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Motivation

• Multi-cores are ubiquitous

• Multi-threaded applications

-> Concurrent data structures

• Concurrent Binary Search Trees (BSTs):

– Widely used

– Linux kernel

– Database Index
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Our Contributions
• We introduce RCU-HTM

– Combines 

1.Read-Copy-Update (RCU)

2.Hardware Transactional Memory (HTM)

– Provides

 Highly efficient concurrent binary search trees
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Our Contributions
• We introduce RCU-HTM

– Combines 

1.Read-Copy-Update (RCU)

2.Hardware Transactional Memory (HTM)

– Provides

 Highly efficient concurrent binary search trees

• We apply RCU-HTM in AVL and Red-Black trees

– 18% better performance, on average

– Excellent performance on read-only workloads

– Very good performance on write-intensive workloads
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Binary Search Trees (BSTs)

• A classic binary tree with an additional property:
• Keys in left subtree < root key
• Keys in right subtree > root key

• Most commonly used to implement dictionaries:
• <key,value> pairs
• 3 operations: lookup(key), insert(key, value) and delete(key)
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Serial BSTs

Typical serial BSTs have the following 
characteristics that boost their performance:
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- Rebalancing requires additional effort after insertions/deletions



Serial BSTs

Typical serial BSTs have the following 
characteristics that boost their performance:
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2. Internal
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Concurrent BSTs

RCU-HTM

These 3 characteristics:
+ Boost the performance of serial BSTs
- Are difficult to implement in concurrent BSTs

Why?
Rebalancing and internal deletion require multiple node 
modifications to be performed in a “single atomic” step
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Concurrent BSTs

In concurrent BSTs 2 more characteristics are of 
high importance:

1. Asynchronized traversals

– Τhe most common operation -> need to be fast

– Avoid synchronization overhead

2. Multiple updaters

– Updates on disjoint parts of the tree should be 
allowed to execute concurrently
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RCU-HTM vs previous works
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RCU-HTM

By combining RCU and HTM, RCU-HTM enables 
the implementation of:

1. Balanced

2. Internal BSTs with

3. On-time deletion 

That also provide:

4. Asynchronized traversals

5. Multiple concurrent updaters
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 Concurrent rotations may lead traversals to a wrong path
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RCU-HTM overcomes the problem of “lost” updates by exploiting HTM in the following way:

• Updaters keep track of the state of the traversed and the copied nodes, i.e., the 
addresses of the children pointers

• Before installing their copy they validate that all these nodes have remained intact

– validation and installation are performed atomically using an HTM transaction
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Experimental Setup

• Intel Broadwell-EP Xeon E5-2699 v4

– 22 cores / 44 hyperthreads @ 2.2GHz

– 64GB RAM

• Experimental methodology:

– Threads run for 2 seconds, executing randomly chosen 
operations (lookups/inserts/deletes)

– 3 Workloads:
• Read-only: 100% lookups

• Read-dominated: 80% lookups, 10% inserts, 10% deletes

• Write-only: 0% lookups, 50% inserts, 50% deletes

– 5 tree sizes
• Small (200 keys) to large (20M keys) 
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update ratio
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Conclusions

RCU-HTM

• Efficiently combines RCU with HTM

• Provides concurrent binary search trees:
1. Balanced

2. Internal

3. On-time deletion

4. Asynchronized traversals

5. Multiple updaters

• 18% better performance than state-of-the-art BSTs

RCU-HTM AVL and Red-Black trees publicly available:
• https://github.com/rcu-htm/rcu-htm

23RCU-HTM
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Concurrent BSTs

RCU-HTM

Name Balanced Internal
On-time 
deletion
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Natarajan et al. [PPoPP’14]   

Chatterjee et al. [PODC’14]   

Brown et al. [PPoPP’14]   

Lock-free
Atomic operations (e.g., CAS) can only 
modify a single memory word
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Lock-free
Atomic operations (e.g., CAS) can only 
modify a single memory word
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Rebalancing would require multiple 
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No on-time deletion

TM-based
Avni provides all three characteristics 
but has other drawbacks
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RCU-HTM vs previous works
Name Balanced Internal

On-time 
deletion

Asynchronized
traversals

Multiple
updaters
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