
RCU-HTM: Combining RCU with HTM
to Implement Highly Efficient

Concurrent Binary Search Trees

Dimitrios Siakavaras, Konstantinos Nikas, Georgios Goumas
and Nectarios Koziris

National Technical University of Athens (NTUA)

School of Electrical and Computer Engineering (ECE)

Computing Systems Laboratory (CSLab)

{jimsiak,knikas,goumas,nkoziris}@cslab.ece.ntua.gr

http://research.cslab.ece.ntua.gr

PACT 2017

http://research.cslab.ece.ntua.gr/

Motivation

• Multi-cores are ubiquitous

• Multi-threaded applications

-> Concurrent data structures

• Concurrent Binary Search Trees (BSTs):

– Widely used

– Linux kernel

– Database Index

2RCU-HTM

Our Contributions
• We introduce RCU-HTM

– Combines

1.Read-Copy-Update (RCU)

2.Hardware Transactional Memory (HTM)

– Provides

 Highly efficient concurrent binary search trees

3RCU-HTM

Our Contributions
• We introduce RCU-HTM

– Combines

1.Read-Copy-Update (RCU)

2.Hardware Transactional Memory (HTM)

– Provides

 Highly efficient concurrent binary search trees

• We apply RCU-HTM in AVL and Red-Black trees

– 18% better performance, on average

– Excellent performance on read-only workloads

– Very good performance on write-intensive workloads

3RCU-HTM

Binary Search Trees (BSTs)

• A classic binary tree with an additional property:
• Keys in left subtree < root key
• Keys in right subtree > root key

• Most commonly used to implement dictionaries:
• <key,value> pairs
• 3 operations: lookup(key), insert(key, value) and delete(key)

8

3 10

1 6 14

4 7 13

4RCU-HTM

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

5RCU-HTM

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance

5RCU-HTM

8

3

10

1 6

14

4 7

13

8

3 13

1 6 10 14

4 7

8

4 13

3 7 10 14

1 6

Unbalanced Tree

0 0

1 1

2

3

1

0 0

Red-Black Tree AVL Tree

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance

5RCU-HTM

8

3

10

1 6

14

4 7

13

8

3 13

1 6 10 14

4 7

8

4 13

3 7 10 14

1 6

Unbalanced Tree

0 0

1 1

2

3

1

0 0

Red-Black Tree AVL Tree

+Shorter path lengths

- Rebalancing requires additional effort after insertions/deletions

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance

2. Internal

5RCU-HTM

8

3 10

1 6 14

8

3 10

1 6

1 3 6 8

10 14

Internal External

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance

2. Internal

5RCU-HTM

8

3 10

1 6 14

8

3 10

1 6

1 3 6 8

10 14

Internal External

+ Shorter path lengths

+ Less memory overhead

- Complexity of delete() operation

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance

2. Internal

3. On-time deletion

5RCU-HTM

3

6

3

8

10

1 14

8

10

1 6 14

On-time deletion Mark deleted nodes

delete(3)

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance

2. Internal

3. On-time deletion

5RCU-HTM

6

6 3

8

10

1 14

8

10

1 6 14

On-time deletion Mark deleted nodes

delete(3)

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance

2. Internal

3. On-time deletion

5RCU-HTM

6

6

X

3

8

10

1 14

8

10

1 6 14

On-time deletion Mark deleted nodes

delete(3)

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance

2. Internal

3. On-time deletion

5RCU-HTM

6 3

8

10

1 14

8

10

1 6 14

On-time deletion Mark deleted nodes

delete(3)

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance

2. Internal

3. On-time deletion

5RCU-HTM

6 3

8

10

1 14

8

10

1 6 14

On-time deletion Mark deleted nodes

delete(3)

marked_flag = 1

Serial BSTs

Typical serial BSTs have the following
characteristics that boost their performance:

1. Balance

2. Internal

3. On-time deletion

5RCU-HTM

6 3

8

10

1 14

8

10

1 6 14

On-time deletion Mark deleted nodes

delete(3)

+ Shorter path lengths

+ Less memory overhead

- Complexity of delete() operation

marked_flag = 1

Concurrent BSTs

RCU-HTM

These 3 characteristics:
+ Boost the performance of serial BSTs
- Are difficult to implement in concurrent BSTs

Why?
Rebalancing and internal deletion require multiple node
modifications to be performed in a “single atomic” step

66

Concurrent BSTs

In concurrent BSTs 2 more characteristics are of
high importance:

1. Asynchronized traversals

– Τhe most common operation -> need to be fast

– Avoid synchronization overhead

2. Multiple updaters

– Updates on disjoint parts of the tree should be
allowed to execute concurrently

7RCU-HTM

RCU-HTM vs previous works

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

8RCU-HTM

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’14]

RCU-HTM

Name
Asynchronized

traversals
Multiple
updaters

Balanced Internal
On-time
deletion

L
o
c
k
-f

re
e

L
o
c
k
s

R
C

U
T

M

RCU-HTM vs previous works

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

8RCU-HTM

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’14]

RCU-HTM

 

 

 

 

 

Name
Asynchronized

traversals
Multiple
updaters

Balanced Internal
On-time
deletion

  

  

  

  

  

L
o
c
k
-f

re
e

L
o
c
k
s

R
C

U
T

M

RCU-HTM vs previous works

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

8RCU-HTM

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’14]

RCU-HTM

 

 

 

 

 

Name
Asynchronized

traversals
Multiple
updaters

Balanced Internal
On-time
deletion

  

  

  

  

  

 

 

 

  

  

  

L
o
c
k
-f

re
e

L
o
c
k
s

R
C

U
T

M

RCU-HTM vs previous works

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

8RCU-HTM

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’14]

RCU-HTM

 

 

 

 

 

Name
Asynchronized

traversals
Multiple
updaters

Balanced Internal
On-time
deletion

  

  

  

  

  

 

 

 

  

  

  

 

 

  

  

L
o
c
k
-f

re
e

L
o
c
k
s

R
C

U
T

M

RCU-HTM vs previous works

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

8RCU-HTM

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’14]

RCU-HTM

 

 

 

 

 

Name
Asynchronized

traversals
Multiple
updaters

Balanced Internal
On-time
deletion

  

  

  

  

  

 

 

 

  

  

  

 

 

  

  

 

 

  

  

L
o
c
k
-f

re
e

L
o
c
k
s

R
C

U
T

M

RCU-HTM vs previous works

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

8RCU-HTM

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’14]

RCU-HTM

 

 

 

 

 

Name
Asynchronized

traversals
Multiple
updaters

Balanced Internal
On-time
deletion

  

  

  

  

  

 

 

 

  

  

  

 

 

  

  

 

 

  

  

   

L
o
c
k
-f

re
e

L
o
c
k
s

R
C

U
T

M

RCU-HTM

By combining RCU and HTM, RCU-HTM enables
the implementation of:

1. Balanced

2. Internal BSTs with

3. On-time deletion

That also provide:

4. Asynchronized traversals

5. Multiple concurrent updaters

9RCU-HTM

RCU-HTM

RCU-HTM: Asynchronized traversals

10RCU-HTM

RCU-HTM

RCU-HTM: Asynchronized traversals

11RCU-HTM

RCU-HTM

Why do we need synchronization for the traversals at the first place?
 Concurrent rotations may lead traversals to a wrong path

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

RCU-HTM: Asynchronized traversals

11RCU-HTM

RCU-HTM

Why do we need synchronization for the traversals at the first place?
 Concurrent rotations may lead traversals to a wrong path

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

T1: lookup(2)

RCU-HTM: Asynchronized traversals

11RCU-HTM

RCU-HTM

Why do we need synchronization for the traversals at the first place?
 Concurrent rotations may lead traversals to a wrong path

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

T1: lookup(2)

RCU-HTM: Asynchronized traversals

11RCU-HTM

RCU-HTM

Why do we need synchronization for the traversals at the first place?
 Concurrent rotations may lead traversals to a wrong path

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

T1: lookup(2)

T2: insert(1)

RCU-HTM: Asynchronized traversals

11RCU-HTM

RCU-HTM

Why do we need synchronization for the traversals at the first place?
 Concurrent rotations may lead traversals to a wrong path

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

1
0

T1: lookup(2)

T2: insert(1)

RCU-HTM: Asynchronized traversals

11RCU-HTM

RCU-HTM

Why do we need synchronization for the traversals at the first place?
 Concurrent rotations may lead traversals to a wrong path

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

1
0

1

T1: lookup(2)

T2: insert(1)

RCU-HTM: Asynchronized traversals

11RCU-HTM

RCU-HTM

Why do we need synchronization for the traversals at the first place?
 Concurrent rotations may lead traversals to a wrong path

9

5 12

3 6 10 16

172 4

3

2

0

0 0

0

1

2

1
0

1

2

T1: lookup(2)

T2: insert(1)

RCU-HTM: Asynchronized traversals

11RCU-HTM

RCU-HTM

Why do we need synchronization for the traversals at the first place?
 Concurrent rotations may lead traversals to a wrong path

9

5

123

6

10 16

17

2

4

3

2

0 0

0

0

1

2

1
0

1

2

T1: lookup(2)

T2: insert(1)

RCU-HTM: Asynchronized traversals

11RCU-HTM

RCU-HTM

Why do we need synchronization for the traversals at the first place?
 Concurrent rotations may lead traversals to a wrong path

9

5

123

6

10 16

17

2

4

3

0 0

0

0

1

2

1
0

1

2

1

T1: lookup(2)

T2: insert(1)

RCU-HTM: Asynchronized traversals

11RCU-HTM

RCU-HTM

Why do we need synchronization for the traversals at the first place?
 Concurrent rotations may lead traversals to a wrong path

9

5

123

6

10 16

17

2

4

3

0 0

0

0

1

2

1
0

1

2

1

T1: lookup(2)

T2: insert(1)

Won’t reach node 2

RCU-HTM: Asynchronized traversals

12RCU-HTM

RCU-HTM
How does RCU avoids erroneous executions while allowing asynchronized traversals?
• Assume a single updater for now

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

T1: lookup(2)

RCU-HTM: Asynchronized traversals

12RCU-HTM

RCU-HTM
How does RCU avoids erroneous executions while allowing asynchronized traversals?
• Assume a single updater for now

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

T1: lookup(2)

T2: insert(1)

1. Updaters create copies of the modified parts

RCU-HTM: Asynchronized traversals

12RCU-HTM

RCU-HTM
How does RCU avoids erroneous executions while allowing asynchronized traversals?
• Assume a single updater for now

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

T1: lookup(2)

T2: insert(1)

1
0

1. Updaters create copies of the modified parts

RCU-HTM: Asynchronized traversals

12RCU-HTM

RCU-HTM
How does RCU avoids erroneous executions while allowing asynchronized traversals?
• Assume a single updater for now

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

T1: lookup(2)

T2: insert(1)

1
0

2
1

1. Updaters create copies of the modified parts

RCU-HTM: Asynchronized traversals

12RCU-HTM

RCU-HTM
How does RCU avoids erroneous executions while allowing asynchronized traversals?
• Assume a single updater for now

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

T1: lookup(2)

T2: insert(1)

1
0

2
1

3
2

1. Updaters create copies of the modified parts

RCU-HTM: Asynchronized traversals

12RCU-HTM

RCU-HTM
How does RCU avoids erroneous executions while allowing asynchronized traversals?
• Assume a single updater for now

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

T1: lookup(2)

T2: insert(1)

1
0

2
1

3
2

5
1

1. Updaters create copies of the modified parts

RCU-HTM: Asynchronized traversals

12RCU-HTM

RCU-HTM
How does RCU avoids erroneous executions while allowing asynchronized traversals?
• Assume a single updater for now

9

5 12

3 6 10 16

172 4

3

2

1

0 0

0 0

0

1

2

T1: lookup(2)

T2: insert(1)

1
0

2
1

3
2

5
1

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer

RCU-HTM: Asynchronized traversals

12RCU-HTM

RCU-HTM
How does RCU avoids erroneous executions while allowing asynchronized traversals?
• Assume a single updater for now

9

5 12

3

6

10 16

172 4

3

2

1

0 0 0

0

0

1

2

T1: lookup(2)

T2: insert(1)

1
0

2
1

3
2

5
1

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer

RCU-HTM: Asynchronized traversals

12RCU-HTM

RCU-HTM
How does RCU avoids erroneous executions while allowing asynchronized traversals?
• Assume a single updater for now

9

5 12

3

6

10 16

172 4

3

2

1

0 0 0

0

0

1

2

T1: lookup(2)

T2: insert(1)

1
0

2
1

3
2

5
1

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer

RCU-HTM: Asynchronized traversals

12RCU-HTM

RCU-HTM
How does RCU avoids erroneous executions while allowing asynchronized traversals?
• Assume a single updater for now

9

5 12

3

6

10 16

172 4

3

2

1

0 0 0

0

0

1

2

T1: lookup(2)

T2: insert(1)

1
0

2
1

3
2

5
1

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer

RCU-HTM: Asynchronized traversals

12RCU-HTM

RCU-HTM
How does RCU avoids erroneous executions while allowing asynchronized traversals?
• Assume a single updater for now

9

5 12

3

6

10 16

172 4

3

2

1

0 0 0

0

0

1

2

T1: lookup(2)

T2: insert(1)

1
0

2
1

3
2

5
1

 Succesfully finds node 2

1. Updaters create copies of the modified parts
2. Install their copy by swapping a single child pointer

RCU-HTM: Multiple Updaters

13RCU-HTM

RCU-HTM
The previous example assumed a single updater
• If multiple updaters were allowed, modifications could be “lost”

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

0

RCU-HTM: Multiple Updaters

13RCU-HTM

RCU-HTM
The previous example assumed a single updater
• If multiple updaters were allowed, modifications could be “lost”

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2T1: insert(1)

1
0

2
1

3
2

5
1 0

RCU-HTM: Multiple Updaters

13RCU-HTM

RCU-HTM
The previous example assumed a single updater
• If multiple updaters were allowed, modifications could be “lost”

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
00

RCU-HTM: Multiple Updaters

13RCU-HTM

RCU-HTM
The previous example assumed a single updater
• If multiple updaters were allowed, modifications could be “lost”

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
00

RCU-HTM: Multiple Updaters

13RCU-HTM

RCU-HTM
The previous example assumed a single updater
• If multiple updaters were allowed, modifications could be “lost”

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
00

RCU-HTM: Multiple Updaters

13RCU-HTM

RCU-HTM
The previous example assumed a single updater
• If multiple updaters were allowed, modifications could be “lost”

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

Not reachable

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
00

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();
if (validation == OK)

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();
if (validation == OK)

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();
if (validation == OK)

install_copy();


0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();
if (validation == OK)

install_copy();


0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();
if (validation == OK)

install_copy();
tx_end();



0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();
if (validation == OK)

install_copy();
tx_end();



tx_start();

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();
if (validation == OK)

install_copy();
tx_end();



tx_start();
validate_copy();

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();
if (validation == OK)

install_copy();
tx_end();



tx_start();
validate_copy();
if (validation == OK)

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();
if (validation == OK)

install_copy();
tx_end();



tx_start();
validate_copy();
if (validation == OK)

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();
if (validation == OK)

install_copy();
tx_end();



tx_start();
validate_copy();
if (validation == OK)

install_copy();

0

RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction

14RCU-HTM

RCU-HTM: Multiple Updaters

9

5 12

3 6 10 16

172 4

3

2

1

0

0 0

0

1

2

T1: insert(1)

1
0

2
1

3
2

5
1

T2: insert(7)

6
1

7
0

= T1 validation set = T2 validation set

tx_start();
validate_copy();
if (validation == OK)

install_copy();
tx_end();



tx_start();
validate_copy();
if (validation == OK)

install_copy();
abort_and_restart();

0

Experimental Setup

• Intel Broadwell-EP Xeon E5-2699 v4

– 22 cores / 44 hyperthreads @ 2.2GHz

– 64GB RAM

• Experimental methodology:

– Threads run for 2 seconds, executing randomly chosen
operations (lookups/inserts/deletes)

– 3 Workloads:
• Read-only: 100% lookups

• Read-dominated: 80% lookups, 10% inserts, 10% deletes

• Write-only: 0% lookups, 50% inserts, 50% deletes

– 5 tree sizes
• Small (200 keys) to large (20M keys)

15RCU-HTM

Concurrent BST implementations

16RCU-HTM

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’14]

RCU-HTM

 

 

 

 

 

Name
Asynchronized

traversals
Multiple
updaters

Balanced Internal
On-time
deletion

  

  

  

  

  

 

 

 

  

  

  

 

 

  

  

 

 

  

  

   

L
o
c
k
-f

re
e

L
o
c
k
s

R
C

U
T

M

Concurrent BST implementations

16RCU-HTM

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’14]

RCU-HTM

 

 

 

 

 

Name
Asynchronized

traversals
Multiple
updaters

Balanced Internal
On-time
deletion

  

  

  

  

  

 

 

 

  

  

  

 

 

  

  

 

 

  

  

   

L
o
c
k
-f

re
e

L
o
c
k
s

R
C

U
T

M

Concurrent BST implementations

16RCU-HTM

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’14]

RCU-HTM

 

 

 

 

 

Name
Asynchronized

traversals
Multiple
updaters

Balanced Internal
On-time
deletion

  

  

  

  

  

 

 

 

  

  

  

 

 

  

  

 

 

  

  

   

L
o
c
k
-f

re
e

L
o
c
k
s

R
C

U
T

M

Concurrent BST implementations

16RCU-HTM

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’14]

RCU-HTM

 

 

 

 

 

Name
Asynchronized

traversals
Multiple
updaters

Balanced Internal
On-time
deletion

  

  

  

  

  

 

 

 

  

  

  

 

 

  

  

 

 

  

  

   

L
o
c
k
-f

re
e

L
o
c
k
s

R
C

U
T

M

Concurrent BST implementations

16RCU-HTM

Ellen et al. [PODC’10]

Howley et al. [SPAA’12]

Natarajan et al. [PPoPP’14]

Chatterjee et al. [PODC’14]

Brown et al. [PPoPP’14]

Bronson et al. [PPoPP’10]

Crain et al. [EuroPar’13]

Drachsler et al. [PPoPP’14]

Howard et al. [CCPE’14]

Arbel et al. [PODC’14]

Crain et al. [PPoPP’14]

Avni et al. [TRANSACT’14]

RCU-HTM

 

 

 

 

 

Name
Asynchronized

traversals
Multiple
updaters

Balanced Internal
On-time
deletion

  

  

  

  

  

 

 

 

  

  

  

 

 

  

  

 

 

  

  

   

L
o
c
k
-f

re
e

L
o
c
k
s

R
C

U
T

M

Performance: read-only workloads

17RCU-HTM

Performance: read-only workloads

17RCU-HTM

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 22 44

Number of threads

2M Keys – 100% lookupslb-avl

lf-bst

citrus-bst

rcu-mrsw-avl

cop-avl

rcu-htm-avl

rcu-htm-rbt

Performance: read-only workloads

17RCU-HTM

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 22 44

Number of threads

2M Keys – 100% lookupslb-avl

lf-bst

citrus-bst

rcu-mrsw-avl

cop-avl

rcu-htm-avl

rcu-htm-rbt

Performance: read-only workloads

17RCU-HTM

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 22 44

Number of threads

2M Keys – 100% lookupslb-avl

lf-bst

citrus-bst

rcu-mrsw-avl

cop-avl

rcu-htm-avl

rcu-htm-rbt

Performance: read-only workloads

17RCU-HTM

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 22 44

Number of threads

2M Keys – 100% lookupslb-avl

lf-bst

citrus-bst

rcu-mrsw-avl

cop-avl

rcu-htm-avl

rcu-htm-rbt

Performance: read-only workloads

17RCU-HTM

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 22 44

Number of threads

2M Keys – 100% lookupslb-avl

lf-bst

citrus-bst

rcu-mrsw-avl

cop-avl

rcu-htm-avl

rcu-htm-rbt

Performance: read-only workloads

17RCU-HTM

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 22 44

Number of threads

2M Keys – 100% lookupslb-avl

lf-bst

citrus-bst

rcu-mrsw-avl

cop-avl

rcu-htm-avl

rcu-htm-rbt

Performance: read-only workloads

17RCU-HTM

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 22 44

Number of threads

2M Keys – 100% lookupslb-avl

lf-bst

citrus-bst

rcu-mrsw-avl

cop-avl

rcu-htm-avl

rcu-htm-rbt

Performance: read-dominated workloads

18RCU-HTM

Performance: read-dominated workloads

18RCU-HTM

0

10

20

30

40

50

60

70

1 2 4 8 16 22 44

Number of threads

2M Keys – 80% lookups

lb-avl

lf-bst

citrus-bst

rcu-mrsw-avl

cop-avl

rcu-htm-avl

rcu-htm-rbt

Performance: read-dominated workloads

18RCU-HTM

0

10

20

30

40

50

60

70

1 2 4 8 16 22 44

Number of threads

2M Keys – 80% lookups

lb-avl

lf-bst

citrus-bst

rcu-mrsw-avl

cop-avl

rcu-htm-avl

rcu-htm-rbt

19RCU-HTM

Performance: write-only workloads

19RCU-HTM

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 22 44

Number of threads

2M Keys – 0% lookups

lb-avl

lf-bst

citrus-bst

rcu-mrsw-avl

cop-avl

rcu-htm-avl

rcu-htm-rbt

Performance: write-only workloads

19RCU-HTM

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 22 44

Number of threads

2M Keys – 0% lookups

lb-avl

lf-bst

citrus-bst

rcu-mrsw-avl

cop-avl

rcu-htm-avl

rcu-htm-rbt

Performance: write-only workloads

Performance: per workload average

20RCU-HTM

Performance: per workload average

20RCU-HTM

0

5

10

15

20

25

100% lookups 80% lookups 0% lookups

Sp
ee

d
u

p
 o

ve
r

se
ri

al
 in

te
rn

al
 A

V
L

tr
ee

Workload

22 Threads (no HT)

lb-avl lf-bst rcu-citrus-bst rcu-mrsw-avl cop-avl rcu-htm-avl

Performance: per workload average

20RCU-HTM

0

5

10

15

20

25

100% lookups 80% lookups 0% lookups

Sp
ee

d
u

p
 o

ve
r

se
ri

al
 in

te
rn

al
 A

V
L

tr
ee

Workload

22 Threads (no HT)

lb-avl lf-bst rcu-citrus-bst rcu-mrsw-avl cop-avl rcu-htm-avl

RCU provides the fastest lookups

RCU-HTM is as fast as RCU

Performance: per workload average

20RCU-HTM

0

5

10

15

20

25

100% lookups 80% lookups 0% lookups

Sp
ee

d
u

p
 o

ve
r

se
ri

al
 in

te
rn

al
 A

V
L

tr
ee

Workload

22 Threads (no HT)

lb-avl lf-bst rcu-citrus-bst rcu-mrsw-avl cop-avl rcu-htm-avl

RCU provides the fastest lookups

RCU-HTM is as fast as RCU

Performance: per workload average

20RCU-HTM

0

5

10

15

20

25

100% lookups 80% lookups 0% lookups

Sp
ee

d
u

p
 o

ve
r

se
ri

al
 in

te
rn

al
 A

V
L

tr
ee

Workload

22 Threads (no HT)

lb-avl lf-bst rcu-citrus-bst rcu-mrsw-avl cop-avl rcu-htm-avl

RCU provides the fastest lookups

RCU-HTM is as fast as RCU

Even with 20% update operations RCU
performance collapses due to the writers’
single global lock

Performance: per workload average

20RCU-HTM

0

5

10

15

20

25

100% lookups 80% lookups 0% lookups

Sp
ee

d
u

p
 o

ve
r

se
ri

al
 in

te
rn

al
 A

V
L

tr
ee

Workload

22 Threads (no HT)

lb-avl lf-bst rcu-citrus-bst rcu-mrsw-avl cop-avl rcu-htm-avl

RCU provides the fastest lookups

RCU-HTM is as fast as RCU

Even with 20% update operations RCU
performance collapses due to the writers’
single global lock

Performance: per workload average

20RCU-HTM

0

5

10

15

20

25

100% lookups 80% lookups 0% lookups

Sp
ee

d
u

p
 o

ve
r

se
ri

al
 in

te
rn

al
 A

V
L

tr
ee

Workload

22 Threads (no HT)

lb-avl lf-bst rcu-citrus-bst rcu-mrsw-avl cop-avl rcu-htm-avl

RCU provides the fastest lookups

RCU-HTM is as fast as RCU

Even with 20% update operations RCU
performance collapses due to the writers’
single global lock

RCU-HTM efficiently allows multiple
updaters and manages to retain its
performance on workloads with high
update ratio

21RCU-HTM

0

5

10

15

20

25

200 keys 2K keys 20K keys 2M keys 20M keys

Sp
ee

d
u

p
 o

ve
r

se
ri

al
 in

te
rn

al
 A

V
L

tr
ee

Key range

22 threads (no HT)

lb-avl lf-bst rcu-citrus-bst rcu-mrsw-avl cop-avl rcu-htm-avl

Performance: per tree size average

22RCU-HTM

Performance: overall

0

5

10

15

20

25

22 threads 44 threads

Sp
ee

d
u

p
 o

ve
r

se
ri

al
 in

te
rn

al
 A

V
L

tr
ee

lb-avl lf-bst rcu-citrus-bst rcu-mrsw-avl cop-avl rcu-htm-avl

22RCU-HTM

Performance: overall

0

5

10

15

20

25

22 threads 44 threads

Sp
ee

d
u

p
 o

ve
r

se
ri

al
 in

te
rn

al
 A

V
L

tr
ee

lb-avl lf-bst rcu-citrus-bst rcu-mrsw-avl cop-avl rcu-htm-avl

18.3%

18.9%

Conclusions

RCU-HTM

• Efficiently combines RCU with HTM

• Provides concurrent binary search trees:
1. Balanced

2. Internal

3. On-time deletion

4. Asynchronized traversals

5. Multiple updaters

• 18% better performance than state-of-the-art BSTs

RCU-HTM AVL and Red-Black trees publicly available:
• https://github.com/rcu-htm/rcu-htm

23RCU-HTM

RCU-HTM: Combining RCU with HTM to
Implement Highly Efficient Concurrent

Binary Search Trees
Dimitrios Siakavaras, Konstantinos Nikas, Georgios Goumas

and Nectarios Koziris

National Technical University of Athens (NTUA)

School of Electrical and Computer Engineering (ECE)

Computing Systems Laboratory (CSLab)

{jimsiak,knikas,goumas,nkoziris}@cslab.ece.ntua.gr

http://research.cslab.ece.ntua.gr

THANK YOU!
QUESTIONS?

http://research.cslab.ece.ntua.gr/

Backup Slides

25RCU-HTM

Concurrent BSTs

RCU-HTM

Name Balanced Internal
On-time
deletion

Ellen et al. [PODC’10]   

Howley et al. [SPAA’12]   

Natarajan et al. [PPoPP’14]   

Chatterjee et al. [PODC’14]   

Brown et al. [PPoPP’14]   

Lock-free
Atomic operations (e.g., CAS) can only
modify a single memory word

26

Concurrent BSTs

RCU-HTM

Name Balanced Internal
On-time
deletion

Ellen et al. [PODC’10]   

Howley et al. [SPAA’12]   

Natarajan et al. [PPoPP’14]   

Chatterjee et al. [PODC’14]   

Brown et al. [PPoPP’14]   

Bronson et al. [PPoPP’10]   

Crain et al. [EuroPar’13]   

Drachsler et al. [PPoPP’14]   

Lock-free
Atomic operations (e.g., CAS) can only
modify a single memory word

Lock-based
Rebalancing would require multiple
lock acquisitions and extra effort to
avoid deadlocks

26

Concurrent BSTs

RCU-HTM

Name Balanced Internal
On-time
deletion

Ellen et al. [PODC’10]   

Howley et al. [SPAA’12]   

Natarajan et al. [PPoPP’14]   

Chatterjee et al. [PODC’14]   

Brown et al. [PPoPP’14]   

Bronson et al. [PPoPP’10]   

Crain et al. [EuroPar’13]   

Drachsler et al. [PPoPP’14]   

Howard et al. [CCPE’14]   

Arbel et al. [PODC’14]   

Lock-free
Atomic operations (e.g., CAS) can only
modify a single memory word

Lock-based
Rebalancing would require multiple
lock acquisitions and extra effort to
avoid deadlocks

RCU-based
No on-time deletion

26

Concurrent BSTs

RCU-HTM

Name Balanced Internal
On-time
deletion

Ellen et al. [PODC’10]   

Howley et al. [SPAA’12]   

Natarajan et al. [PPoPP’14]   

Chatterjee et al. [PODC’14]   

Brown et al. [PPoPP’14]   

Bronson et al. [PPoPP’10]   

Crain et al. [EuroPar’13]   

Drachsler et al. [PPoPP’14]   

Howard et al. [CCPE’14]   

Arbel et al. [PODC’14]   

Crain et al. [PPoPP’14]   

Avni et al. [TRANSACT’14]   

Lock-free
Atomic operations (e.g., CAS) can only
modify a single memory word

Lock-based
Rebalancing would require multiple
lock acquisitions and extra effort to
avoid deadlocks

RCU-based
No on-time deletion

TM-based
Avni provides all three characteristics
but has other drawbacks

26

RCU-HTM vs previous works
Name Balanced Internal

On-time
deletion

Asynchronized
traversals

Multiple
updaters

Ellen et al. [PODC’10]     

Howley et al. [SPAA’12]     

Natarajan et al. [PPoPP’14]     

Chatterjee et al. [PODC’14]     

Brown et al. [PPoPP’14]     

27RCU-HTM

Bronson et al. [PPoPP’10]     

Crain et al. [EuroPar’13]     

Drachsler et al. [PPoPP’14]     

Howard et al. [CCPE’14]     

Arbel et al. [PODC’14]     

Crain et al. [PPoPP’14]     

Avni et al. [TRANSACT’14]     

T
M

R
C

U

 L
o
c
k
s

L
o
c
k
-f

re
e

RCU-HTM vs previous works
Name Balanced Internal

On-time
deletion

Asynchronized
traversals

Multiple
updaters

Ellen et al. [PODC’10]     

Howley et al. [SPAA’12]     

Natarajan et al. [PPoPP’14]     

Chatterjee et al. [PODC’14]     

Brown et al. [PPoPP’14]     

27RCU-HTM

Bronson et al. [PPoPP’10]     

Crain et al. [EuroPar’13]     

Drachsler et al. [PPoPP’14]     

Howard et al. [CCPE’14]     

Arbel et al. [PODC’14]     

Crain et al. [PPoPP’14]     

Avni et al. [TRANSACT’14]     

RCU-HTM     

T
M

R
C

U

 L
o
c
k
s

L
o
c
k
-f

re
e

28RCU-HTM

RCU-HTM: Internal Deletion

22

15

5 20

3 8

4

3

2

1

1

1

…

10
0

20
0

delete(15)

1
0

RCU-HTM replaces the whole path from the internal node to the successor

28RCU-HTM

RCU-HTM: Internal Deletion

22

15

5 20

3 8

4

3

2

1

1

1

…

10
0

20
0

delete(15)

8
0

1
0

RCU-HTM replaces the whole path from the internal node to the successor

28RCU-HTM

RCU-HTM: Internal Deletion

22

15

5 20

3 8

4

3

2

1

1

1

…

10
0

20
0

delete(15)

5

8

2

0

1
0

RCU-HTM replaces the whole path from the internal node to the successor

28RCU-HTM

RCU-HTM: Internal Deletion

22

15

5 20

3 8

4

3

2

1

1

1

…

10
0

20
0

delete(15)

10

5

8

3

2

0

1
0

RCU-HTM replaces the whole path from the internal node to the successor

28RCU-HTM

RCU-HTM: Internal Deletion

22

15

5 20

3 8

4

3

2

1

1

1

…

10
0

20
0

delete(15)

10

5

8

3

2

0

1
0

RCU-HTM replaces the whole path from the internal node to the successor

28RCU-HTM

RCU-HTM: Internal Deletion

22

15

5 20

38

4

3

2

1

1

1

…

10
0

20
0

delete(15)

10

5

8

3

2

0

1
0

RCU-HTM replaces the whole path from the internal node to the successor

