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Abstract In this paper we explore the efficacy of HTM for implementing con-
current skip lists, a widely used indexing data structure. We first implement
the most naive version of an HTM-based skip list where we enclose each up-
date operation in a single HTM transaction. This implementation showcases
the simplicity of using HTM, however our experimental results show that it
performs poorly, due to its large transactions.

The novelty of our work lies in the way we use HTM to implement a fine-
grained HTM-based version of a concurrent skip list with minimal transaction
sizes. Our analysis shows that exploiting HTM in such a fine-grained fashion
results in very fast concurrent skip lists.

In our experimental evaluation we use our skip list implementations as
the basis for implementing ordered sets and priority queues, two of the most
common abstract data types. We compare our HTM-based versions with state-
of-the-art lock-based and lock-free implementations. Our evaluation reveals
advantages and disadvantages of HTM as well as cases where the fine-grained
HTM implementation can outperform the other solutions.

Keywords Hardware Transactional Memory · Concurrent Data Structures ·
Skip Lists

1 Introduction

Multi-core architectures are nowadays ubiquitous and we expect more and
more cores to be packed in a single processor chip in the future. However, to

Marios Kardaras · Dimitrios Siakavaras · Konstantinos Nikas · Georgios Goumas · Nectarios
Koziris
National Technical University of Athens
School of Electrical and Computer Engineering
Computing Systems Laboratory
E-mail: {mkardaras,jimsiak,knikas,goumas,nkoziris}@cslab.ece.ntua.gr



2 Marios Kardaras et al.

fully exploit the increasing compute capabilities of multi-core hardware, the
software needs to be redesigned.

Concurrent data structures are one of the most crucial components of many
multi-threaded applications and, as such, it makes sense to focus on making
them as fast as possible. A concurrent data structure apart from being thread-
safe, i.e., multiple threads can perform operations on it without returning
erroneous results or leaving the data structure in an incorrect state, needs
to be efficient as well. However, the design and implementation of efficient
concurrent data structures typically requires extensive programming effort.

When multiple threads access a data structure some kind of synchroniza-
tion is necessary to guarantee that the data structure remains in a consistent
state. The most widely used synchronization mechanism are locks. With lock-
ing, threads acquire exclusive access to the parts of the data structure they
modify. Locks can be used through a simple API (i.e., acquire/release locks),
but they have drawbacks such as deadlocks, lack of robustness and priority
inversion.

Lock-free concurrent data structures eliminate the fallbacks of lock-based
implementations. They avoid locking parts of the data structure by exploit-
ing the atomic operations provided by modern processors, such as CAS and
LL/SC. Although lock-free implementations can be devised relatively easy for
simple data structures such as linked lists, they are challenging for more com-
plex ones such as skip lists [19] and binary search trees [1,10]. The fact that
modifications of such complex data structures typically include several mem-
ory locations makes it difficult to implement concurrent versions by using the
single memory atomic primitives of modern processors.

Transactional Memory (TM) [13] is a synchronization mechanism moti-
vated by such scenarios and provides a simple programming interface that
guarantees the atomic modification of multiple memory locations. TM can be
used for the implementation of complex data structures, such as skip lists, by
enclosing each data structure operation in a transaction. The underlying TM
system is then responsible for the correct execution.

In this work we use Intel’s HTM, namely Transactional Synchronization
eXtensions (TSX) [30] and implement fast concurrent skip lists. We first imple-
ment the most naive HTM-based skip list by enclosing each operation (except
for contains) in a single HTM transaction to illustrate the simplicity of TM.
However, as expected, our experimental evaluation shows that this naive im-
plementation has several performance issues.

The novelty of our work lies in the way we exploit HTM using a fine-
grained approach to minimize the size of the executed transactions and avoid
the majority of conflict and capacity transactional aborts of the coarse-grained
HTM version. Our experimental evaluation reveals the performance benefits
of fine-grained HTM when compared against the coarse-grained HTM version
as well as other state-of-the-art lock-based and lock-free concurrent skip lists.
More specifically, we use concurrent skip lists to implement ordered sets and
priority queues and we find out that our fine-grained HTM solution manages
to outperform other alternatives in most cases.
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2 Backround

2.1 Intel’s Transactional Synchronization Extensions

Intel was the first to provide HTM support in commercial processors with the
introduction of Transactional Synchronization Extensions (TSX) 1 in Haswell
processors and their successors. TSX is a set of assembly instructions that
are used by the programmer to enclose critical sections of code which need
to be executed atomically. These critical sections are executed as transactions
whose memory reads and writes are being tracked by the underlying HTM
system. The read memory locations are kept in the transaction’s read-set and
the written ones in the write-set. TSX can be used in two modes, namely
HLE and RTM. We only use RTM because it provides the flexibility to choose
what actions are taken upon a transaction’s abort. RTM provides the following
instructions:

– xbegin: Starts a transaction.
– xend : Commits a transaction.
– xabort : Explicitly aborts a transaction. A representative code is passed

to the abort instruction to enable the distinction among different abort
reasons.

– xtest : Checks whether a transaction is in progress or not.

An HTM transaction will either commit, in which case all its memory
modifications become visible to other threads, or abort and none of its mem-
ory writes become visible to other threads. A transaction may abort for the
following reasons:

– Data conflict: When another thread executing in transactional or non-
transactional mode writes to a memory location that has been added to
the transaction’s read or write set or reads a memory location that has
been added to the transaction’s write set.

– Capacity abort: When the transaction’s memory footprint has exceeded the
size of the provided hardware transactional buffers.

– Explicit abort: When the programmer explicitly aborts the transaction us-
ing the xabort instruction.

– Other: A transaction may abort due to other reasons including interrupts,
unsupported instructions, system calls, etc.

TSX is a best-effort HTM implementation and provides no guarantees that
any transaction will eventually commit; persistent aborts may lead to livelock.
It is thus the programmer’s responsibility, when using RTM, to provide an
alternative path of execution that uses no transactions, i.e., a non-transactional
fallback path. The most common practice is to retry a transaction for a given
amount of times and, if it fails to commit, fallback to the acquisition of a lock
that allows only a single thread to enter the critical section. This is also known
as transactional lock elision (TLE) [8].

1 https://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
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2.2 Skip Lists

Skip Lists [19] are an alternative to binary search trees with applications
mainly in main-memory databases, like MemSQL 2. They provide expected
logarithmic time search and update operations without the need to rebalance;
a major source of contention in balanced binary search trees.

A skip list is composed of levels, each of which is a singly linked list.
The bottom level linked list contains all elements ordered by their key. Each
higher-level list is a sublist of the lower-level lists. Each new node is assigned
a top-level (or height) value so that it belongs to all lists up to that level.
Top-levels are chosen so that the expected number of nodes in each level’s list
decreases exponentially. Every skip list is initialized with two sentinel nodes,
head and tail, with the maximum allowed height and minimum and maximum
keys, respectivelly. Each node keeps an array of pointers to successors, one
for each list to which it belongs. The search and update algorithms use these
pointers to navigate through the structure. Figure 1 shows an example of a
skip list with integer keys.

 -∞ 2 5 8 9 11 15 18 25 +∞ -∞ 

0

1

2

3

level

Fig. 1: A skip list with 4 levels. The number below each node is the node’s key,
with −∞ and +∞ as the keys of head and tail sentinel nodes respectively.

3 HTM-based Skip Lists

3.1 Coarse-Grained HTM Skip List

To illustrate the simplicity of using HTM for concurrent skip lists we imple-
mented a coarse-grained version using TLE. More specifically, we enclose each
operation of the skip list (except contains) inside a single HTM transaction. In
our non-transactional fallback path, which ensures forward progress, a single
global lock is acquired which prevents the execution of concurrent operations.
We refer to this naive implementation as cg-htm.

2 https://docs.memsql.com/concepts/v6.0/indexes/
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Fig. 2: The memory footprint of skip list operations.

3.2 Fine-grained HTM Skip List

On the one hand, cg-htm is an implementation that highlights the simplic-
ity of using HTM and performs well in certain execution scenarios. On the
other hand, enclosing the whole skip list operation in a single HTM transac-
tion results in large transactional footprints that set the ground for excessive
amounts of aborts that, as we show in our experimental evaluation, are dras-
tically reduced when smaller transactions are used. In fact, transactions in
cg-htm include unnecessary data in their read-set; correct execution can be
guaranteed without including all these memory locations in the read-set.

Figure 2a depicts the memory footprint of a delete operation of a skip list.
With orange color we mark all the nodes that are accessed and are included
in the transaction of cg-htm. Green color denotes the nodes that are modified.
These are actually the only nodes that need to be tracked by the HTM trans-
action to guarantee the consistency of the operation. We refer to this set of
nodes as the critical nodes of the operation. Figure 2b shows an example of
two operations executing in parallel. The two operations modify disjoint parts
of the data structure and should be allowed to execute concurrently. However,
cg-htm does not allow concurrency in this case since node with key 5 is in the
read-set of the delete operation and a conflict abort is triggered. In contrast,
Figure 2c shows a scenario where two operations have a real data conflict and
should not execute concurrently. In this case, even if only the critical nodes
are included in the transaction’s read/write sets a conflict abort is triggered
and correct execution is guaranteed.

To minimize the transactional footprint and enable concurrent execution
of non-conflicting operations, such as those shown in Figure 2b we sacrifice
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some of the simplicity of cg-htm and implement a fine-grained HTM-based
skip list which we refer to as fg-htm. The key idea to achieve that is to avoid
transactions during traversals. Extra attention has to be paid though to ensure
that data collected during traversal is still valid when performing the actual
update. We attained those objectives by employing consistency oblivious pro-
gramming (COP) [2] technique. In COP-based implementations there are two
phases: an oblivious read-only phase that executes with no synchronization
followed by an atomic phase that verifies that the oblivious phase operated
correctly and modifies the data structure appropriately.

Insertion: The insert operation, presented in algorithm 1, begins by travers-
ing the skip list using pred and curr references, starting at the head, at the
top level, in order to find the right position to insert the new element with the
given key (lines 12-19). During this traversal, it locates the predecessors and
successors of the new element. If during the traversal a node was found with
a matching key, it returns 0 (line 25), otherwise it proceeds by creating a new
node with the matching key and a random height (lines 26,27).

We then call tx_start (line 28) to begin a transaction which consists of
two phases:

1) A validation phase (lines 29–33) that checks two things: 1) if the prede-
cessors and successors are still in the set and not deleted, and, 2) if the
predecessors still point to the successors.

1) An update phase (lines 34–38) that performs the necessary modifications
in the skip list structure. More specifically, we change the pointers of the
new node to point to the successors of the node and then the next pointers
of all its predecessors to point to that node.

Since the validation and the update phases are performed inside a single
HTM transaction everything that has been read during the validation phase is
maintained inside the read set of the transaction. The HTM system guarantees
that if any other thread alters anything that was checked earlier, then a data
conflict will arise and the transaction will abort.

In case the validation is unsuccessful it means that some other thread made
changes to the skip list and the predecessors and/or successors arrays that
were composed during traversal are now obsolete. In this case the operation
needs to restart. Before restarting we delete the new node and then terminate
the transaction (lines 31-33). When the number of operation retries exceeds a
predefined number (MAX_OPERATION_RETRIES) the global lock is acquired and
the sequential version of the insert operation is executed (lines 7–11).

In case a non explicit abort is encountered we do not restart the whole
operation again but instead we transactionaly retry the validation and update
phases only. If the total number of transactional retries exceeds a predifined
number of times (MAX_TX_RETRIES) we retry once more but this time with the
global lock acquired.

Deletion: Similarly to insertion, the delete operation, presented in Algorithm
2, traverses the skip list keeping track of only the predecessors this time (lines
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Algorithm 1: Fine-Grained HTM - Insert operation

1 int fg htm insert(int key)
2 int h, ret, status, nretries = -1;
3 Node preds[MAX LEVEL], succs[MAX LEVEL];
4 Node curr, pred;

5 START FROM SCRATCH INS:
6 nretries++;
7 if (nretries > MAX OPERATION RETRIES) then
8 acquire lock(global lock);
9 ret = sequential insert(key);

10 release lock(global lock);
11 return ret;

12 pred = head;
13 for (h = MAX LEVEL-1; h > 0; h–) do
14 curr = pred.next[h];
15 while (key >curr.key) do
16 pred = curr;
17 curr = pred.next[h];

18 preds[h] = pred;
19 succs[h] = curr;

20 if (key == curr.key) then
21 while (curr.state == INITIAL) do
22 ;

23 if (curr.state == DELETED) then
24 goto START FROM SCRATCH INS;

25 return 0;

26 int nodeHeight = get rand level();
27 Node newNode = createNewNode(key, nodeHeight);

/* begin transaction */

28 status = tx start(MAX TX RETRIES, global lock);
/* check consistency */

29 for (h = 0; h <nodeHeight; h++) do
30 if (preds[h].next[h] != succs[h] ‖ preds[h].state == DELETED ‖

succs[h].state == DELETED) then
31 deleteNode(newNode);
32 tx end(global lock);
33 goto START FROM SCRATCH INS;

/* update fields */

34 for (h = 0; h <nodeHeight; h++ ) do
35 newNode.next[h] = succs[h];

36 for (h = 0; h <nodeHeight; h++ ) do
37 preds[h].next[h] = newNode;

38 newNode.state = INSERTED;

39 tx end(global lock);
40 return 1;
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Algorithm 2: Fine-Grained HTM - Delete operation

1 int fg htm delete(int key)
2 int h, nodeHeight, status, ret, nretries = -1;
3 Node preds[LEVEL MAX];
4 Node curr, pred;

5 START FROM SCRATCH DEL:
6 nretries++;
7 if (nretries > MAX OPERATION RETRIES) then
8 acquire lock (global lock);
9 ret = sequential remove(key);

10 release lock(global lock);
11 return ret;

12 pred = head;
13 for ( h = LEVEL MAX-1; h > 0; h–) do
14 curr = pred.next[h];
15 while (key >curr.key) do
16 pred=curr;
17 curr = pred.next[h];

18 preds[h] = pred;

19 if (curr.key != key) then
20 return 0;

/* begin transaction */

21 status=tx start(MAX TX RETRIES, global lock);
22 nodeHeight=curr.height;

/* check consistency */

23 for (h = 0; h <nodeHeight; h++) do
24 if (preds[h].next[h] != curr ‖ preds[h].state == DELETED ) then
25 tx end(global lock);
26 goto START FROM SCRATCH DEL;

/* update fields */

27 curr.state = DELETED;
28 for (h = nodeHeight-1; h 60; h - -) do
29 preds[h].next[h] = curr.next[h];

30 tx end(global lock);
31 return 1;

12–18). If the key is not found in the skip list the operations returns 0 (lines
19,20). Otherwise, we start a transaction (line 21) in which we check 1) that
the predecessors still point to the same node, and, 2) that they have not been
removed from the skip list. If the validation fails, the same procedure as the
one we described for insertion is followed. If the validation succeeds, we first
mark the node as deleted (line 27) and then update the appropriate pointers,
i.e., the predecessors’ next fields. If at any point the transaction aborts, it
behaves exactly like we described for insertion.

Contains: The contains operation, presented in algorithm 3 traverses the
skip list in order to find a node with a matching key, similarly to insertion and
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Algorithm 3: Contains

1 boolean contains(int key)
2 boolean result=false;
3 Node curr, pred;
4 pred= head;
5 for ( int h = LEVEL MAX-1; h > 0; h - -) do
6 curr = pred.next[h];
7 while (key >curr.key) do
8 pred=curr;
9 curr = pred.next[h];

10 if (key == curr.key) then
11 while (curr.state == INITIAL) do
12 ;

13 if (curr.state != DELETED) then
14 result=true;

15 return result;

deletion. If a node with a matching key is found, we first wait for the element’s
status code to be set to INSERTED and then, if the element is still part of
the skip list, it returns true. In all other cases it returns false.

3.3 Correctness

In this section we provide an informal proof of correctness of our fg-htm imple-
mentation by providing the linearization points of the three operations, insert,
delete and contains.

Linearization point of successful insertions and deletions: The lin-
earization point of a successful insert and delete operation in transactional
mode is the step where the thread commits its transaction after completing
the operation (line 39 for insert / line 30 for delete). If the thread executes
the operation while holding the global lock, the linearization point for dele-
tion is the step where the state of the node is changed from INSERTED to
DELETED in line 27 and for insertion is the step where the state of the node
is changed from INITIAL to INSERTED in line 38.

Linearization point of unsuccessful insertions and deletions: In order
to properly define the linearization point of an unsuccessful insertion we have
to be certain that the point in which the algorithm claims that an element
with a matching key exists in the set (line 25) happens after the linearization
point of that element’s successful insertion. To guarantee that, we use the same
method as in the contains algorithm and spin (line 21) waiting for the element’s
status to become INSERTED. There is always a point between checking if the
node is deleted (line 23) and returning the value 0 in line 25 that the node
was part of the set and we define that point to be the linearization point of
an unsuccessful insertion.



10 Marios Kardaras et al.

Regarding deletions, if the traversal did not find an element with a match-
ing key, there is always a point between finishing traversal and checking if
curr.key!=key (lines 18–19) where there is no element with a matching key
in the skip list, thus this point is the linearization point of an unsuccessful
deletion.

Linearization point of contains: The linearization point of a successful
contains, occurs when the element with the matching key is traversed, having
been observed to be unmarked and fully linked, similarly to an unsuccessful
insert operation. The linearization point of an unsuccessful contains occurs
when the method does not find a node with a matching key or finds one that
is marked.

4 Evaluation

For our experimental evaluation we used a dual socket server equipped with
two Intel Haswell-EP E5-2697 v3 processors. Each processor is clocked at
2.6GHz and provides 14 physical cores and 28 hardware threads when hy-
perthreading is enabled. Each core has 32KB L1 cache and 256KB L2 and all
14 cores of each processor share a 35MB L3 cache. The server has 64GB of
RAM and runs Debian 8.1 with linux kernel version 4.0.4. For the compilation
of our executables we used GCC 4.9.2 with -O3 optimizations enabled.

Below are the details of our experiments:

– Each run lasts 1 second during which each thread performs randomly cho-
sen operations. All reported results are the average of 6 independent exe-
cutions with negligible variance.

– Each software thread is pinned to a hardware thread.
– Skip list nodes are padded and aligned to occupy exactly three cache lines.
– No implementation uses memory reclamation.
– The key range is set to 109 and the skip list is initialized by one thread

before the start of the measurements with 106, 105 or 103 elements.
– Update operations are always 50% insertions, 50% deletions, thereby pre-

serving the size of the underlying data structure. Insertions choose keys
randomly from the key range and deletions attempt to delete the key last
inserted by the same thread. Contains operations search for the last key in-
serted by the same thread, if the last operation was insertion, or a random
key if the last operation was deletion.

– The number of transactional retries (MAX_TX_RETRIES) is set to 30 and the
number of operation retries (MAX_OPERATION_RETRIES) to 15.

4.1 Coarse-grained vs Fine-grained HTM

As already mentioned, the coarse-grained HTM-based skip list showcases how
HTM facilitates the implementation of complex concurrent data structures.
However, as shown in figure 2 enclosing whole skip list operations in single



Fast Concurrent Skip Lists with HTM 11

0

5

10

15

20

25

30

1M 100K 10K 1K

C
o

n
fl

ic
t 

A
b

o
rt

s 
(x

1
0

6
)

Set Size (Keys)

14 threads, update rate : 100%

cg-htm fg-htm

Fig. 3: Number of con-
flict aborts for varying
skip list sizes.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

4 Bytes Key Size 68 Bytes Key Size

C
ap

ac
it

y 
A

b
o

rt
s 

(x
1

0
6
)

(standard size)    (standard size + 1 cache line)

no hyper-threading
with hyper-threading

Coarse-Grained HTM
2 threads, set size: 1M, update rate: 100%

0

50

100

150

200

250

300

4 Bytes Key Size 68 Bytes Key SizeC
ap

ac
it

y 
A

b
o

rt
s 

(n
o

 s
ca

le
)

(standard size)    (standard size + 1 cache line)

no hyper-threading

with hyper-threading

Fine-Grained HTM
2 threads, set size: 1M, update rate: 100%

Fig. 4: Number of capacity aborts for vary-
ing key sizes, with and without hyper-
threading.

HTM transactions results in footprints that contain far more elements than
those needed to guarantee consistency. As a result, a large number of unnec-
essary conflict aborts appear. Furthermore, the larger duration of the transac-
tions lengthens the window of contention and increases the likelihood of con-
flict aborts. Finally, conflict aborts are also encountered when threads execute
the non transactional fallback path. When the fallback path’s lock is acquired
all the running transactions encounter a conflict abort on the lock’s shared
variable. Regarding capacity aborts, the large memory footprint of skip list
operations might, in many cases, exceed the size of the available TSX buffers
resulting in a large number of capacity aborts.

The above limitations of cg-htm has led us to sacrifice some of HTM’s
simplicity and explore how we can, with more programming effort, implement
fg-htm. fg-htm minimizes the amount of data read and/or written inside trans-
actions, effectively minimizing the size of these transactions.

In Figures 3 and 4 we compare cg-htm with fg-htm in terms of transactional
aborts. Figure 3 presents the number of conflict aborts encountered in each of
the two implementations for different skip list sizes, i.e., different contention
levels. The number of threads is fixed to 14 (i.e., we occupy one socket of the
server without hyperthreading enabled) and the update rate is set to 100%
meaning that all operations modify the skip list. As is evident, cg-htm suffers
far more conflict aborts than fg-htm with a maximum difference of 20 million
aborts for skip lists with 1K keys.

In Figure 4 we present the capacity aborts of our two HTM-based skip lists
for 1M keys where we vary the size of the keys stored in the set. We present
results with and without hyperthreading to gain a better insight on how the
sharing of the TSX hardware resources among two hyperthreads affects each
of the two implementations. The coarse-grained HTM implementation is nega-
tively affected by increasing the key size and when hyperthreading is enabled.
More specifically, with 68 bytes keys we observe 10 times more capacity aborts
and when we enable hyperthreading 5 times more.

On the other hand, fg-htm is much less sensitive to the key size and hy-
perthreading. This is due to its already minimal transaction size which even
in the case of the 68 bytes key is far less than the TSX buffers’ size. It is also
worth noting the difference in the number of capacity aborts between the two
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implementations. fg-htm suffers much less capacity aborts (about 185) than
cg-htm (about 20000).

The above results reveal the disadvantages of HTM algorithms with large
transactional footprints but also the advantages of more complex fine-grained
HTM solutions. The fact that the majority of memory accesses involving keys
take place in the traversal phase and that the critical sections require small
transactional footprints, make the fg-HTM implementation insensitive to key
sizes and hyper-threading.

4.2 Skip list-based ordered sets

One of the most common uses of skip lists is for implementing ordered sets.
We compare our algorithms against the state-of-the-art implementations that
use lock-based and lock-free synchronizations mechanisms. Our comparison
includes the following five skip-list-based set implementations:

– seq: A sequential skip list. This implementation uses no synchronization
and does not produce valid results. However, we use it for throughput
comparison.

– lb: The lock-based skip list by Herlihy et al. [12].
– lf: The lock-free skip list by Frazer with Herlihy’s optimization [21].
– fg-htm: Our fine-grained HTM skip list.
– cg-htm: Our coarse-grained HTM skip list.

All the above implementations are written in C and our source code is
freely available on our github repository 3. The non-HTM ones are derived
from the ASCYLIB library 4.

Figure 5 presents the results we obtained by measuring the throughput
and the transactional statistics 5 for three different workloads:

– Low contention: 1M keys, 5% update rate.
– Medium contention: 100K keys, 50% update rate.
– High contention: 1K keys, 100% update rate.

First, we observe that in low contention executions (1M keys, 5% update
rate, <42 threads) cg-htm performs equally to the rest implementations. As
the contention grows, though, the increasing amount of aborts results in per-
formance degradation. On the other hand, fg-htm manages to provide high
throughput for all contention levels, thanks to its low abort ratio.

If we compare our fine-grained htm-based implementation with the lock-
free skip list we observe a relatively constant interval between their throughput
for medium and high contention levels. This is caused by the overhead of the
lock-free version having to check and clean marked nodes during traversals.
On the contrary, the non-blocking properties of the lock-free implementation

3 https://github.com/mkardaras/HTM_Skip-Lists.git
4 https://github.com/LPD-EPFL/ASCYLIB
5 Terminating a transaction inside the validation phase counts as an abort.
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enables it to scale better in high contention workloads (1K keys, 100% update
rate, >28 threads). The lock-based implementation has similar performance
with the fine-grained HTM version in the first two workloads and a bit worse
in the third.
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0

20

40

60

80

1 14 42 70 98

1Μ Keys , Update Rate: 5%

seq

 lb

 lf

fg-htm

cg-htm

Th
ro

u
gh

p
u

t 
(M

o
p

s/
se

c)

#threads

0

20

40

60

80

100

1 14 42 70 98

100K Keys , Update Rate: 50%

#threads

Th
ro

u
gh

p
u

t 
(M

o
p

s/
se

c)

0

10

20

30

40

50

60

70

1 14 42 70 98

1K Keys , Update Rate: 100%

Th
ro

u
gh

p
u

t 
(M

o
p

s/
se

c)

#threads

Fig. 6: Throughput of skip list-based ordered set implementations within over-
subscription scenarios. Software threads are pinned to 56 hardware threads.



14 Marios Kardaras et al.

The big advantage of fg-htm over the lock-based arises when the threads
start to delay for some reason. Theoretically, both algorithms acquire locks,
therefore they are both blocking. The difference is that with HTM the proba-
bility of acquiring the fallback lock, even under high contention, is very small,
thus the HTM algorithm is practically non-blocking most of the time. The
big problem with blocking algorithms comes up when some threads that hold
locks need to stop their execution for a period of time while other threads
are waiting for the locks to be released. This is a very common scenario in
practice, as threads can be descheduled, wait for data to arrive from the disk
or from some input, etc.

To test the implementations in a scenario where the threads have to delay
their execution for a period of time, we ran experiments were we pinned up to
98 software threads to 56 hardware threads. This results to oversubscription
and certain threads being scheduled out regularly. In Figure 6 we can see the
results of our experiments.

It is evident that the lock-based implementation is affected the most as it
uses a large number of locks per update operation, thus increasing the potential
of a thread being scheduled out while holding a lock. On the contrary, fg-htm
addresses the issue and maintains a stable throughput in all oversubscription
scenarios.

4.3 Skip list-based Priority Queues
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Fig. 7: Measuring throughput and transactional statistics for SprayLists.

Another very common use of skip lists is for implementing priority queues.
Many well known algorithms and applications like task managing in operating
systems (e.g. load balancing, interrupt handling), graph algorithms (e.g. Di-
jkstra, Prim), compression algorithms(e.g. Huffman coding), need to extract
data according to a specific order. They achieve that by using priority queues.
Priority queues support two operations: 1) insert, which inserts an element
with a given priority, and, 2) deleteMin, which returns the element with the
minimum key (i.e., highest priority).

In the standard skip list-based concurrent priority queues [6,25,14,22,16]
the threads compete with each other over the first element or over the p first
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elements, where p is the number of running threads. It is pointless to use HTM
to implement skip list-based concurrent priority queues as repetitious conflict
aborts become inevitable due to the threads acting in neighbouring nodes.

The introduction, however, of relaxed priority queues gives a footing for
HTM ideas. A relaxed priority queue doesn’t necessarily delete the minimum
element but one of the first x elements, where x is a relatively small number.
Contention-wise, this is similar to performing DeleteKey operations in a data
set with x elements. As we saw in the previous subsection, the fine-grained
HTM implementation performed well in small data sets, something that gives
us a hint for implementing relaxed priority queues with HTM. Recently, there
has been intensive work on relaxed priority queues [3,29,20] and a surge of
interest both from academia [11] and practice [17].

In this paper we focus on SprayList [3], a relaxed priority queue whose
DeleteMin operation returns an element among the first O(p log 3p) in the list,
with high probability, where p is the number of threads. In order to do so, it
initially calls the operation spray that performs a carefully designed random
walk that finishes in one of the first O(p log 3p) elements. Afterwards, the
standard DeleteKey operation is called which removes the element selected by
the spray operation.

We implemented a coarse-grained and a fine-grained HTM version of SprayList,
where the spray operations are the same as the one in the original lock-free
implementation but without the cleaning and the DeleteKey operations are
identical to the ones we described on section 3.

We measured throughput of each implementation and the results are shown
in Figure 7. At first, as we would expect, with abort percentages exceed-
ing 90%, coarse-grained HTM is completely unsuitable for implementing a
SprayList. On the contrary, fine-grained HTM takes advantage of the distri-
bution caused by spray and limits the aborts per update operation ratio to
numbers less than 2,2. This is imprinted in throughput results, with the fg
HTM version achieving slightly better performance than the original lock-free
implementation.

5 Related Work

TM has been extensively used for the implementation of concurrent data struc-
ture such as linked lists [26], hash tables [15] and search trees [4,28,23,24]. We
mostly focus on related work that involves concurrent TM-based Skip Lists.

Zhaoguo Wang et al. [27] have applied Intel’s RTM in order to implement
concurrent Skip Lists. In their algorithms they do not consider separate delete
operations, instead they treat a delete as a special insertion operation which
inserts a key with an empty value. They test coarse-grained and fine-grained
HTM versions as well. In the fg version the insertion starts by traversing the
set without transactions, locating the predecessors. Afterwards, they begin a
transaction and instead of doing validations they keep traversing at each level
in order to find the correct preds and succs pairs and finish by executing the



16 Marios Kardaras et al.

update and commit the transaction. The contains operation is executed inside
a transaction.

Pirkelbauer et al. [18] offer an interpretation of the epoch-based memory
reclamation technique for HTM systems. In order to test memory managers,
they implemented an HTM-based Skip List where traversals both in update
and find operations are executed inside dynamic sized transactions. The exe-
cution of the critical sections is similar to the fine-grained locking but instead
of locking they use single transactions. Both Zhaoguo Wang et. al and Pirkel-
bauer et. al provide fallback paths where a global fallback lock is acquired
after multiple transactional retries.

David and Guerraoui [7] also study the problem of oversubscription in their
paper. They do propose HTM as a solution to the problem as well and among
other data structures they also tested HTM Skip Lists. What they did was to
add Intel’s TSX instructions to the acquire and release methods of the locks in
the standard lock-based implementations. The fallback path in this case uses
the actual locks and no global lock is required. Their evaluation revealed that
the use of TSX increased the performance of Skip Lists up to 53.28 times for
workloads with high contention.

Software Transactional Memory has also been used to parallelize Skip Lists.
Dragojević and Harris [9] present a specialized STM system (SpecTM) that
allows the programmer to use special short transactions for small updates like
inserting or deleting a node with level one and traditional transactions for
bigger updates.

Avni et al. [5] introduced a new concurrent data-structure called Leap-List.
Leap-List is a Skip List where each node holds up-to K immutable key-value
pairs. For the implementation they use Software Transactional Memory and a
variation of COP with Locking Transactions (LT). In this variation the read-
only part is checking for locks, and retries. Then the transaction atomically
verifies validity and locks the written addresses. After the transaction commits,
a postfix of the operation writes the data to the locked locations and releases
them.

6 Conclusions and Future Work

In this work we explored the efficacy of HTM for implementing concurrent skip
lists. In our first approach we used HTM in the most straightforward way, i.e.,
we enclosed each operation (except contains) in a single HTM transaction. Al-
though simple, this naive implementation failed to provide high performance
due to its large transactions. To minimize the transaction size and unlock
performance we devised a fine-grained HTM based skip list which surpasses
the coarse-grained HTM’s limitations and manages to provide performance
competitive or even better than state-of-the-art lock-based and lock-free con-
current skip lists.

As part of our future work we plan to extend our analysis on more data
structures and explore how HTM can be used to facilitate the implementation
of more complex concurrent data structures. Moreover, as in this work we
did not deal with memory reclamation of the removed nodes, we intend to do
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so in our next steps. More specifically, we would like to explore how memory
reclamation can be combined with HTM-based algorithms and its performance
impact.
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