RCU-HTM: Combining RCU with HTM
to Implement Highly Efficient
Concurrent Binary Search Trees

Dimitrios Siakavaras, Konstantinos Nikas, Georgios Goumas
and Nectarios Koziris

National Technical University of Athens (NTUA)
School of Electrical and Computer Engineering (ECE)
Computing Systems Laboratory (CSLab)
{jimsiak,knikas,goumas,nkoziris}@cslab.ece.ntua.gr
http://research.cslab.ece.ntua.gr

PACT 2017

http://research.cslab.ece.ntua.gr/

Motivation

* Multi-cores are ubiquitous

* Multi-threaded applications
-> Concurrent data structures

e Concurrent Binary Search Trees (BSTs):
— Widely used
— Linux kernel

— Database Index

RCU-HTM 2

Our Contributions

e We introduce RCU-HTM

— Combines
1.Read-Copy-Update (RCU)
2.Hardware Transactional Memory (HTM)

— Provides

» Highly efficient concurrent binary search trees

RCU-HTM 3

Our Contributions

e We introduce RCU-HTM

— Combines
1.Read-Copy-Update (RCU)
2.Hardware Transactional Memory (HTM)

— Provides

» Highly efficient concurrent binary search trees

* We apply RCU-HTM in AVL and Red-Black trees

— 18% better performance, on average

performance on read-only workloads

— Very good performance on write-intensive workloads

RCU-HTM 3

Binary Search Trees (BSTs)

* Aclassic binary tree with an additional property:
* Keys in left subtree < root key
* Keys in right subtree > root key

* Most commonly used to implement dictionaries:
e <key,value> pairs
* 3 operations: lookup(key), insert(key, value) and delete(key)

RCU-HTM 4

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

! 8800 Wational Tedhmucal University of Athens 5“;‘“"“?%
RCU-HTM 5 <“CSLab e

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance
Unbalanced Tree Red-Black Tree AVL Tree

(&) 4
» @
O ©
OO

! 8 8 O Natonal Techmcal Unwersity of Athens :z;;ﬂ"’“zﬁ%
RCU-HTM 5 <“CSLab e

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

Shorter path lengths
1. Balance]- Rebalancing requires additional effort after insertions/deletions

Unbalanced Tree Red-Black Tree AVL Tree

(&) 4
» @
O ©
OO

| RCU_HTM 5 §§@SLab %_j:: N fﬁ;

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:
1. Balance Internal External

2. Internal

RCU-HTM

8 8 © © National Tedhmcal University of Athens ﬁ;;‘“"“%i)
OO@SLab & f L

4% -

5 00 AL

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance Internal External

2. Internal

Shorter path lengths
Less memory overhead
- Complexity of delete() operation

RCU-HTM 5 <@CSLabtal

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:
1. Ba|ance On-time deletion Mark deleted nodes

2. Internal

3. On-time deletion delete(3)

. 8 8 © © National Tedhmcal University of Athens ﬁ;;‘“"“%%
RCU-HTM 5 oo apDt i

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:
1. Ba|ance On-time deletion Mark deleted nodes

2. Internal

3. On-time deletion delete(3)

. 8 8 © © National Tedhmcal University of Athens ﬁ;;‘“"“%%
RCU-HTM 5 oo apDt i

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:
1. Ba|ance On-time deletion Mark deleted nodes

2. Internal

3. On-time deletion delete(3)

' 0000 vl Uniwersity of Athens i;“”“i;ﬁg
RCU-HTM 5 <@CSLabtal

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:
1. Ba|ance On-time deletion Mark deleted nodes

2. Internal

3. On-time deletion delete(3)

! 8 8 O Natonal Techmcal Unwersity of Athens / ﬁ;;ﬂ"’“zﬁ%
RCU-HTM 5 <“CSLab e

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:
1. Ba|ance On-time deletion Mark deleted nodes

2. Internal

3. On-time deletion delete(3)

' Qo I Techmeal Unwersity of Athens i{;‘“"“;g
RCU-HTM 5 <@CSLabtal

Serial BSTs

Typical serial BSTs have the following

characteristics that boost their performance:
1. Ba |ance On-time deletion Mark deleted nodes

2. Internal

3. On-time deletion delete(3)

Shorter path lengths
Less memory overhead
- Complexity of delete() operation

RCU-HTM 5 <@CSLabtal

Concurrent BSTs

These 3 characteristics:
+ Boost the performance of serial BSTs
- Are difficult to implement in concurrent BSTs

Why?
Rebalancing and internal deletion require multiple node
modifications to be performed in a “single atomic” step

| 8800 Watianal Technual Unwersity of Athens fa,ﬂ“”“éﬁ%
RCU-HTM 6 <@CSLab el

Concurrent BSTs

In concurrent BSTs 2 more characteristics are of
high importance:
1. Asynchronized traversals
— The most common operation -> need to be fast
— Avoid synchronization overhead

2. Multiple updaters

— Updates on disjoint parts of the tree should be
allowed to execute concurrently

0000 chmeal Unversity of Athens /175 C1O%:

: QQ (s SED
:®CSLabtg}

RCU-HTM 7 oo %, e\

RCU-HTM vs previous works

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Lock-free

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Locks

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

RCU

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

™

Avni et al. [TRANSACT’14]

i

© © © © Nanonal Techmisal University of s

RCU-HTM 8 §§@SL&

RCU-HTM vs previous works

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10] x x v v v
g Howley et al. [SPAA'12] x v % % v
% Natarajan et al. [PPoPP’14] X X v v v
3 Chatterjee et al. [PODC’14] X v X X v
Brown et al. [PPoPP’14] X X v v v

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Locks

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

RCU

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

™

Avni et al. [TRANSACT’14]

i

© © © © MHahonal Technical University of

RCU-HTM 8 §§@SLa

RCU-HTM vs previous works

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10] x x v v v
g Howley et al. [SPAA'12] x v % % v
% Natarajan et al. [PPoPP’14] X X v v v
3 Chatterjee et al. [PODC’14] X v X X v

Brown et al. [PPoPP’14] X X v v v
| Bronson et al. [PPoPP’10] X X X X \/
§ Crain et al. [EuroPar’13] X X X v v
- Drachsler et al. [PPoPP’14] X v v v v

Howard et al. [CCPE’14]

RCU

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

™

Avni et al. [TRANSACT’14]

©© © © MNanonal Tedhnual Unersity of Athens /35 °"

RCU-HTM 8 @GSLabt!

RCU-HTM vs previous works

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10] x x v v v
g Howley et al. [SPAA'12] X v x X v
—EIC) Natarajan et al. [PPoPP’14] X X v v v
@)
—1 | Chatterjee et al. [PODC’14] X v X X v

Brown et al. [PPoPP’14] X X v v v
| Bronson et al. [PPoPP’10] X X X X \/
-’
8 Crain et al. [EuroPar’13] X X X \/ \/
-

Drachsler et al. [PPoPP’14] X v v v v
8 Howard et al. [CCPE’14] v v X v X
X | Arbel et al. [PODC’14] x v x v v
E Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’ 14]

“RCU-HTM 8 @GSLabt!

RCU-HTM vs previous works

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10] x x v v v
g Howley et al. [SPAA'12] x v % % v
% Natarajan et al. [PPoPP’14] X X v v v
3 Chatterjee et al. [PODC’14] X v X X v

Brown et al. [PPoPP’14] X X v v v
| Bronson et al. [PPoPP’10] X X X X \/
§ Crain et al. [EuroPar’13] X X X v v
- Drachsler et al. [PPoPP’14] X v v v v
D | Howard et al. [CCPE'14] v v x v x
" Arbel et al. [PODC'14] x v x v v
< | Crain et al. [PPoPP'14] x v x x v
= | Avni et al. [TRANSACT'14] v v v x v

“RCU-HTM 8 @GSLabt!

RCU-HTM vs previous works

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10] X x v v v

g Howley et al. [SPAA'12] x v x X v

‘i‘; Natarajan et al. [PPoPP’14] X X v v v
@)

—1 | Chatterjee et al. [PODC’14] X v X X v

Brown et al. [PPoPP’14] X X v v v

| Bronson et al. [PPoPP’10] X X X X \/
X

8 Crain et al. [EuroPar’13] X X X \/ \/
|

Drachsler et al. [PPoPP’14] X v v v v

8 Howard et al. [CCPE’14] v v X v X

@ | Arbel et al. [PODC’14] X v x v v

< | Crain et al. [PPoPP'14] x v % x v

= | Avni et al. [TRANSACT'14] v v v x v

v v v v v

RCU-HTM 8 <CSLa

RCU-HTM

By combining RCU and HTM, RCU-HTM enables
the implementation of:

1. Balanced
2. Internal BSTs with
3. On-time deletion

That also provide: @@
4. Asynchronized traversals — !
aters

5. Multiple concurrent upd

! 8 8 O Natonal Techmcal Unwersity of Athens / ﬁ;;ﬂ"’“zﬁ%
RCU-HTM 9 <“CSLab e

RCU-HTM: Asynchronized traversals

HTM

! 8800 National Technical University of Athens fﬁaﬂ”’“sﬁ%
RCU-HTM 10 “CSLab el

RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

“RCU-HTM 11 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

T1: lookup(2)

“RCU-HTM 11 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

“RCU-HTM 11 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

“RCU-HTM 11 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

“RCU-HTM 11 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

“RCU-HTM 11 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

“RCU-HTM 11 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

T1: lookup(2)

T2: insert(1)

“RCU-HTM 11 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

T1: lookup(2)

T2: insert(1)

“RCU-HTM 11 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

Won’t reach node 2

T1: |ox(z)

T2: insert(1)

RCU-HTM 11

RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

“RCU-HTM 12 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

1. Updaters create copies of the modified parts

T2: insert(1)

“RCU-HTM 12 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

1. Updaters create copies of the modified parts

T2: insert(1)

“RCU-HTM 12 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

1. Updaters create copies of the modified parts

T2: insert(1)

“RCU-HTM 12 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

1. Updaters create copies of the modified parts

T2: insert(1)

——

“RCU-HTM 12 :*CSLabta!

RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

1. Updaters create copies of the modified parts

T2: insert(1)

RCU-HTM

RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer. - =~

T2: insert(1)

-

——
—
—
o

N ———

RCU-HTM 12

RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer

-~
~ -
N - = - ——— -

RCU-HTM 12

RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer

‘ T2: insert(1)
/ 1 |
A .
0 ' 0 0

\

\

\
\\\\ /\

-~
~ -
N - = - ——— -

RCU-HTM 12

RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer

-~
~ -
N - = - ——— -

RCU-HTM 12

RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now
T1: Iookup(2)‘/ Succesfully finds node 2

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer

-~
~ -
N - = - ——— -

RCU-HTM 12

RCU-HTM: Multiple Updaters

RCUHTM)

The previous example assumed a single updater
* If multiple updaters were allowed, modifications could be “lost”

RCU-HTM 13

RCU-HTM: Multiple Updaters

RCUHTM)

The previous example assumed a single updater
* If multiple updaters were allowed, modifications could be “lost”

T1:insert(1)

RCU-HTM 13

RCU-HTM: Multiple Updaters

RCUHTM)

The previous example assumed a single updater
* If multiple updaters were allowed, modifications could be “lost”

T1:insert(1) T2: insert(7)

“RCU-HTM 13 :*CSLabta!

RCU-HTM: Multiple Updaters

RCUHTM)

The previous example assumed a single updater
* If multiple updaters were allowed, modifications could be “lost”

T2: insert(7)

T RCU-HTM 13 ::€SLabkgl

RCU-HTM: Multiple Updaters

RCUHTM)

The previous example assumed a single updater
* If multiple updaters were allowed, modifications could be “lost”

T2: insert(7)

T RCU-HTM 13 ::€SLabkgl

RCU-HTM: Multiple Updaters

RCUHTM)

The previous example assumed a single updater
* If multiple updaters were allowed, modifications could be “lost”

T2: insert(7)

T RCU-HTM 13 ::€SLabkgl

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

T1:insert(1) T2: insert(7)

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%8Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

s —__) = T1 validation set

T1:insert(1)

T2: insert(7)

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%8Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

s —__) = T1 validation set

T1:insert(1)

T2: insert(7)

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%8Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

s —__) = T1 validation set

T1:insert(1)

T2: insert(7)

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%8Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

¢ > =T1validation set 3 ¢ T =T2validation set

T1:insert(1) T2: insert(7)

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%8Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

¢ > =T1validation set 3 ¢ T =T2validation set

T1:insert(1) T2: insert(7)

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%8Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

¢ > =T1validation set 3 ¢ T =T2validation set

T1:insert(1) T2: insert(7)

tx_start();

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%8Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact

— validation and installation are performed atomically using an HTM transaction

¢ > =T1validation set 3 ¢ T =T2validation set
T1: insert(1)

T2: insert(7)
tx_start();

validate_copy();

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%8Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

‘_ _) =T1lvalidation set 3 ¢ 7 N =T2validation set
T1:insert(1) T2: insert(7)
tx_start();

validate_copy();
if (validation == OK)

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%8Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

‘_ _) =T1lvalidation set 3 ¢ 7 N =T2validation set
T1:insert(1) T2: insert(7)
tx_start();

validate_copy();
if (validation == OK) v

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%8Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

‘_ _) =T1lvalidation set 3 ¢ 7 N =T2validation set
T1:insert(1) T2: insert(7)
tx_start();

validate_copy();
if (validation == OK) v
install_copy();

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%8Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact

— validation and installation are performed atomically using an HTM transaction
~ 7 N =T1 validation set

‘ _—) = T2 validation set

T2: insert(7)

(§
T1: insert(1)
tx_start();
validate_copy();
if (validation == OK) v/, =
install_copy(); ‘

-

e

/

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%5Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

‘_ _) =T1lvalidation set ¢ 7 N =T2validation set
T1:insert(1) T2: insert(7)
tx_start();
validate_copy();
if (validation == OK) \/, -
install_copy(); ,/
tx_end(); 7

_—’

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%5Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

‘_ _) =T1lvalidation set ¢ 7 N =T2validation set
T1:insert(1) T2: insert(7)
tx_start(); tx_start();
validate_copy();
if (validation == OK) \/, -
install_copy(); ,/
tx_end(); 7

_—’

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%5Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

¢ TN =T1validation set ¢ > =T2validation set

T1:insert(1) T2: insert(7)
tx_start();

tx_start();

validate_copy(); validate_copy();

if (validation == OK) \/, -
install_copy(); ,/

tx_end(); 7

-

e

1

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%5Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

¢ TN =T1validation set ¢ > =T2validation set

T1:insert(1) T2: insert(7)
tx_start();

tx_start();
validate_copy(); validate_copy();
if (validation == OK)

-

if (validation == OK) \// -
install_copy(); //
tx_end(); 7

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%5Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

¢ TN =T1validation set ¢ > =T2validation set

T1:insert(1) T2: insert(7)
tx_start();

tx_start();
validate_copy(); validate_copy();
x if (validation == OK)

-

if (validation == OK) \// -
install_copy(); //
tx_end(); 7

1

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%5Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

¢ TN =T1validation set ¢ > =T2validation set

T1:insert(1) T2: insert(7)
tx_start();

tx_start();
validate_copy(); validate_copy();
x if (validation == OK)

if (validation == OK) v,-
install_copy(); 7 -astal—copyl);
1

-

tx_end(); 7

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

I RCU-HTM 14 §%5Lab L

RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the

addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact

— validation and installation are performed atomically using an HTM transaction

r _ _ =T1 validation set

—

T1: insert(1)
tx_start();
validate_copy();
if (validation == OK) v/, =

install_copy(); ,
tx_end(); ’

RCU-HTM

14

__) = T2 validation set

T2: insert(7)

tx_start();
validate_copy();

x if (validation == OK)
“nstal—copyl);
abort_and_restart();

1

©© © © MNanonal Tedhnual Unersity of Athens /<5 °"

88
:CSLabtl

Experimental Setup

* Intel Broadwell-EP Xeon E5-2699 v4
— 22 cores / 44 hyperthreads @ 2.2GHz
— 64GB RAM

* Experimental methodology:

— Threads run for 2 seconds, executing randomly chosen
operations (lookups/inserts/deletes)

— 3 Workloads:

» Read-only: 100% lookups
* Read-dominated: 80% lookups, 10% inserts, 10% deletes
* Write-only: 0% lookups, 50% inserts, 50% deletes

— 5 tree sizes
* Small (200 keys) to large (20M keys)

! 0 chrucal Universaty of Athens i{;ﬂ”’“;g
RCU-HTM 15 <@CSLabtal

Concurrent BST implementations

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10] X x v v v

g Howley et al. [SPAA'12] x v x % v

‘i‘; Natarajan et al. [PPoPP’14] X X v v v
@

—1 | Chatterjee et al. [PODC’14] X v X X v

Brown et al. [PPoPP’14] X X v v v

| Bronson et al. [PPoPP’10] X X X X \/
X

8 Crain et al. [EuroPar’13] X X X \/ \/
|

Drachsler et al. [PPoPP’14] X v v v v

8 Howard et al. [CCPE’14] v v X v X

@ | Arbel et al. [PODC’14] X v x v v

< | Crain et al. [PPoPP'14] x v x x v

= | Avni et al. [TRANSACT'14] v v v x v

v v v v v

RCU-HTM 16 <CSLa

Concurrent BST implementations

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters
Ellen et al. [PODC’10] v v

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Lock-free

Chatterjee et al. [PODC’14]

x x| x |x %
x 4 x K %
< x| < |x
AR 1 N

Brown et al. [PPoPP’14]

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Locks

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

RCU

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

™

Avni et al. [TRANSACT’14]

NS N[N %[N KNS \7\\\

SN %% N\||% % X%
SIS NN N[N % %
Ll x| % %x||\ % %
DV IR A NN T NN

RCU-HTM

[EEN
(e}

Concurrent BST implementations

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10] X X v
g Howley et al. [SPAA’12] X v X % v
‘i‘; Natarajan et al. [PPoPP’14] X X v v v J
@)
—1 | Chatterjee et al. [PODC’14] X \/ X X v

Brown et al. [PPoPP’14] X X v v v
| Bronson et al. [PPoPP’10] X X X X \/ ‘
-’
8 Crain et al. [EuroPar’13] X X X v v
-

Drachsler et al. [PPoPP’14] X v v v v
8 Howard et al. [CCPE’14] v v X v X
X | Arbel et al. [PODC’14] x v x v v
< | Crain et al. [PPoPP'14] x v x x v
= | Avni et al. [TRANSACT'14] v v v x v

v v v v v
RCU-HTM 16

Concurrent BST implementations

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10] X X v
g Howley et al. [SPAA’12] X v X % v
‘i‘; Natarajan et al. [PPoPP’14] X X v v v J
@)
—1 | Chatterjee et al. [PODC’14] X \/ X X v

Brown et al. [PPoPP’14] X X v v v
| Bronson et al. [PPoPP’10] X X X X \/ ‘
-’
8 Crain et al. [EuroPar’13] X X X v v
-

Drachsler et al. [PPoPP’14] X v v v v
8 Howard et al. [CCPE’14] v v X v X
X | Arbel et al. [PODC’14] x v x v v
< | Crain et al. [PPoPP'14] x v x x v
= | Avni et al. [TRANSACT'14] v v v x v

v v v v v
RCU-HTM 16

Concurrent BST implementations

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10] X X v
g Howley et al. [SPAA’12] X v X % v
‘i‘; Natarajan et al. [PPoPP’14] X X v v v J
@)
—1 | Chatterjee et al. [PODC’14] X \/ X X v

Brown et al. [PPoPP’14] X X v v v
| Bronson et al. [PPoPP’10] X X X X \/ ‘
-’
8 Crain et al. [EuroPar’13] X X X v v
-

Drachsler et al. [PPoPP’14] X v v v v
8 Howard et al. [CCPE’14] v v X v X
X | Arbel et al. [PODC’14] x v x v v
< | Crain et al. [PPoPP’14] % v X X v
= | Avni et al. [TRANSACT'14] v v v x v

v v v v v
RCU-HTM 16

Performance: read-only workloads

! 8800 National Technical University of Athens fﬁaﬂ”’“sﬁ%
RCU-HTM 17 “CSLab el

Performance: read-only workloads

2M Keys — 100% lookups

—e—|b-avl
90

—e— |f-bst
80 :

citrus-bst

70

—e—rcu-mrsw-avl
60

—e—cop-avl
50

—&—rcu-htm-avl

40
<@ -rcu-htm-rbt
30
20
10
p— _/
0 eese——__
1 2 4 o . .)

Number of threads

RCU-HTM 17

Performance: read-only workloads

2M Keys — 100% lookups

—e—|b-avl
90

—e— |f-bst
80 :

citrus-bst

70

—e—rcu-mrsw-avl
60

—e—cop-avl
50

—&—rcu-htm-avl

40
<@ -rcu-htm-rbt
30
20
10
p— _/
0 eese——__
1 2 4 o . .)

Number of threads

RCU-HTM 17

Performance: read-only workloads

2M Keys — 100% lookups

—e—|b-avl
90

—e— |f-bst
80 :

citrus-bst

70

—e—rcu-mrsw-avl
60

—e—cop-avl
50

—&—rcu-htm-avl

40
<@ -rcu-htm-rbt
30
20
10
p— _/
0 eese——__
1 2 4 o . .)

Number of threads

RCU-HTM 17

Performance: read-only workloads

2M Keys — 100% lookups

—e—|b-avl
90

—e— |f-bst
80 :

citrus-bst

70

—e—rcu-mrsw-avl
60

—e—cop-avl
50

—&—rcu-htm-avl

40
<@ -rcu-htm-rbt
30
20
10
p— _/
0 eese——__
1 2 4 o . .)

Number of threads

RCU-HTM 17

Performance: read-only workloads

2M Keys — 100% lookups

—e—|b-avl
90

—e— |f-bst
80 :

citrus-bst

70

—e—rcu-mrsw-avl
60

—e—cop-avl
50

—&—rcu-htm-avl

40
<@ -rcu-htm-rbt
30
20
10
p— _/
0 eese——__
1 2 4 o . .)

Number of threads

RCU-HTM 17

Performance: read-only workloads

2M Keys — 100% lookups

—e—|b-avl
90

—e— |f-bst
80 :

citrus-bst

70

—e—rcu-mrsw-avl
60

—e—cop-avl
50

—&—rcu-htm-avl

40
<@ -rcu-htm-rbt
30
20
10
p— _/
0 eese——__
1 2 4 o . .)

Number of threads

RCU-HTM 17

Performance: read-only workloads

2M Keys — 100% lookups

—e—|b-avl
90

—e— |f-bst
80 :

citrus-bst

70

—e—rcu-mrsw-avl
60

—e—cop-avl
50

—&—rcu-htm-avl

40
<@ -rcu-htm-rbt
30
20
10
p— _/
0 eese——__
1 2 4 o . .)

Number of threads

RCU-HTM 17

Performance: read-dominated workloads

RCU-HTM 18

Performance: read-dominated workloads

2M Keys — 80% lookups
/0 —e—|b-avl

60 ——If-bst

citrus-bst
50

—e—rcu-mrsw-avl
40

—e—cop-avl
30

== rcu-htm-avl

20 @ -rcu-htm-rbt

10
H

1 2 4 8 16 22 44
Number of threads

RCU-HTM 18

Performance: read-dominated workloads

2M Keys — 80% lookups
/0 —e—|b-avl

60 ——If-bst

citrus-bst
50

—e—rcu-mrsw-avl
40

—e—cop-avl
30

== rcu-htm-avl

20 @ -rcu-htm-rbt

10
H

1 2 4 8 16 22 44
Number of threads

RCU-HTM 18

Performance: write-only workloads

! 8800 National Technical University of Athens fﬁaﬂ”’“sﬁ%
RCU-HTM 19 “CSLab el

Performance: write-only workloads

2M Keys — 0% lookups

45 —e—|b-avl
40

—e—|f-bst
35)

citrus-bst

30

—e—rcu-mrsw-avl
25

—e—cop-avl
20

—#—rcu-htm-avl
15

««®-rcu-htm-rbt
10

o

1 2 4 8 16 22 44
Number of threads

RCU-HTM 19

Performance: write-only workloads

2M Keys — 0% lookups

45 —e—|b-avl
40

—e—|f-bst
35)

citrus-bst

30

—e—rcu-mrsw-avl
25

—e—cop-avl
20

—#—rcu-htm-avl
15

««®-rcu-htm-rbt
10

o

1 2 4 8 16 22 44
Number of threads

RCU-HTM 19

Performance: per workload average

! 8800 National Technical University of Athens fﬁaﬂ”’“sﬁ%
RCU-HTM 20 “CSLab el

Performance: per workload average

22 Threads (no HT)

Olb-avl #lf-bst & rcu-citrus-bst Nrcu-mrsw-avl [cop-avl B rcu-htm-avl

N
(92

N
o

%&%&
ﬁ%ﬁﬁ
e

[N
(92

[N
o

Ul

Speedup over serial internal AVL tree

o

100% lookups 80% lookups 0% lookups
Workload

© Q) © © Nahonal Technial University of Athens

RCU-HTM 20 5%51-&1) X1

Performance: per workload average

RCU provides the fastest lookups

RCU-HTM is as fast as RCU
22 Threads (no HT)

O Ib-avl f-bst @ rcu-citrus-bst N rcu-mrsw-avl &cop-avl B rcu-htm-avl

N
(92

()
g
S
< 20
©
c
[}
€15
©
2 10
g ‘
(o]]
o 4
ER 3
v S
& 0 | k KA : !
100% lookups 80% lookups 0% lookups
Workload
(OJ g OO Natonal Techmeal Unwersity of Athens » PR
RCU-HTM 20 ::CSLabt

Performance: per workload average

RCU provides the fastest lookups

RCU-HTM is as fast as RCU
22 Threads (no HT)

O Ib-avl f-bst @ rcu-citrus-bst N rcu-mrsw-avl &cop-avl B rcu-htm-avl

N
(92

()
g
S
< 20
©
c
[}
€15
©
2 10
g ‘
(o]]
o 4
ER 3
v S
& 0 | k KA : !
100% lookups 80% lookups 0% lookups
Workload
(OJ g OO Natonal Techmeal Unwersity of Athens » PR
RCU-HTM 20 ::CSLabt

Performance: per workload average

RCU provides the fastest lookups

RCU-HTM is as fast as RCU
22 Threads (no HT)

O Ib-avl f-bst rcu-citrus-bst rcu-mrsw-avl [cop-avl Hrcu-htm-avl

N
(92

2
S
<20
©
[
@
€15
©
%10
0]
3]
]
&0 k S : I
100% lookups 80% lookups 0% lookups
Workload

Even with 20% update operations RCU
performance collapses due to the writers
single global lock

U

© Q) © © Nahonal Technial University of Athens

20 §%8Lab :

RCU-HTM

Performance: per workload average

RCU provides the fastest lookups

RCU-HTM is as fast as RCU
22 Threads (no HT)

O Ib-avl f-bst rcu-citrus-bst rcu-mrsw-avl [cop-avl Hrcu-htm-avl

N
(92

2
S
<20
©
[
@
€15
©
%10
0]
3]
]
&0 k S : I
100% lookups 80% lookups 0% lookups
Workload

Even with 20% update operations RCU
performance collapses due to the writers
single global lock

U

© Q) © © Nahonal Technial University of Athens

20 §%8Lab :

RCU-HTM

Performance: per workload average

RCU provides the fastest lookups

RCU-HTM is as fast as RCU

O Ib-avl f-bst rcu-citrus-bst N rcu-mrsw-avl

N
(92

N
o

[N
(92

[N
o

Ul

Speedup over serial internal AVL tree

i
\ R
| k : |

100% lookups

o

80% lookups

Workload

22 Threads (no HT)

B cop-avl M rcu-htm-avl

0% lookups

Even with 20% update operations RCU
performance collapses due to the writers’
single global lock

RCU-HTM efficiently allows multiple
updaters and manages to retain its
performance on workloads with high

update ratio

© Q) © © Nahonal Technial University of Athens

RCU-HTM

20

[2]9] .‘:ﬂw‘ =
cCSLabt¥

Performance: per tree size average

22 threads (no HT)

Olb-avl &#If-bst &Arcu-citrus-bst Nrcu-mrsw-avl Ecop-avl B rcu-htm-avl

25
[}
g
p—

20
2
“©
-
[}
E 15
o
]
210
[}
>
o
Qo
3 5
(O}
()
Q.
(%]

0 Z Z
200 keys 20K keys 20M keys
Key range
© Q) © © Nahonal Technial University of Athens

=t &
RCU-HTM 21 §%SLab

Performance: overall

25

20

15

10

Speedup over serial internal AVL tree

O Ib-avl

7 If-bst B rcu-citrus-bst S rcu-mrsw-avl & cop-avl

N\

A\

N
N

22 threads

44 threads

RCU-HTM

22

M rcu-htm-avl

(O © © © Nahonal Technical Umversity of Athens.

CSLab¢

Performance: overall

25

20

15

10

Speedup over serial internal AVL tree

Olb-avl ®&If-bst & rcu-citrus-bst

N

22 threads

rcu-mrsw-avl & cop-avl B rcu-htm-avl

N

44 threads

(O © © © Nahonal Technical Umversity of Athens.

RCU-HTM

- c<@SLab¢

Conclusions

RCU-HTM
* Efficiently combines RCU with HTM

* Provides concurrent binary search trees:
1. Balanced
2. Internal
3. On-time deletion
4. Asynchronized traversals
5. Multiple updaters

* 18% better performance than state-of-the-art BSTs

RCU-HTM AVL and Red-Black trees publicly available:
e https://github.com/rcu-htm/rcu-htm

RCU-HTM 23

RCU-HTM: Combining RCU with HTM to
Implement Highly Efficient Concurrent

Binary Search Trees

Dimitrios Siakavaras, Konstantinos Nikas, Georgios Goumas
and Nectarios Koziris

National Technical University of Athens (NTUA)
School of Electrical and Computer Engineering (ECE)
Computing Systems Laboratory (CSLab)
{jimsiak,knikas,goumas,nkoziris}@cslab.ece.ntua.gr
http://research.cslab.ece.ntua.gr

THANK YOU!
QUESTIONS?

http://research.cslab.ece.ntua.gr/

Backup Slides

RCU-HTM 25

Concurrent BSTs

Name Balanced Internal On-time M :
LAkl Atomic operations (e.g., CAS) can only
Ellen et al. [PODC’10] % % v modify a single memory word
Howley et al. [SPAA’12] % v x
Natarajan et al. [PPoPP’14] X X v
Chatterjee et al. [PODC’14] % v x
Brown et al. [PPoPP’14] X X v

© QOO Nahonal Tedmual Unwersity of Athens /15 -

RCU-HTM 26 @GSLabt!

Concurrent BSTs

] Lock-free
Name Balanced Internal . .

LAl | Atomic operations (e.g., CAS) can only
Ellen et al. [PODC’10] % % v modify a single memory word
Howley et al. [SPAA'12] % v x
Natarajan et al. [PPoPP’14] X X v
Chatterjee et al. [PODC’14] % v x
Brown et al. [PPoPP’14] X X v
Bronson et al. [PPoPP’10] X X X Lock-basgd _ _

Rebalancing would require multiple

D x x x lock acquisitions and extra effort to
Drachsler et al. [PPoPP’14] X v v avoid deadlocks

© QOO Nahonal Tedmual Unwersity of Athens /15 -

“RCU-HTM 26 @GSLabt!

Concurrent BSTs

] Lock-free
Name Balanced Internal . .
LAl | Atomic operations (e.g., CAS) can only
Ellen et al. [PODC’10] % % v modify a single memory word
Howley et al. [SPAA'12] % v x
Natarajan et al. [PPoPP’14] X X v
Chatterjee et al. [PODC’14] % v x
Brown et al. [PPoPP’14] X X v
Bronson et al. [PPoPP’10] X X X Lock-basgd _ _
Rebalancing would require multiple
Crain et al. [EuroPar13] x x x lock acquisitions and extra effort to
Drachsler et al. [PPoPP’14] X v v avoid deadlocks
Howard et al. [CCPE’14] v v x RCU-based
Arbel et al. [PODC’14] x v x No on-time deletion
RCU-HTM 26 @GSLabt!

Concurrent BSTs

] Lock-free
Name Balanced Internal . .
LAl | Atomic operations (e.g., CAS) can only
Ellen et al. [PODC’10] % % v modify a single memory word
Howley et al. [SPAA'12] % v x
Natarajan et al. [PPoPP’14] X X v
Chatterjee et al. [PODC’14] % v x
Brown et al. [PPoPP’14] X X v
Bronson et al. [PPoPP’10] X X X Lock-basgd _ _

_ Rebalancing would require multiple
D x x x lock acquisitions and extra effort to
Drachsler et al. [PPoPP’14] X v v avoid deadlocks
Howard et al. [CCPE’14] v v x RCU-based
Arbel et al. [PODC’14] x v X No on-time deletion

:) " v " TM-based
Crain et al. [PPoPP"14] Avni provides all three characteristics
Avni et al. [TRANSACT’14] v v v but has other drawbacks

RCU-HTM 26 @GSLabt!

RCU-HTM vs previous works

Balanced On-ti!'ne Asynchronized Multiple

deletion traversals updaters
Ellen et al. [PODC’10] x x v v v
@ | Howley etal. [sPAN'12 X v X X v
‘E Natarajan et al. [PPoPP’14] X X v v v
§ Chatterjee et al. [PODC’14] x v x x v
Brown et al. [PPoPP’14] X X v v v
Bronson et al. [PPoPP’10] X X X X v
% Crain et al. [EuroPar’13] X X X v v
3 Drachsler et al. [PPoPP’14] X v v v v
— | Howard et al. [CCPE'14] v v x v x
é:) Arbel et al. [PODC’14] x v x v v
s Crain et al. [PPoPP’14] X v X X v
= | Avni et al. [TRANSACT’14] v v v x v

©© © © MNanonal Tedhnual Unersity of Athens /35 °"

“RCU-HTM 27 @GSLabt!

RCU-HTM vs previous works

Balanced On-time | Asynchronized Multiple
deletion traversals updaters
Ellen et al. [PODC’10] x x v v v
© | Howley et al. [SPAA’12] X v X X v
)
"_\T‘ Natarajan et al. [PPoPP’14] X X v v v
§ Chatterjee et al. [PODC’14] x v x x v
Brown et al. [PPoPP’14] X X v v v
Bronson et al. [PPoPP’10] X X X X v
0
% Crain et al. [EuroPar’13] X X X \/ \/
@)
—! | Drachsler et al. [PPoPP’14] X v v v v
- | Howard et al. [CCPE'14] v v x v x
O
T | Arbel et al. [PODC’14] X v x v v
s Crain et al. [PPoPP’14] X v X X v
=1 Avni et al. [TRANSACT’14] v v v X v
v v v v v

G
a“‘rn"'-
« & =)
Ay

i QO
RCU-HTM 27 88@ SLa

RCU-HTM: Internal Deletion

RCU-HTM replaces the whole path from the internal node to the successor

delete(15)

RCU-HTM 28

RCU-HTM: Internal Deletion

RCU-HTM replaces the whole path from the internal node to the successor

delete(15)

RCU-HTM 28

RCU-HTM: Internal Deletion

RCU-HTM replaces the whole path from the internal node to the successor

delete(15)

RCU-HTM 28

RCU-HTM: Internal Deletion

RCU-HTM replaces the whole path from the internal node to the successor

delete(15)

RCU-HTM 28

RCU-HTM: Internal Deletion

RCU-HTM replaces the whole path from the internal node to the successor

RCU-HTM 28

RCU-HTM: Internal Deletion

RCU-HTM replaces the whole path from the internal node to the successor

delete(15)

RCU-HTM 28

