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Motivation

* Multi-cores are ubiquitous

* Multi-threaded applications
-> Concurrent data structures

e Concurrent Binary Search Trees (BSTs):
— Widely used
— Linux kernel

— Database Index
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Our Contributions

e We introduce RCU-HTM

— Combines
1.Read-Copy-Update (RCU)
2.Hardware Transactional Memory (HTM)

— Provides

» Highly efficient concurrent binary search trees
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Our Contributions

e We introduce RCU-HTM

— Combines
1.Read-Copy-Update (RCU)
2.Hardware Transactional Memory (HTM)

— Provides

» Highly efficient concurrent binary search trees

* We apply RCU-HTM in AVL and Red-Black trees

— 18% better performance, on average

performance on read-only workloads

— Very good performance on write-intensive workloads

RCU-HTM 3



Binary Search Trees (BSTs)

* Aclassic binary tree with an additional property:
* Keys in left subtree < root key
* Keys in right subtree > root key

* Most commonly used to implement dictionaries:
e <key,value> pairs
* 3 operations: lookup(key), insert(key, value) and delete(key)
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Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:
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Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance
Unbalanced Tree Red-Black Tree AVL Tree
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Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

Shorter path lengths
1. Balance]- Rebalancing requires additional effort after insertions/deletions

Unbalanced Tree Red-Black Tree AVL Tree
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Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:
1. Balance Internal External

2. Internal

RCU-HTM
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Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance Internal External

2. Internal

Shorter path lengths
Less memory overhead
- Complexity of delete() operation
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Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:
1. Ba|ance On-time deletion Mark deleted nodes

2. Internal

3. On-time deletion delete(3)
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Serial BSTs

Typical serial BSTs have the following

characteristics that boost their performance:
1. Ba |ance On-time deletion Mark deleted nodes

2. Internal

3. On-time deletion delete(3)

Shorter path lengths
Less memory overhead
- Complexity of delete() operation
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Concurrent BSTs

These 3 characteristics:
+ Boost the performance of serial BSTs
- Are difficult to implement in concurrent BSTs

Why?
Rebalancing and internal deletion require multiple node
modifications to be performed in a “single atomic” step
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Concurrent BSTs

In concurrent BSTs 2 more characteristics are of
high importance:
1. Asynchronized traversals
— The most common operation -> need to be fast
— Avoid synchronization overhead

2. Multiple updaters

— Updates on disjoint parts of the tree should be
allowed to execute concurrently
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RCU-HTM vs previous works

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Lock-free

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Locks

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

RCU

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

™

Avni et al. [TRANSACT’14]
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RCU-HTM

By combining RCU and HTM, RCU-HTM enables
the implementation of:

1. Balanced
2. Internal BSTs with
3. On-time deletion

That also provide: @@
4. Asynchronized traversals — !
aters

5. Multiple concurrent upd
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RCU-HTM: Asynchronized traversals

HTM
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RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path
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RCU-HTM: Asynchronized traversals

HTM
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RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

T1: lookup(2)
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RCU-HTM: Asynchronized traversals

HTM

Why do we need synchronization for the traversals at the first place?
= Concurrent rotations may lead traversals to a wrong path

Won’t reach node 2

T1: |ox(z)

T2: insert(1)
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RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)
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HTM
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1. Updaters create copies of the modified parts

T2: insert(1)
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RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

1. Updaters create copies of the modified parts

T2: insert(1)
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RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now

T1: lookup(2)

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer. - =~

T2: insert(1)

-
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RCU-HTM: Asynchronized traversals

HTM

How does RCU avoids erroneous executions while allowing asynchronized traversals?
e Assume a single updater for now
T1: Iookup(2)‘/ Succesfully finds node 2

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer

-~
~ -
N - = - ——— -
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RCU-HTM: Multiple Updaters

RCUHTM)

The previous example assumed a single updater
* If multiple updaters were allowed, modifications could be “lost”
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RCU-HTM: Multiple Updaters
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RCU-HTM: Multiple Updaters

RCUHTM)

The previous example assumed a single updater
* If multiple updaters were allowed, modifications could be “lost”

T2: insert(7)
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RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

T1:insert(1) T2: insert(7)
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RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

¢ > =T1validation set 3 ¢ T =T2validation set

T1:insert(1) T2: insert(7)

tx_start();
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RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact

— validation and installation are performed atomically using an HTM transaction

¢ > =T1validation set 3 ¢ T =T2validation set
T1: insert(1)

T2: insert(7)
tx_start();

validate_copy();
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RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction
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RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact

— validation and installation are performed atomically using an HTM transaction
~ 7 N =T1 validation set

‘ _—) = T2 validation set

T2: insert(7)

(§
T1: insert(1)
tx_start();
validate_copy();
if (validation == OK) v/, =
install_copy(); ‘

-

e

/
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RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction
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RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

‘_ _ ) =T1lvalidation set ¢ 7 N =T2validation set
T1:insert(1) T2: insert(7)
tx_start(); tx_start();
validate_copy();
if (validation == OK) \/, -
install_copy(); ,/
tx_end(); 7

_—’
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* Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact
— validation and installation are performed atomically using an HTM transaction

¢ TN =T1validation set ¢ > =T2validation set
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tx_start();
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if (validation == OK) \/, -
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-
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RCU-HTM: Multiple Updaters

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

* Updaters keep track of the state of the traversed and the copied nodes, i.e., the

addresses of the children pointers

* Before installing their copy they validate that all these nodes have remained intact

— validation and installation are performed atomically using an HTM transaction

r _ _ =T1 validation set

—

T1: insert(1)
tx_start();
validate_copy();
if (validation == OK) v/, =

install_copy();  ,
tx_end(); ’

RCU-HTM

14

__) = T2 validation set

T2: insert(7)

tx_start();
validate_copy();

x if (validation == OK)
“nstal—copyl);
abort_and_restart();

1
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Experimental Setup

* Intel Broadwell-EP Xeon E5-2699 v4
— 22 cores / 44 hyperthreads @ 2.2GHz
— 64GB RAM

* Experimental methodology:

— Threads run for 2 seconds, executing randomly chosen
operations (lookups/inserts/deletes)

— 3 Workloads:

» Read-only: 100% lookups
* Read-dominated: 80% lookups, 10% inserts, 10% deletes
* Write-only: 0% lookups, 50% inserts, 50% deletes

— 5 tree sizes
* Small (200 keys) to large (20M keys)

! 0 chrucal Universaty of Athens i{;ﬂ”’“;g
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Concurrent BST implementations

On-time Asynchronized Multiple
Balanced | Internal .
deletion traversals updaters

Ellen et al. [PODC’10] X x v v v

g Howley et al. [SPAA'12] x v x % v

‘i‘; Natarajan et al. [PPoPP’14] X X v v v
@

—1 | Chatterjee et al. [PODC’14] X v X X v

Brown et al. [PPoPP’14] X X v v v

| Bronson et al. [PPoPP’10] X X X X \/
X

8 Crain et al. [EuroPar’13] X X X \/ \/
|

Drachsler et al. [PPoPP’14] X v v v v

8 Howard et al. [CCPE’14] v v X v X

@ | Arbel et al. [PODC’14] X v x v v

< | Crain et al. [PPoPP'14] x v x x v

= | Avni et al. [TRANSACT'14] v v v x v

v v v v v
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Natarajan et al. [PPoPP’14]

Lock-free
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x x| x |x %
x 4 x K %
< x| < |x
AR 1 N
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Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Locks

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

RCU

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

™

Avni et al. [TRANSACT’14]
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Performance: read-only workloads
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Performance: read-only workloads

2M Keys — 100% lookups
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Performance: read-dominated workloads
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Performance: read-dominated workloads
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Performance: read-dominated workloads
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Performance: write-only workloads

! 8800 National Technical University of Athens fﬁaﬂ”’“sﬁ%
RCU-HTM 19 “CSLab el



Performance: write-only workloads
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Performance: per workload average
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Performance: per workload average

22 Threads (no HT)
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Performance: per workload average

RCU provides the fastest lookups

RCU-HTM is as fast as RCU
22 Threads (no HT)
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Performance: per workload average

RCU provides the fastest lookups

RCU-HTM is as fast as RCU
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Even with 20% update operations RCU
performance collapses due to the writers
single global lock
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Performance: per workload average

RCU provides the fastest lookups

RCU-HTM is as fast as RCU

O Ib-avl f-bst rcu-citrus-bst N rcu-mrsw-avl
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0% lookups

Even with 20% update operations RCU
performance collapses due to the writers’
single global lock

RCU-HTM efficiently allows multiple
updaters and manages to retain its
performance on workloads with high

update ratio
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Performance: per tree size average
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Performance: overall
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Conclusions

RCU-HTM
* Efficiently combines RCU with HTM

* Provides concurrent binary search trees:
1. Balanced
2. Internal
3. On-time deletion
4. Asynchronized traversals
5. Multiple updaters

* 18% better performance than state-of-the-art BSTs

RCU-HTM AVL and Red-Black trees publicly available:
e https://github.com/rcu-htm/rcu-htm
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Concurrent BSTs

Name Balanced Internal On-time M :
LAkl Atomic operations (e.g., CAS) can only
Ellen et al. [PODC’10] % % v modify a single memory word
Howley et al. [SPAA’12] % v x
Natarajan et al. [PPoPP’14] X X v
Chatterjee et al. [PODC’14] % v x
Brown et al. [PPoPP’14] X X v
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Concurrent BSTs

] Lock-free
Name Balanced Internal . .

LAl | Atomic operations (e.g., CAS) can only
Ellen et al. [PODC’10] % % v modify a single memory word
Howley et al. [SPAA'12] % v x
Natarajan et al. [PPoPP’14] X X v
Chatterjee et al. [PODC’14] % v x
Brown et al. [PPoPP’14] X X v
Bronson et al. [PPoPP’10] X X X Lock-basgd _ _

Rebalancing would require multiple

D x x x lock acquisitions and extra effort to
Drachsler et al. [PPoPP’14] X v v avoid deadlocks
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LAl | Atomic operations (e.g., CAS) can only
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Concurrent BSTs

] Lock-free
Name Balanced Internal . .
LAl | Atomic operations (e.g., CAS) can only
Ellen et al. [PODC’10] % % v modify a single memory word
Howley et al. [SPAA'12] % v x
Natarajan et al. [PPoPP’14] X X v
Chatterjee et al. [PODC’14] % v x
Brown et al. [PPoPP’14] X X v
Bronson et al. [PPoPP’10] X X X Lock-basgd _ _

_ Rebalancing would require multiple
D x x x lock acquisitions and extra effort to
Drachsler et al. [PPoPP’14] X v v avoid deadlocks
Howard et al. [CCPE’14] v v x RCU-based
Arbel et al. [PODC’14] x v X No on-time deletion

: ) " v " TM-based
Crain et al. [PPoPP"14] Avni provides all three characteristics
Avni et al. [TRANSACT’14] v v v but has other drawbacks
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RCU-HTM vs previous works

Balanced On-ti!'ne Asynchronized Multiple

deletion traversals updaters
Ellen et al. [PODC’10] x x v v v
@ | Howley etal. [sPAN'12 X v X X v
‘E Natarajan et al. [PPoPP’14] X X v v v
§ Chatterjee et al. [PODC’14] x v x x v
Brown et al. [PPoPP’14] X X v v v
Bronson et al. [PPoPP’10] X X X X v
% Crain et al. [EuroPar’13] X X X v v
3 Drachsler et al. [PPoPP’14] X v v v v
— | Howard et al. [CCPE'14] v v x v x
é:) Arbel et al. [PODC’14] x v x v v
s Crain et al. [PPoPP’14] X v X X v
= | Avni et al. [TRANSACT’14] v v v x v
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RCU-HTM vs previous works

Balanced On-time | Asynchronized Multiple
deletion traversals updaters
Ellen et al. [PODC’10] x x v v v
© | Howley et al. [SPAA’12] X v X X v
)
"_\T‘ Natarajan et al. [PPoPP’14] X X v v v
§ Chatterjee et al. [PODC’14] x v x x v
Brown et al. [PPoPP’14] X X v v v
Bronson et al. [PPoPP’10] X X X X v
0
% Crain et al. [EuroPar’13] X X X \/ \/
@)
—! | Drachsler et al. [PPoPP’14] X v v v v
- | Howard et al. [CCPE'14] v v x v x
O
T | Arbel et al. [PODC’14] X v x v v
s Crain et al. [PPoPP’14] X v X X v
=1 Avni et al. [TRANSACT’14] v v v X v
v v v v v
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RCU-HTM: Internal Deletion

RCU-HTM replaces the whole path from the internal node to the successor

delete(15)
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