’s read-set. This way,
when a rotation is performed that includes a traversed node,
the transaction aborts and the traversal restarts from the root.
However, this approach has two disadvantages: first, the foot-
print of the transaction is too large and causes a high number
of capacity aborts; second, a conflict is detected not only when
the rotation affects the current node, but also nodes that have
been previously traversed on upper levels. As rotations on
these levels of the tree do not affect the correctness of the
traversal, such conflict aborts could be avoided.
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Figure 9. Throughput of concurrent RBT implementations for 2M key range and the three workloads on Power8.

Here we describe a way to split the large traversal phase into
a series of small fine-grained transactions while preserving the
correctness of the operation. Our approach is similar to the
hand-over-hand validation [13], but we employ HTM instead
of locking to isolate concurrent modifications. Each node of
the tree has a version number, which is increased every time
the node is modified by a rotation. To search for a key in the
tree, a thread starts by executing an HTM transaction, which
sets the local current node variable to point to the root of the
tree and reads the root’s version. Then, the following steps are
performed until a leaf is reached:

1) Begin an HTM transaction and validate that the version
of the current node is the same as the version read by the
previous transaction. If the validation fails the transaction
explicitly aborts with a code that indicates a version error
and the operation restarts from the root of the tree.

2) Move to the next node in the access path. This step can be
extended to traverse several nodes in a single transaction.
This way we can control the granularity and consequently
the footprint size of each transaction.

3) Read the version of the reached node in a local variable
to be used for validation from the next transaction and
commit the transaction.

Figure 8(b) shows an example of a fine-grained tree traversal
that is aborted as soon as it realizes that its current node’s
version has been modified, signaling that the traversal leads to
the wrong path.

For insertion and deletion, after the appropriate leaf is
reached, we execute a final HTM transaction, in which
the insertion (or deletion respectively) of the new node is
performed along with the bottom-up rebalance phase. The
footprint size of this last transaction is proportional to the
number of tree levels that are modified during the rebalance
phase. To investigate how large the footprint size can be, we
have conducted a series of benchmarks on RBTs with different
sizes. The results are presented in Table III. For every tree
size, around 75% of the rebalance operations modify only 1
tree level and almost 97% of them less than 3. This indicates
that the final transaction typically has small footprint.

Our retry policy for the fine-grained transactions is the
following:

• To ensure correct execution of the traversal, when a
transaction explicitly aborts due to a version validation

TABLE III
DISTRIBUTION OF REBALANCE PHASES BASED ON NUMBER OF

MODIFIED TREE LEVELS.

Tree Levels
Key Range

2M 20M 100M 200M

1 77.12% 75.96% 73.37% 73.08%

2 19.52% 18.66% 18.73% 18.79%

3 2.78% 3.69% 5.30% 5.47%

>3 0.56% 1.69% 2.59% 2.66%

error, the traversal restarts from the root of the tree.
• To guarantee forward progress, when a given threshold

of aborts, other than validation errors, is encountered,
the traversal restarts from the root of the tree. When an
operation has restarted for a given number of times, we
resort to the SGL fallback path and execute the operation
in non-transactional mode.

Figure 9 shows the achieved throughput of all concurrent
RBT implementations on Power8, including the fine-grained
transactions version (bu-fg-htm) and the bu-cg-htm with PCL
fallback. For each transaction of bu-fg-htm we have set the
threshold before restarting the operation from the root to 10.
An operation is restarted maximum 10 times before resorting
to the SGL fallback path. It is evident that bu-fg-htm manages
to overcome the limitations imposed by the Power8 HTM
infrastructure and scale up to 160 threads, or 120 for the write-
dominated workload. For up to 20 threads, transactions fit in
the HTM buffers and coarse-grained HTM performs better
than the fine-grained version. This is due to the overhead
imposed by executing a large number of small transactions.

Splitting the large transactions of bu-cg-htm to smaller fine-
grained ones has the advantage of keeping the footprint of the
transactions small, independently of the size of the tree. To fur-
ther illustrate this, Table IV presents the aborts per operation of
the two implementations for the write-dominated workload and
for all tree sizes. The coarse-grained implementation suffers
much more aborts per operation than fine-grained, which has
only 1 or less aborts per operation for every tree size.



TABLE IV
ABORTS PER OPERATION FOR COARSE & FINE-GRAINED HTM RBT.

#Threads
bu cg htm bu fg htm

2M 20M 100M 2M 20M 100M

20 0.02 0.23 0.27 0.001 0.002 0.007

40 6.2 9.7 9.9 0.001 0.003 0.007

60 9.8 9.9 9.9 0.002 0.004 0.01

80 9.9 9.9 9.9 0.009 0.008 0.012

120 9.9 9.9 9.9 0.24 0.17 0.11

160 9.9 9.9 9.9 1.15 1.07 0.85

VII. RELATED WORK

With the advent of HTM support on commercial processors,
several researchers have evaluated their performance using a
limited number of hardware threads [14], [4], [2], [6], [15].
Our work extends these evaluations using a significantly higher
number of threads and especially [14] by providing specific
optimizations for different hardware platforms.

The importance of tuning the number of transactional retries
on Intel Haswell has been noted in several papers [2], [16],
[15]. However, while all previous efforts aim at gaining per-
formance, we have found that robustness can also be achieved.

COP [17] and ParT [18] are generic methods for splitting
large transactions in smaller fine-grained ones, and use RBT as
a use case. They both employ an unsynchronized lookup phase
followed by an HTM transaction that validates the lookup
phase’s outcome and updates the RBT. This is a read-validate-
update approach. Our method, on the other hand, validates the
lookup phase step-by-step. In the future we plan to compare
our work with these two approaches.

VIII. CONCLUSION

Transactional Memory has emerged as an attractive alterna-
tive to lock-based approaches. Its main goal is to simplify con-
current programming while at the same time providing high
performance. Our evaluation validates that a straightforward
HTM implementation of a classic data structure, red-black
tree, can outperform lock-based and wait-free alternatives.
However, to enable scalability to high numbers of threads,
the programmer needs to be aware of the underlying HTM
system’s limitations and optimize the code appropriately.

Our evaluation on two HTM systems with different char-
acteristics has led us to different sets of optimizations for
each one. Specifically, on the Intel Haswell-EP server we only
tuned the number of transactional retries to achieve scalability
and robustness for up to 56 threads. On the other hand, on
Power8 we dealt with the problem of capacity aborts due to
the limited transactional buffers and we proposed two methods
to overcome these limitations.
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