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Abstract 

This whitepaper describes the programming techniques used to develop an auto-tuning compression scheme for sparse matrices 

with respect to accelerating matrix-vector multiplication and minimizing its energy footprint, as well as a method for extracting a 

power profile from a corresponding implementation of the conjugate gradient method. Using two example systems, we show how 

these techniques can be leveraged to automatically detect a non-trivial local optimum in the execution parameter space, suggesting 

that it is feasible to integrate the energy efficiency evaluation of the automatic adaptation with the automatic tuning process. 

 

1. Introduction 

This whitepaper describes the programming techniques used to develop an auto-tuning compression scheme for 

sparse matrices with respect to accelerating matrix-vector multiplication and minimizing its energy footprint, as well 

as a method for extracting a power profile from a corresponding implementation of the conjugate gradient method. 

Using two example systems, we show how these techniques can be leveraged to automatically detect a non-trivial 

local optimum in the execution parameter space, suggesting that energy efficiency evaluation of the automatic 

adaptation is feasible to integrate with the automatic tuning process. 

2. Methods 

2.1. Auto-tuned matrix compression 

The most widely used method for storing sparse matrices is the Compressed Sparse Row (CSR) format. This 

format stores a sparse matrix using three arrays: (a) an array storing the non-zero values of the matrix, (b) an array of 

equal size storing the corresponding column indices, and (c) an array of row pointers, pointing to the start of each 

row. While being relatively compact, CSR storage contains a lot of redundant information in the column index 

storage. The contention for memory bandwidth resources is the key performance problem of the sparse matrix-vector 

kernel in modern multicore architectures, making minimization of the matrix representation size most important for 

the optimization of this kernel. 

The most successful format toward the direct compression of the matrix representation is the Compressed Sparse 

eXtended format [5]. CSX employs explicit compression techniques and exploits non-zero elements substructures 

inside the matrix, in order to minimize the column index information of the original CSR format. CSX is able to 

detect a variety of non-zero elements substructures, including horizontal, vertical, diagonal, anti-diagonal and two-
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dimensional (blocks) ones. Thanks to its advanced detection mechanism and the compact representation of the 

encoded substructures, CSX is able to compress the matrix memory footprint significantly – reaching the theoretical 

maximum in many cases. This leads to important performance improvements in both SMP and NUMA multicore 

architectures. 

In CSX, the sparse matrix is organized in units of encoded non-zero elements. A unit can either be a substructure 

unit, i.e., a sequence of non-zero elements forming a substructure, or a delta unit, i.e., a unit of stray elements, not in 

a substructure, but encoded with a delta indexing scheme. For each unit, CSX keeps only a two-byte descriptor and 

its initial column index, encoded as a delta distance from the previous one and stored in a variable size integer. If the 

unit is a substructure, no further information is stored, otherwise, if it is a delta unit, the delta encoded values of the 

unit's non-zero elements are stored immediately afterwards. Since the exact substructure instantiations (e.g., blocks 

2x3, 5x7, etc.) are a priori unknown, CSX generates substructure-specific code at the runtime using the LLVM [6] 

framework. This technique not only allows high-performance matrix-specific matrix-vector implementations, but 

also, in conjunction with the powerful CSX's substructure detection mechanism, offers a high degree of flexibility, 

since CSX is able to combine high performance and high compression ratios of the matrix. 

Substructure detection in CSX employs an auto-tuning logic with respect to the size of the final matrix 

representation and the overall decompression cost at the runtime. The detection process proceeds in a greedy fashion 

in multiple steps. Starting from the original unencoded matrix, CSX tries successive encodings for all the supported 

substructure types and collects statistics, reflecting the matrix compression and the decompression overhead. At this 

step, CSX selects the best substructure type, encodes matching sub-matrices, and repeats the detection process for the 

rest of the matrix. The detection phase finishes when no more substructures can be encoded. The fitness metric for 

selecting a substructure type for encoding depends on the underlying architecture; for example, in SMP systems, the 

metric depends solely on a prediction of the matrix size reduction, while in NUMA systems, where the 

computational part of the kernel is more exposed, the fitness metric tries also to minimize the total number of 

encoded substructure instantiations, as a matter of decreasing the branch instructions in the critical path. Towards the 

same direction, CSX relaxes its compression scheme depending on the underlying architecture, in order to minimize 

the decompression cost. 

In this whitepaper, we employ the CSX format in the execution of the CG iterative solution algorithm (we are 

using the implementation supplied with the CSX software). CSX offers a mechanism for reducing considerably the 

matrix preprocessing cost, by using statistical sampling of the input matrix; however, we do not employ this 

mechanism in this preliminary examination. The CG execution using the CSX format consists of the following five 

phases: 

1. Loading of the matrix from the disk (single-threaded) 

2. Substructure detection (multithreaded) 

3. Matrix encoding (multithreaded) 

4. Code generation (single-threaded) 

5. Sparse matrix-vector kernel (multithreaded) 

Phases 1-4 occur once at the initialization of the algorithm, while the matrix-vector kernel persists in every 

iteration of the algorithm. When using CSR, only phases 1 and 5 are present. 

2.2. Hardware platform 

All experiments are carried out on a quad-core desktop computer with Hyperthreading capabilities. It contains an 

Intel® Core i7-2600 Sandy Bridge multiprocessor, clocked at its maximum frequency of 3.4GHz. It has 16GB of 

main memory and a shared level3 cache of 8MB. This configuration means that tested matrices fit in main memory, 

but not in the last-level cache, thus emphasizing the effect of compression schemes on the resulting memory traffic. 

2.3. Power instrumentation 

Power instrumentation is based on Model Specific Registers (MSRs) first featured in the Intel Sandy Bridge 

architecture and expands upon the technique described in [1]. The programming interface to this approach takes the 

form of a library featuring a data structure that tracks the difference of processor package energy consumption, using 

privileged access to device-files which reflect MSR register state, allowing the difference of energy consumed to be 

computed between two calls from the application. While this is sufficient to support the instrumentation of CPU 

energy use for short benchmark sections [2], the requirements of distinguishing between stages of execution with 

CSX creates three technical challenges: 

 Capturing a running estimate of application power use 

 Minimizing interference from the instrumentation code, and unrelated program execution 
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 Identifying program points on the time scale of the resulting traces of time and power 

Capturing a running estimate of application energy use is subject to a 1 ms update frequency in the energy 

performance counters in the target architecture, constraining both the obtainable accuracy and the maximal interval 

of a single sample, as the energy counter registers wrap around [3]. A further constraint is posed by accessing them 

through the use of an operating system device file, since it introduces the running kernel as a potential source of 

inaccuracy. An important consideration to our approach is that while the processor tracing energy use is also 

executing the application program, the accuracy lost in lowering the sampling frequency is a trade-off against the 

introduced interference from the sampling itself. 

Single sample capture is implemented as a stateful C function, containing two statically allocated structures for 

use by the energy counter library and two timer variables. All timings are captured using the gettimeofday system 

call, which reports a wall clock measured to microsecond resolution. Instrumentation begins with including the 

initialization of one of the structures in the initialization of the measured program, initializing a log file, and 

recording time. The capture itself consists of calling the power library to finalize the measurement started in 

initialization, copying out the values of the structure at the time it stopped, recording time, and starting measurement 

again. Having obtained an energy difference and a time difference, power for the interval can then be estimated 

discretely as (ΔE / Δt), which is logged along with the end time of the sample interval. The total data volume 

involved in this operation is below 0.5 kB and its execution time negligible in comparison with the finest attainable 

energy estimate resolution. The logic for finalizing the structures and closing the log file is contained in a function 

which is registered with the atexit function at initialization time, making it unnecessary to modify the application 

beyond adding to its initialization. 

Continuous sampling is implemented by registering the sample capture function as a signal handler for the Unix 

SIGPROF signal, which an application can request to have periodically issued from the O/S kernel, calling the 

POSIX setitimer function at initialization. Initial experiments with the granularity suggested that stable and 

reproducible results are attainable using a 100 ms interval, making each sample account for approximately 100 

updates of the energy registers. As there is an element of non-determinism in both signal delivery and energy capture 

mechanisms, trial runs comparing a running ideal sum of timestamps to the wall clock estimate. The aggregate drift 

of these for runs of up to 105 seconds proved to be on the 10 ms scale, or 10% of a single sample interval, suggesting 

that the deviation due to overhead lies well below 1ms per sample. Unfortunate timing can at most misrepresent 

energy by 1 sample point for a given interval, bounding its energy estimate deviation to 1% of the state reflected in 

the hardware register. Sampling further intervals transfers the recording of the outstanding amount to the next 

sample, so differences between measured and actual energy consumption is restricted to first and last samples in a 

sequence. As the measured stages of execution encompass sums of tens to hundreds of samples, the error in the total 

energy estimate becomes negligible. Refining the sampling interval to a length where a single sample point accounts 

for a larger amount of the recorded energy displays the effect quite clearly: unfortunately timed samples appear as 

sharp under-estimates, immediately followed by an equal over-estimate in the following sample. Because this effect 

is an artifact of the interaction between sample sizes and minute drift from the wall clock, we note that at the 100 ms 

sample scale, the magnitude of the noise is small enough to provide detailed views of how power develops with 

program execution, and successfully admits runs hundreds of seconds without overflowing the energy counters. The 

impact of software overhead is not investigated further. 

Interference from unrelated system activity is minimized internally by allocating all required data structures 

statically, producing a constant memory requirement except for the log file, which has a natural linear dependence on 

time. In order to eliminate uncertainty caused by flushes of the file buffer, this buffer was replaced with a static, 

fixed-size allocation of 5MB committed using the POSIX setbuffer call, which sufficed for our experiments. 

Elimination of interference from unrelated programs was attempted using the Linux real-time priority scheduling 

mechanism to remove everything aside from unmaskable interrupts. This led to an effect where two consecutive 

samples would make underestimates from one sample, and proportional over-estimates on the next. Attributing this 

effect to the update of the MSR device file being postponed from one sample interval to the next, we opt instead for 

detecting significant interference by large anomalies in the power/time graph; as results make it markedly visible 

when several execution threads have been active over an interval, it is reasonable to expect that external program 

interference would cause a similar effect, visible when the measured program is known to run at steady states for 

extended periods. 

With the establishment of IPC signal handling as a trigger for log file events, timing of events in the program 

logic is a straightforward extension, accomplished by registering signal handlers for SIGUSR1 and SIGUSR2 which 

only record wall time according to gettimeofday in a separate log file. Instrumentation of the remainder of the code is 

thus decoupled from the state of the handler functions, and can be easily instrumented using calls to the getpid and 

kill functions. Program event and power logs are thus recorded on the same time scale, permitting them to be 

combined in a post-processing step which shows how they coincided after the run is complete. 
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3. Results 

In combination, the described techniques provide power/time data which relates the known stages of CSX 

execution with a trace of its power consumption, permitting the balance between the energy cost of matrix 

preprocessing to be evaluated with respect to its impact on matrix-vector multiplication. 

 

 

Fig. 1. (a) CSX matrix compression, with 1-4 threads; (b) CSX matrix compression with 5-8 threads and Hyperthreading 

 

Fig.2. (a) CSR matrix compression, with 1-4 threads; (b) CSR matrix compression with 5-8 threads and Hyperthreading 
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As shown in Figs. 1 and 2, the initialization, preprocessing and iteration stages each display their own steady and 

characteristic power requirements. 

 

Fig.3. Detailed view of CSX matrix compression with 4 threads, including program events/stages 

Merging these with the recorded transitions between stages yields a detailed view as the 4-thread CSX case 

displayed in Fig. 3. The vertical, blue lines denote the transitions from stage 1 to 2, stage 4 to 5, and program 

termination. The figure does not discriminate between the intermediate preprocessing stages 2, 3, and 4, as their 

aggregate cost is of primary interest. 

Recognizing the structure of the stages from Fig. 3 in Figs. 1 and 2, characteristics of program behavior can 

already be extracted by visual inspection. It is clear that the preprocessing stage of CSX compression is quite 

amenable to parallelization, providing time improvements up to 7 threads, utilizing Hyperthreads at minor additional 

power, while CSR shows no significant benefit from Hyperthreading. The figures clearly display that a constant 

iteration count of 1024 for stage 5 is sufficient to bring power to a steady state, making it feasible to project that 

energy effects observed at this scale are representative of the sustained power consumption if iterations were 

continued until convergence. This can enable automatic selection of the energy-optimal configuration from collecting 

small sample run data prior to execution, as the iteration counts for very large systems can require them to run for 

significantly longer than these tests. 

 

Fig. 4. (a) CSX matrix compression, with 1-4 threads; (b) CSX matrix compression with 5-8 threads and Hyperthreading 

We may note that the parabolic_fem [4] matrix which gave the results displayed in Figs. 1 and 2  has an irregular 

structure which makes it poorly suited to provide improved benefits to iteration speed for either format: beyond two 

threads, the length of the iteration stage does not decrease significantly in spite of the increases in power. The 

boneS10 [4] matrix has a structure which is more amenable to compression; the size of this system makes the 

distinctions between stages less visible from power/time graphs. Fig. 4 shows measured CSX results in full detail, 

while further tabulated results tabulate values obtained from integrating these graphs using the trapezoid method. As 
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the collected power estimates are piecewise linear, integrals are exact to the resolution of the samples displayed in 

the graphs. Adjusting the interval of integration by using the event timings, execution characteristics are tabulated by 

stages in Tab. 1 for parabolic_fem, and Tab.2 for boneS10.  

Tab. 1 shows that the net cost of the preprocessing stage reduces with parallelism, while time and energy per 

iteration increases. The characteristics of the parabolic FEM system show that CPU energy consumption will be 

unilaterally lowest for single-threaded CSR, but also reveal that there are non-linearities in the relationship between 

the increases in per-iteration energy vs. the cost of the CSX auto-tuning: the first two Hyperthreads mark an area 

where the per-iteration cost is slightly lowered, at an increased preprocessing cost.  

Tab. 2 shows the same tendency of the preprocessing stage, and growing efficiency for CSX with increasing 

thread count. Single-threaded execution favors CSR, while multithreaded execution amortizes the additional 

preprocessing cost in 15759.618/(1.434 – 1.225) ≈ 75404 iterations for two threads, or less. Considering that the 

boneS10 system is expressed in 914898 dimensions gives that as an upper bound on the number of conjugate 

gradient iterations to solution, suggesting that the overhead of preprocessing is worthwhile in every other case for 

this system. However, in practice, where a pre-conditioner might be used for the CG method, the 75K iterations is a 

quite large number. Enabling the fast preprocessing mode of CSX (sampling of the matrix and/or targeted encoding 

of specific substructures) will allow an order of magnitude faster amortization [5]. 

As witnessed by these results, our described instrumentation is capable of capturing and estimating the energy 

requirements for a given input set in a fraction of the system’s time to solution, suggesting that it can form the basis 

of an automatic tuning mechanism to select optimal configurations at solver startup time by sampling available 

alternatives. 

 

Table 1. Energy consumption and time by execution stages, parabolic_fem  

Thread # CSX init [J] CSX preproc [J] CSX E/iter [J] CSX t/iter [s] CSR init [J] CSR E/iter [J] CSR t/iter [s] 

1 20.396 1699.677 0.201 0.00991 16.566 0.145 0.00671 

2 20.771 1327.642 0.206 0.00701 23.522 0.170 0.00532 

3 29.543 1253.750 0.243 0.00622 25.644 0.215 0.00530 

4 21.202 1205.862 0.289 0.00586 24.909 0.258 0.00531 

5 22.013 1224.329 0.283 0.00601 16.951 0.250 0.00544 

6 22.033 1187.789 0.287 0.00578 16.929 0.255 0.00543 

7 24.379 1147.162 0.292 0.00565 20.653 0.264 0.00550 

8 32.886 1134.643 0.304 0.00577 22.007 0.276 0.00559 

Table 2. Energy consumption and time by execution stages, boneS10 

Thread # CSX init [J] CSX preproc [J] CSX E/iter [J] CSX t/iter [s] CSR init [J] CSR E/iter [J] CSR t/iter [s] 

1 266.460 33080.091 0.861 0.0411 220.760 0.831 0.0365 

2 250.736 22993.266 0.794 0.0236 227.315 0.880 0.0254 

3 260.820 19897.076 0.916 0.0204 216.183 1.109 0.0249 

4 263.964 18693.004 1.129 0.0203 218.891 1.346 0.0251 

5 293.853 18143.053 1.114 0.0216 221.781 1.322 0.0260 

6 262.536 16937.524 1.127 0.0207 227.038 1.329 0.0257 

7 295.292 16335.871 1.172 0.0208 223.161 1.376 0.0259 

8 279.543 15759.618 1.225 0.0209 232.604 1.434 0.0262 
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4. Conclusions and future work 

We have described the stages of execution for a program which compresses sparse matrices to automatically 

optimize the memory access patterns resulting from sparse matrix-vector multiplication, and a method to instrument 

it which captures the energy consumption related to its main phases of execution. As examples of how the 

parameters of the compression interact with matrix properties, we have shown a difference in the characteristics of a 

conjugate gradient solver using the compression method, suggesting that the energy efficiency of applying 

compression methods differ between input data sets, making the identification of the most suitable parameter sets 

candidate for further run-time automation. This technique has been applied to investigate the impact of variable clock 

frequency, degree of parallelism, compression methods, and a greater range of matrices, to understand the energy 

implications of software/hardware interactions in this parameter space. The difference in energy/iteration cost favors 

compression for large, regular matrices. For a description of the full study, the interested reader can refer to our 

corresponding conference paper [7]. 

The sampling preprocessing feature of CSX has not been applied in the presented results, but is expected to 

significantly reduce the substructure detection stage of the preprocessing phase, for a reduction in its energy cost. 

Validating this expectation makes an interesting direction for future work. 
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