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ABSTRACT
NoSQL databases focus on analytical processing of large
scale datasets, offering increased scalability over commod-
ity hardware. One of their strongest features is elasticity,
which allows for fairly portioned premiums and high-quality
performance. Yet, the process of adaptive expansion and
contraction of resources usually involves a lot of manual
effort, often requiring the definition of the conditions for
scaling up or down to be provided by the users. To date,
there exists no open-source system for automatic resizing of
NoSQL clusters. In this demonstration, we present TIRA-
MOLA, a modular, cloud-enabled framework for monitoring
and adaptively resizing NoSQL clusters. Our system incor-
porates a decision-making module which allows for optimal
cluster resize actions in order to maximize any quantifiable
reward function provided together with life-long adaptation
to workload or infrastructural changes. The audience will
be able to initiate HBase clusters of various sizes and ap-
ply varying workloads through multiple YCSB clients. The
attendees will be able to watch, in real-time, the system per-
form automatic VM additions and removals as well as how
cluster performance metrics change relative to the optimiza-
tion parameters of their choice.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed da-
tabases

Keywords
Elasticity, NoSQL, Automatic Cluster Resize, Markov Deci-
sion Process, Cloud Monitoring, Open-source
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1. INTRODUCTION
Computational and storage requirements of applications

such as web analytics, business intelligence and social net-
working over tera- (or even peta-) byte datasets have pushed
SQL-like centralized databases to their limits [12]. This led
to the development of horizontally scalable, distributed non-
relational data stores, called NoSQL databases (e.g., [6, 18,
8, 9], etc). NoSQL systems exhibit the ability to store and
index arbitrarily big data sets while enabling a large amount
of concurrent user requests. They are perfect candidates
for cloud platforms that provide infrastructure as a service
(IaaS) such as Amazon’s EC2 [2] or its open-source alter-
natives (e.g.,[22, 7]): NoSQL administrators can utilize the
cloud API to throttle the number of acquired resources (i.e.,
number of virtual machines – VMs and storage space) ac-
cording to application needs.

This is highly-compatible with NoSQL stores: Scalabil-
ity in processing big data is possible through elasticity and
sharding. The former refers to the ability to expand or con-
tract dedicated resources in order to meet the exact demand.
The latter refers to the horizontal partitioning over a shared-
nothing architecture that enables scalable load processing.
It is obvious that these two properties (henceforth jointly
referred to as elasticity) are intertwined: as computing re-
sources grow and shrink, data partitioning must be done
in such a way that no loss occurs and the right amount of
replication is conserved.

Many NoSQL systems claim to offer adaptive elasticity
according to the number of participant commodity nodes.
Nevertheless, the “throttling” is usually performed manu-
ally, making availability problems due to unanticipated high
loads not infrequent (e.g., the recent Foursquare outage [15]).
Adaptive frameworks are offered by major cloud vendors as
a service through their infrastructure: Amazon’s SimpleDB
[3], Google’s AppEngine [5] and Microsoft’s SQL Azure [10]
are proprietary systems provided through a simple REST in-
terface offering (virtually) unlimited processing power and
storage. However, these services run on dedicated servers
(i.e., no elasticity from the vendor’s point of view), their in-
ternal design and architecture is not publicly documented,
their cost is sometimes prohibitive and their performance is
questionable [17].

A number of recent works has provided interesting insights



over the performance and processing characteristics of var-
ious analytics platforms (e.g., [17, 23, 13]), without dealing
with elasticity in virtualized resources, which is the typical
case in cloud environments. The studies presented in [14,
20, 26, 25] deal with this feature but do not address No-
SQL databases, while [19] is file-system specific. Finally,
proprietary frameworks such as Amazon’s CloudWatch [1]
or AzureWatch [4] do not provide a rich set of metrics and
require a lot of manual labor to be applicable for NoSQL
systems. Thus, although both NoSQL and cloud infrastruc-
tures are inherently elastic, there exists, to the best of our
knowledge, no open-source system that combines these two
technologies to offer automated NoSQL cluster resize ac-
cording to dynamic workload changes.

Our work aims to bridge this gap between elasticity pro-
visioning at different levels. Having considerable experience
with NoSQL databases (including hands-on experience with
the OpenStack IaaS [7]) [16], we present a distributed frame-
work that allows (in a customizable and automated man-
ner) virtually any NoSQL engine to expand or contract its
resources by using a cloud management platform. The de-
ployed system, TIRAMOLA, offers the following features:

• A generic VM-based control module that monitors No-
SQL clusters. This module is further modified in order to
report real-time, client-side statistics.
• An implementation of the decision-making module as a

Markov Decision Process, enabling optimal decision-making
relative both to the desired policies as well as to changes
in the environment the cluster operates under.
• A real-time system that integrates these modules and uti-

lizing popular open-source implementations for NoSQL,
Cloud OS and benchmarking (HBase, OpenStack, YCSB
[13] respectively) showcases its functionality: The system
decides on the appropriate add/remove VM action accord-
ing to the chosen cost function and relative to cluster per-
formance.

In this demonstration, we will allow participants to inter-
act with TIRAMOLA on three levels: (a) Cluster initializa-
tion: allow a choice of the initial number of VMs and size
of the database, (b) Optimization function: allow a choice
between different policies to be fed to the decision-making
module, and (c) Workload: allow customization regarding
some characteristics of the incoming load (e.g., peak amount
of req/sec).

2. ARCHITECTURE
TIRAMOLA, an about 5K Python lines of code open-

source project1, features an architecture that is illustrated
in Figure 1. The Decision Making module incorporates both
the optimization function given through customer policies as
well as cluster- and client-side metrics and periodically de-
cides on cluster resize operations. It interacts with the Cloud
Management module that contacts the cloud vendor to ad-
just the cluster’s physical resources by releasing or acquir-
ing more virtual machines. The Cluster Coordinator module
executes higher level add, remove and rebalance commands
according to the particular NoSQL system used. Finally,
the Monitoring module maintains up-to-date performance
metrics that collects from the cluster nodes and the clients.
Below we describe each module in more detail.

1http://tiramola.googlecode.com
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Figure 1: Architecture of our Cloud-based NoSQL
elasticity-testing framework.

Monitoring Module: Our system takes a passive mon-
itoring approach. Currently, it receives data from Ganglia
[21], a scalable distributed monitoring tool that allows the
user to remotely collect live or historical cluster statistics
(such as CPU load averages, network, memory or disk space
utilization, number of open client threads, etc) through its
XML API and present them through its web front-end via
real-time dynamic web pages. Apart from server side met-
rics, we have performed modifications to allow Ganglia to
collect user-related metrics. This is necessary, since the sys-
tem state may also depend on user-related information such
as mean query latency and query arrival rate. To achieve
this, we have modified our clients so that each one reports
its own metrics by utilizing a well-known Ganglia opera-
tion called “gmetric spoofing” (we do not consider malicious
clients, therefore every reported metric is assumed to be cor-
rect). With this mechanism, the monitoring module feeds
the decision making module with an up-to-date system state,
taking into account both client- and server-side metrics.

Cloud Management: Our system interacts with the
cloud vendor using the well known euca2ools, an Amazon
EC2-compliant, REST-based client library. The Decision
Making module interacts with this module when it com-
mands for a resize in the physical cluster resources, i.e., the
number of running VMs. Our cloud management platform
is a private OpenStack [7] installation. The use of euca2ools
guarantees that our system can be deployed in Amazon’s
EC2 or in any EC2-compliant IaaS cloud. We have cre-
ated an Amazon Machine Image (AMI) that contains pre-
installed versions of the supported NoSQL systems along
with the Ganglia monitoring tool.

Cluster Coordinator: VM coordination is done with
the remote execution of shell scripts and the injection of
on-the-fly created NoSQL specific configuration files to each
VM. Higher level “start cluster”, “add NoSQL node”and“re-
move NoSQL node” commands are translated in a workflow
of the aforementioned primitives. Our framework ensures
that each step has succeeded before moving to the next one.

Decision Making Module: This module is responsi-
ble for deciding the appropriate cluster resize action accord-
ing to the applied load, cluster operating state and user-
defined cost function. TIRAMOLA formulates this pro-
cess as a Markov Decision Process (MDP) that continu-
ously identifies the most beneficial action relative to the
current system state. Benefits (both short and long-term)
are defined through a reward function that expresses the
optimization/cost-model each user wishes to operate under.

http://tiramola.googlecode.com
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Figure 2: CPU usage, query throughput and query latency for the r1(s) reward function.

Metrics that are used to define this function come from the
cluster status (e.g., CPU load, available memory, through-
put, etc) and the applied workload (e.g., average query la-
tency and arrival rate). Upon reaching to a resize decision,
the module requests addition or removal of a number of VMs
using the Cloud Management and Cluster Coordinator mod-
ules. For finite MDPs there exists at least one action strat-
egy that maximizes the expected sum of rewards or, equiv-
alently, dictates greedy state transitions according to the
optimal state value functions V ∗(s) that satisfy Bellman’s
equation [24]. We formulate the Decision Making module as
an MDP (S,A, P, γ,R) as follows:

Set of States S: S = {S1, S2, ..., SM}, where Si represents
a cluster with i NoSQL worker nodes (VMs) up and running.

Actions A(s): Available actions are to add and remove

node or do nothing (no-op). The action space may also
be quantified by allowing only certain number(s) of VM in-
stances to be added or deleted (e.g., add_2, add_4 and re-

move_2, remove_4, etc).
The transition probability matrix P : The quantity paij is

the probability of transitioning from state i to state j given
that action a was taken. In our formulation, the transition
probabilities state that a transition is only permissible if
adding (removing) VMs results in the exact number of VMs
being added (subtracted) to the initial cluster, or after a no-

op the state remains the same. The model can be generalized
to include the possibility of a partially successful permissible
operation, i.e., paij = f, 0 ≤ f ≤ 1 (e.g., adding 4 nodes may
result in only increasing cluster size by 2).

The discount factor 0 ≤ γ < 1. It accounts for both
present and future rewards.

Reward function R: Function R(s) returns a numerical
level of “goodness” of being at state s. This is an impor-
tant part of the formulation, as reward maximization by
the module leads to different optimal policies using different
reward functions. In general, r(s) = ϕ(gains, costs), i.e., a
user-defined cost model is set by appropriately incorporating
various measurable or verifiable quantities into the reward
function. For example, high throughput or served query rate
can be profitable while query latency that violates an SLA,
costs per running VM, etc, can be considered costly. Note
here that our work does not provide an “optimal” definition
of the reward function. Rather, we present a system that can
optimally manage VM resources according to any function
provided.

Thus, the system of equations on the optimal state value
functions becomes: V ∗(s) = R(s) + maxa{γV ∗(s′)} (1) for
all permissible actions a from state s. This formulation al-
lows for a large degree of freedom in three points: The as-
sumptions about the knowledge we have of the system, the
level of customization that can be achieved and the required
computation. First, the finite MDP allows for optimal so-
lution regardless of our knowledge of the environment or its
dynamics: If a strict model can be deduced, Dynamic Pro-

gramming techniques over Bellman’s equations can identify
the optimal policy with less experimentation cost. Alter-
natively (which is the case for the current TIRAMOLA de-
ployment), the system may learn directly from experience
without a model of the environment’s dynamics. Second,
learning is performed in real-time and continues through
the entire life of the system. The module learns and acts
simultaneously, reacting to changes in the cost model, the
incoming load, the infrastructure, etc. Third, the definition
of the reward function leads to different optimization goals
by different providers.

Solving the system of linear equations (1) requires the
R(s) values for all states. To estimate those values from pre-
vious experience, we utilize an incremental, online method
sketched below: A multi-dimensional dataset, with the met-
rics participating in the reward function as the different di-
mensions, is constantly enriched at each polled interval (e.g.,
on a per-minute basis). Data points that correspond to sys-
tem measurements for similar to the current stimuli (i.e., in-
coming load) are dynamically clustered, with centroids being
used in order to compute the R(s) values.

To see an example of how TIRAMOLA allows for adaptive
cluster resize without any human involvement, we have uti-
lized a 9-node HBase cluster loaded with 20M YCSB records.
We test our system under a realistic and intensive work-
load, in which load increases during peak hours and drops
during non-peak hours (e.g., Figure 14 in [11]). The re-
ward function r1(s) chosen here, considers both throughput
(thr) and latency (lat) besides the cost per VM: r1(s) =
B · thr − C · |VMs| −D · lat, with B,C,D appropriate con-
stants. Figure 2 shows the results that this policy produces.
The decision making module increases the number of nodes
to a “modest” number of 13 servers, passing from states 9-
10-12-13 and 9-10-11-13 during the load increase. It uses
the same transition path to return the cluster to each origi-
nal state, removing one HBase node at a time. Although it
incorrectly removes and re-adds a server (3000-4000 seconds
into the experiment), it correctly spots the load decrease
and returns the system to its original state. Similarly, it
can be shown that the proposed system adaptively reassigns
resources according to the reward functions presented and
the incoming load.

3. DEMONSTRATION DESCRIPTION
The demonstration will allow attendees to interact with

TIRAMOLA on three levels: Cluster initialization, user pol-
icy and imposed workload. A comprehensive real-time GUI
will showcase the system’s ability to setup an HBase clus-
ter, impose various dynamic loads on it and automatically
adapt the number of VMs to optimize the policy provided
by the user. Users can access TIRAMOLA through a sim-
ple web interface, as depicted in Figure 3. The interface and
demonstration consists of three parts described in detail:
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Figure 3: TIRAMOLA demo interface.

Cluster Initialization: Users will be able to create an
initial HBase [6] cluster. The choices here will be over the
initial number of nodes as well as the size of the shared
data. The total number of available VMs will be 24. To
allow room for both additions and removals, 8 or 16 initial
nodes can be setup. Moreover, to allow for timely and in-
teractive demos, “pre-constructed” images of two database
sizes (30 GB and 90GB) will be ready to be loaded to the
cluster upon user choice to avoid the time-consuming task
of loading using clients. Note here that, as soon as the clus-
ter is initiated, users will have access to the web-frontend of
the virtual cluster’s Ganglia monitoring tool, with real-time
presentation of various performance metrics.

Policy definition: In this tab, users may choose which of
the metrics will affect the behavior of the decision making
module. In effect, combinations of reward functions that
contain query latency, cluster throughput, number of VMs
and cluster CPU can be constructed.

Workload specification: We utilize the YCSB Cloud
Serving Benchmark framework [13] in order to pose load to
our clusters. Through the third tab, users may alter two dis-
tinctive characteristics of a basic “skeleton” workload which
periodically increases and decreases (approximating a sinu-
soid function): The period of change and its peak value.
Thus, participants can actively control how dynamic and
intense the load imposed upon the cluster is.

As soon as all these parameters have been set, a YCSB
workload will be executed at the newly created cluster. Users
can now watch various cluster metrics through its Ganglia
frontend in real-time, the operations that TIRAMOLA de-
cides and how they affect the performance from the clients’
point of view. Finally, aggregate reports and graphs docu-
menting mean query latency, served requests per second and
the number of dedicated resources over time can be printed
at the users’ request at the end of the workload.

By providing a wide range of configurable parameters and
having adequately provisioned resources to ensure timely
demonstrations, our system will showcase its adaptation rel-
ative to realtime choices: More nodes added for larger load
peaks; inability to add or remove nodes when certain met-
rics are not included in the policy; perform VM additions
and removals at different rates relative to the workload pe-

riod, etc. Aggregate reports created and saved at the end of
each load can be used to directly compare behaviors, initiate
discussions and comment over various aspects of the system
with the attendees.
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