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Abstract—This work presents TIRAMOLA, a cloud-enabled,
open-source framework to perform automatic resizing of NoSQL
clusters according to user-defined policies. Decisions on adding or
removing worker VMs from a cluster are modeled as a Markov
Decision Process and taken in real-time. The system automatically
decides on the most advantageous cluster size according to user-
defined policies; it then proceeds on requesting/releasing VM
resources from the provider and orchestrating them inside a
NoSQL cluster. TIRAMOLA’s modular architecture and standard
API support allows interaction with most current IaaS platforms
and increased customization. An extensive experimental evalua-
tion on an HBase cluster confirms our assertions: The system
resizes clusters in real-time and adapts its performance through
different optimization strategies, different permissible actions,
different input and training loads. Besides the automation of
the process, it exhibits a learning feature which allows it to
make very close to optimal decisions even with input loads 130%
larger or alternating 10 times faster compared to the accumulated
information.
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I. INTRODUCTION

NoSQL databases (e.g., [1]–[3]) are horizontally scalable,
distributed, non-relational data stores that emerge as efficient,
cloud-friendly alternatives to traditional approaches. They are
able to store and index arbitrarily big and usually schema-less
data sets, serving a large amount of concurrent requests. Scal-
ability is mainly possible through sharding, i.e., the horizontal
data partitioning over a shared-nothing architecture. Using this
mechanism, many NoSQL implementations are able to adjust
their performance: query throughput, data insertion, latency,
etc, vary according to the amount of allocated resources (i.e.,
number of worker nodes) [4].

This characteristic is highly compatible with the elastic
nature of Cloud Computing: users marshal and un-marshal
resources as they are needed, in a true pay-as-you-go manner.
Elasticity is defined as the ability to expand or contract
dedicated resources according to a defined policy. Cloud
platforms that provide infrastructure as a service (IaaS) such
as Amazon’s EC2 [5] or its open-source alternatives (e.g., [6])
are inherently elastic, allowing applications to throttle their
acquired resources on-demand.

Many systems claim to offer adaptive elasticity according
to the number of participant commodity nodes. Auto-scaling
resources has been identified as one of the top obstacles

and opportunities for Cloud Computing [7]. Nevertheless,
the “throttling” is manually performed (e.g., [8], [9]). Yet,
it is difficult for a user to figure out the proper scaling
conditions, especially when the application is executed on
a third-party virtualized infrastructure. Moreover, the needs
of the application change dynamically, requiring different
optimizations relative to the amount of reserved resources.
Adaptive frameworks offered by major cloud vendors (e.g.,
[10], [11]) are proprietary systems running on dedicated
servers (i.e., no elasticity from the vendor’s point of view)
with no publicly documented internal design and architecture,
sometimes prohibitive cost and questionable performance [12].

Consequently, although both NoSQL and cloud infrastruc-
tures are inherently elastic, there exists, to the best of our
knowledge, no open-source solution to offer automated, real-
time NoSQL cluster resize according to user-defined policies.
Our work aims at providing the missing layer between elastic
resource provisioning at the infrastructural level and the elastic
performance of NoSQL engines. We present a cloud-enabled
framework that allows customizable and automated expansion
or contraction of the committed resources of a NoSQL cluster,
for virtually any such engine. The deployed system, TIRA-
MOLA, offers the following features:

• A generic VM-based module that monitors cloud-based
NoSQL clusters. This module is further modified in order to
report real-time, client-side statistics, offering multi-grained,
scalable monitoring.
• An implementation of the decision-making module as a

Markov Decision Process, enabling optimal policy gen-
eration relative to both changes in the environment and
different cost functions.
• A real-time system that integrates these modules; utilizing
popular open-source implementations for NoSQL, Cloud
APIs and benchmarking tools, our system decides on the
appropriate add/remove VM action according to the chosen
optimization function and relative to cluster performance.

We also present a thorough evaluation of our system. Results
show that TIRAMOLA successfully resizes a NoSQL cluster
in a fully automated manner. It manages to do so even with
input loads significantly larger in amplitude (over 80K req/sec,
an over 130% increase) or in change frequency (10× faster)
compared to the loads experienced so far. The evaluation also
measures the performance and compares TIRAMOLA to an



“omnipotent” decision-maker under different reward functions,
different permissible actions and sensitivity to the amount and
quality of collected information.

II. RELATED WORK

The work in [13] presents a resource manager that dynam-
ically consolidates remote cloud resources based on prede-
fined policies and a prototype for extending Torque clusters.
Similarly in [14], the amount of servers in a data center is
regulated in order to optimize energy consumption. The works
in [15]–[17] solve the problem of optimizing the resources
of each VM (CPU, memory, etc) to achieve maximum per-
formance, while the work in [18] aims at minimizing cost
and maximizing throughput via training sessions and linear
programming. These works do not address NoSQL systems
and their performance under dynamic cluster resizes. Instead,
we utilize multi-grained monitoring that uses a rich set of
metrics to realize any resize policy.

The work in [19] presents policies for elastically scaling a
Hadoop-based storage tier based on automated control. CPU
utilization dictates the number of VMs needed to satisfy a
pre-defined objective (e.g., response time should be less than
3 sec). This approach is HDFS-specific using integrated mon-
itoring; our framework is able to optimize resource allocation
based on a rich set of user-defined policies and collected
metrics.

The work in [20] allows customization of application-
internal modules such as the consistency protocol, routing
(e.g., master-slave vs. DHT) and load balancing. Nevertheless,
it does not elastically scale committed resources. In [21], users
supply hints about the nature of the application, allowing
the framework to modify its scheduling policies to improve
application performance. The difference is the need for a
middleware to be installed inside the cloud management layer,
whereas we only utilize cloud client tools, being completely
agnostic about the internals of the cloud management platform.
A flexible language for controlling multi-dimensional elastic
properties is defined in [22]. The approach in [23] is similar to
our decision making module, with an effort to designate a suit-
able number of virtual machines in order to maximize profit.
The system takes into consideration high-level metrics (e.g.,
application response time) and employs microeconomics to
converge to a proportional sharing equilibrium. Our approach
is far more general, as it can employ any cost or optimization
model to its functionality.

CloudWatch [8] provides VM-based metrics which, in com-
bination with AutoScaling [24], allow simple policy descrip-
tions that trigger resize actions. Yet, the metric support is
limited to hypervisor-related information. CloudWatch is a
general purpose tool that requires extra coding to reconfigure a
NoSQL cluster after a resize operation. This is also the case for
other frameworks such as [25], [26]. Solutions in this category
put the burden of the decision and the amount of committed or
freed resources solely to the users, while sometimes resulting
in expensive vendor lock-ins (e.g., [9]).
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Fig. 1. Architecture of the TIRAMOLA elasticity-provisioning framework.

III. ARCHITECTURE

TIRAMOLA [27], [28] is an open-source project that delivers
automatic resource allocation for NoSQL clusters. It features a
modular architecture illustrated in Fig. 1. The Decision Making
module incorporates both the user-policy defined through
an optimization function as well as cluster- and client-side
monitored metrics and periodically decides on cluster resize
actions. It outputs resize actions to the Cloud Management
module that interacts with the cloud vendor in order to release
or acquire more virtual machines. The Cluster Coordinator is
then responsible for orchestrating the addition and removal
commands relative to the particular NoSQL cluster in hand.
The Monitoring module maintains up-to-date performance
metrics collected from both cluster nodes and client nodes.
Below we describe each module in more detail:

Decision Making Module: This module is responsible for
deciding the appropriate cluster resize action according to
the applied load, cluster and user-perceived performance and
optimization policy. TIRAMOLA formulates this process as a
Markov Decision Process (MDP) that continuously identifies
the most beneficial action relative to the current system state.
The user goals are defined through a reward function that
translates the optimization each application wishes to adhere
to. Upon reaching a resize decision, the module forwards this
command to the Cloud Management module.

Monitoring: TIRAMOLA uses Ganglia [29], a scalable
distributed monitoring tool that allows remote collection of
live or historical cluster statistics (such as CPU load averages,
network, memory or disk space utilization, number of open
client threads, etc) through its XML API. Apart from the
server-side metrics, modifications have been performed that
allow Ganglia to collect user-related metrics. This is neces-
sary, since the system state may also depend on user-related
information such as mean query latency. To achieve this, we
have modified our clients so that each one reports its own
metrics by utilizing a well-known Ganglia operation called
gmetric spoofing. With this mechanism, the monitoring
module feeds the decision making module with an up-to-date
system state, taking into account both client and server side
metrics.



Cloud management: Our system interacts with the cloud
vendor using the well known euca2ools, an Amazon EC2
compliant REST-based client library. This module receives as
input commands for a NoSQL cluster resize (in the number of
running VMs). Our cloud management platform is a private
OpenStack [6] installation. The use of euca2ools along with
the creation of Amazon Machine Images (AMIs) with pre-
installed versions of the supported NoSQL systems and Gan-
glia guarantees that TIRAMOLA can be deployed in practically
any EC2-compliant IaaS cloud.

Cluster coordinator: The orchestration of newly commis-
sioned or freed resources from the NoSQL cluster is performed
with the remote execution of shell scripts and the injection
of automatically created NoSQL-specific configuration files to
each VM. A high-level “start cluster”, “add NoSQL node(s)”
and “remove NoSQL node(s)” command is thus translated to
a workflow of the aforementioned primitives. Our implemen-
tation ensured that each step has succeeded before moving to
the next one, using applicable time-outs.

Our framework has successfully incorporated three popular
NoSQL systems that exhibit elastic behavior: HBase (see
experimental evaluation), Cassandra and Riak. The system is
extensible enough to include more engines that support elastic
operations by implementing the system’s abstract primitives in
the Cluster Coordinator module and by including the system’s
binaries to the existing AMI virtual machine image. The
precooked virtual machine image is available for download
from the project’s web site. TIRAMOLA also strives to be
robust: It periodically checkpoints and can be restarted after
a failure; required state is maintained through the monitoring
module as well as the underlying IaaS platform.

A. Decision Making as an MDP

Reinforcement Learning [30] is defined as the task of
learning how to behave in a certain environment. A Markov
Decision Process (MDP) [31] is defined by the tuple
(S,A, {Psas′}, γ, Rsas′), where S is a set of states, A is a
set of actions, {Psas′} = Pr{st+1 = s′|st = s, at = a}
is a set of transition probabilities, γ ∈ [0, 1) is the discount
factor and Rsas′ is a reward function. At each time step t,
the system finds itself in state s. Choosing action a ∈ A at
the current state brings the agent to the next state s′ with
probability Psas′ , receiving a reward of Rsas′ . The total reward
(or return) is given by the discounted sum of rewards. For
finite MDPs, an optimal action per state solution exists; it
is equivalent to computing the optimal action-value functions
Q∗(s, a), defined as the expected return when the agent starts
from that state and takes action a. Action-value functions
satisfy the Bellman optimality equation [30].

TIRAMOLA formulates resize decisions as an MDP that
continuously identifies the most beneficial action. Benefits
(both short and long-term) are defined through a reward
function that translates the optimization/cost-model each ap-
plication adheres to. First, we ensure that the Markov property
holds for this formulation. Indeed, each of the module’s
decisions are made regardless of how the cluster population

has been assembled so far, but only depends on the current
state (i.e., number of VMs, CPU, memory, etc) and the action
it perceives will be most beneficial. The tuple that describes
our MDP (S,A, P, γ, r) is formulated as follows:
States S = {S1, S2, ..., SM}, where Si represents a cluster
with i ∈ [1,M ] NoSQL worker nodes (VMs) up and running.
Actions A(s): Available actions are to add-, remove-node, or
do nothing (no-op). The action space may also be quantified
by allowing only certain number(s) of VM instances to be
added or deleted (e.g., add_2, add_4 and remove_2,
remove_4, etc).
The transition probability matrix P : paij is the probability of
transitioning from state i to state j given that action a was
taken. For our setting: paij = 1 if permissible i

a−→ j and
0 otherwise. A transition is permissible if adding (remov-
ing) VMs results in the exact number of VMs being added
(subtracted) to the initial cluster, or after a no-op the state
remains the same. The model can be generalized to include
the possibility of a partially successful permissible operation,
i.e., paij = f, 0 ≤ f ≤ 1 (e.g., adding 4 nodes may result in
only increasing cluster size by 2).
Reward function r(s): It represents a numerical level of
“goodness” of being at state s. This is an important part
of the formulation, as reward maximization by the module
leads to different optimal policies using different reward
functions. In general, r(s) = ϕ(gains, costs), i.e., a policy
is defined by appropriately incorporating various measurable
or verifiable quantities into the reward function. For example,
high throughput or served query rate can be profitable while
query latency that violates an SLA, the costs per VM, etc can
be considered costly. Finally, the discount factor 0 ≤ γ < 1
accounts for both present and future rewards.

This formulation allows for a large degree of freedom:
First, the finite MDP allows for optimal solution regardless
of our knowledge of the environment or its dynamics: the
system may learn directly from experience without a model
of the environment’s dynamics. Second, the learning is real-
time and continues through the entire life of the system. The
module learns and acts simultaneously, reacting to changes
in the rewards, the environment, etc. Third, the definition of
the reward function leads to different optimization goals by
different providers.

B. Real-time Decision Making

Given the values for Q∗, greedily choosing any action
that maximizes Q∗(s, a) for any state s is proved to provide
optimal behavior [30]. Solving Bellman’s equations for the
exact Q∗(s, a) values requires solving a system of linear
equations, which is akin to an exhaustive search, looking ahead
at all possibilities. Besides the computational expense, this is
unrealistic in terms of exact knowledge of the system and
application dynamics. Instead, TIRAMOLA uses Q-learning
[30] to compute the optimal action-state values which updates
Q(s, a) at each time a decision is made:

Q(s, a) = Q(s, a) + α[r(s′) + γmax
a′

Q(s′, a′)−Q(s, a)](1)
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Fig. 2. Example of choosing the appropriate latency values in order to
compute r(s) = ϕ(latency, VMs)

where 0 < α ≤ 1 is the learning rate. Q values are stored in
a look-up table and updated using (1). After each transition
from the previous state s to the current state s′, an incremental
adjustment is made to the estimated value of the previous
state-action pair Q(s, a). With the learning rate decaying to
zero asymptotically and Q(s, a) values represented using a
lookup table, (1) is guaranteed to converge to the optimal
value function Q∗(s, a), provided that the policy for action
selection is asymptotically greedy, i.e., it chooses the action
with highest Q-value in a given state.

TIRAMOLA utilizes training sessions in order to speed up
convergence and increase the accuracy of estimating r(s). This
is important in order to produce a realistic and accurate greedy
policy, especially in the first stages of the learning process.
In TIRAMOLA, we implement an incremental, online method
executed inside the Decision Making module to estimate r(s)
values described below:

Data collected from the monitoring module form a d-
dimensional dataset, with d >= 2. The dimensions that
participate de facto are the rate of incoming load λ and the size
of the cluster (number of VMs). Each metric that participates
in the reward function is further added to the dimensions of
our model. As the cluster operates, a d-dimensional table is
enriched with one point at each polled interval. When the
time for a decision comes, the system must compute r(s′)
for each state s′ that we are permitted to go to from the
current state s. Our method is based on the rationale that
the system acts in a predictable manner, behaving similarly
under similar conditions. Thus, we perform a clustering of the
(d − 1)-dimensional datasets (excluding the dimension about
the number of VMs) that correspond to states {s′}. Yet, not all
the data points are included: Following our rationale, we are
interested in measurements relative to the current cluster load.
Thus, and to account for some degree of variability, we only
allow the points within a certain “slice” of λ values around the
current load measurement to be fed to the clustering engine.
The centroid of the largest cluster (if the number of clusters
k > 1) can then be used as a representative point whose
coordinates will be used to compute r(s′).

Fig. 2 gives an example of this process. We assume that
r(s) = ϕ(latency, VMs). The three graphs represent three
2-dimensional datasets, one for each different cluster size,
namely v1, v2, and c (the current cluster size), with v1 < c
< v2. All data-points collected so far are marked with an ‘x’.
When the system decides for a possible resize, the most recent
measurement is marked with a blue ‘x’, meaning the cluster

exhibits latency Latc with incoming load equal to λc. In order
to compute r(v1) and r(v2) we cluster the data points inside
the grey areas (the corresponding λ-slices) and choose the
centroids’ y-coordinates (Latv1,Latv2). In general, we elect
representative points over p datasets of (d − 1) dimensions,
where p is the number of permissible transitions from the
current state. For each such dataset, only the data points that
reside inside a (d − 1)-hypercube are fed to the clustering
engine.

Our MDP approach has the advantage that it does not
require a model of the environment while it is naturally
implemented in an online, fully incremental fashion with a
minimal amount of computation. Training is important in
the initial execution phases to ensure correct behavior with
minimal (or no) experience. As time progresses and Q values
are refined, real-time monitoring statistics prevail and are used
by (1) to estimate action-state values. Finally, it is important to
note that this formulation allows real-time policy learning and
adaptation: Changing the way the Decision-Making module
acts because an application has different requirements or
(more rarely so) because the VM/cluster properties change
is as simple as changing the reward function r or resetting
the Q values. The latter is necessary for example when the
infrastructure serving the cluster changes drastically.

IV. EXPERIMENTAL RESULTS

The experimental section intends to showcase the appli-
cability of TIRAMOLA as a control and monitoring layer
that manages a NoSQL cluster over an IaaS provider. Our
evaluation plans to demonstrate the following: (1) automatic
management of VM resources under incoming loads of dif-
ferent amplitude and frequency, (2) adaptation relative to
different reward functions supplied and (3) sensitivity towards
the training phase and the amount of permissible states.

A. Experimental Setup

Our experimental setup consists of an OpenStack cactus
private cluster [6] of 20 client VMs (load generators) and 16
server VMs. Each server VM has a 4 virtual core processor
with 8GB of RAM and 50GB of storage space, while client
VMs have 2 virtual cores and 4GB of RAM. The versions
of Hadoop and Ganglia used are 1.0.1 and 3.1.2 respectively,
both in their default configuration. We utilize an HBase (v.
0.92.0) cluster with initial size of 4 VMs (can be increased
up to 16 VMs and downsized to a single VM – excluding the
HMaster). The cluster is loaded using the well-known YCSB
benchmark [32] with 20M records. HBase is configured with
a replication factor of 3.

Our workload is also created through the YCSB tool. Loads
comprise simple get queries (UNIFORM READ query types).
In [4] we present results showing how different NoSQL
engines behave relative to different load types, namely zipfian
random reads, uniform random updates and uniform random
read-modify-writes. We also take into account the seasonal
effect of web serving applications, in which load increases
during peak hours and drops during non-peak hours. For
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Fig. 3. System behavior when applying four loads of different amplitude (1K, 10K, 45K and 70K req/sec) using r4(s)
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Fig. 4. System behavior when applying four loads with frequency 1
2
×, 2×, 4× and 10× of the training dataset using r4(s)

instance, Akamai’s 24-day load (Fig. 14 in [33]) and Microsoft
Messenger’s weekly load (Fig. 5 in [34]) present a similar
pattern (load consistently increases and decreases).

To assist the decision making module into the estimation
of the r(s) values (Section III-B), we apply a training phase.
Our default training set is a simple sinusoid-like load with
an average value around 70K req/sec, a peak of over 130K
req/sec and a period of about 300 minutes. For the clustering
component, we use a centroid-based method [35] with k =
3, choosing the centroid of the largest cluster inside a 4K
req/sec (d − 1)-hypercube slice. In our experiments, a value
for k around 2–4 manages to effectively prevent outliers in the
decision process. In the future, we plan to incorporate a load
prediction module that will allow a more accurate estimate of
the λ-slice.

Monitoring collects a new data point every minute and the
decision daemon is invoked every 10 minutes. The resized
cluster size is roughly available after 5 minutes, due to VM
initialization and setup steps. For system robustness and to
avoid oscillations, we set a backoff period of 5 minutes (10
minutes if a removal was decided) before a new resize opera-
tion is possible. Finally, we note that we do not consider data
inconsistency issues caused, for example, by a simultaneous
removal of all object replicas when removing more than 2
VMs (with a replication factor of 3). In large, production-level
systems, this can be handled by either limiting the number
of concurrent removals, or maintaining a baseline number of
VMs under which the cluster size is not allowed to fall.

We devise four different reward functions: function r1(s)
considers only VM costs, function r2(s) considers only
throughput gains, r3(s) considers throughput and increased
(squared) costs per VM, while r4(s) considers all available
metrics, throughput, latency and VM costs:
r1(s) = −C · |VMs|, r2(s) = B · thr,
r3(s) = B · thr−C · |VMs|2, r4(s) = B · thr−C · |VMs|−A · lat

For each policy, the system behaves in different ways,
as different states are viewed more favorable based on the
respective cost function. The A,B,C parameters are calcu-

lated using our experience with the HBase cluster to ensure
stability under common workloads (our chosen values are
A = .001, B = .001, C = .5). We note here that it is not our
intent to identify the optimal reward function: Our goal is to
demonstrate the system’s flexibility to use virtually any reward
function according to the vendor or application policy. We
leave fine-grained reward function modeling for future work.
Nevertheless, since TIRAMOLA is open-sourced and functions
are defined by editing a simple configuration file, anyone can
freely download, modify and integrate it with their current
infrastructure.

B. Changing the incoming Load

In our first experiment, we apply four loads of different
amplitude with an average of 70K req/sec and register this
input as well as the decisions taken using r4(s) over time
in Fig. 3. Solid lines depict the applied workload in req/sec
whereas dotted lines represent the cluster size in number of
VMs. The first three loads have approximate amplitudes of
1K, 10K and 45K req/sec. The fourth load has an amplitude
of 70K req/sec with an average load of 120K req/sec.

We notice how TIRAMOLA manages to behave according
to the input load. When the load variation is small, only one
decision is taken, moving the cluster from 4 to 9 VMs to
optimize the received rewards. Since load does not signif-
icantly vary, gains are pretty stable, hence no other resize
takes place. As incoming loads increase in amplitude, both
increase and decrease size actions are taken. Cluster sizes
change with frequency equal to the load frequency between
9–10 and 3–14 VMs respectively in the next two graphs. More
resources are committed when bigger loads are applied and a
bigger cluster downsize takes place respectively. The fourth
graph showcases adaptation not only to bigger variability but
also to states not seen before (through previous experience).
Indeed, even though the training set allowed the collection of
metrics for loads up to 140K req/sec, the applied load almost
reaches 200K req/sec. Yet, the system is able to understand that
committing all available VMs is necessary. Moreover, since
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Fig. 5. System behavior under different reward functions, r1(s), r2(s), r3(s) and r4(s) respectively
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Fig. 6. Allowing to add/remove up to 1 and 8 nodes respectively at a 1× and 4× faster load using r4(s)

the minimum load is over 50K req/sec, the minimum number
of VMs is adequately set to 8.

Fig. 4 shows how TIRAMOLA handles slower or faster load
changes, with results for a load that changes twice as slow and
2, 4 and 10 times as fast. The rest of the parameters are kept
the same as in the previous experiment. For the slower load,
we notice that our system is able to provide extremely detailed
resize actions adding and removing 1, 2 or 4 VMs at a time. As
a consequence, the larger the period of a load, the more fine-
grained the decisions can be. Load changes at a slower rate
than the module is allowed to decide. Yet, this is not true for
the three remaining cases. TIRAMOLA is still able to adjust,
following rates even 10 times faster than the training set at
a decreasing granularity. Changes in the load occur so fast
that the decisions dictate for increasingly larger VM additions
and removals, until, as seen in the last graph, decisions are all
about adding/removing 9–10 VMs per operation.

In general, there exist several factors that affect the speed
and granularity of adaptation: the rate at which the module is
allowed to make decisions, the time required for these actions
to be enforced and the actions available at each state. It takes
both system- and application-specific parameter calibration to
achieve a robust behavior in the majority of cases. In our
experience, the realistic tests carried out on a relatively small
sized cluster identify that the biggest limitation – assuming
adequate training – is the VM request/allocation/initialization
overheads.

C. Changing the Reward Functions

TIRAMOLA has the advantage of changing its resource
allocation plan according to the defined policy: Different
reward functions lead to different policies and business model
optimizations. Fig. 5 shows the results of applying the four
reward functions of Section IV-A using the training load of
Section IV-B.

When only the VM cost is taken into account (r1(s)), the
system is forced to always move toward the least number
of nodes, regardless of load. Function r2(s) produces almost

the opposite effect: Since throughput is the only metric of
interest, the system moves to a state that maximizes it. The
module does not decide for a resize as 14 VMs are adequate
(for the incoming load) to provide maximum throughput for
all applied amplitudes. The last two graphs display a system
that automatically contracts and expands according to demand,
since r3(s) and r4(s) take both gains and costs into account.
Nevertheless, since VM costs are higher in r3(s), the decisions
are more conservative, ranging between 1 and 7 nodes. Using
r4(s) allows the cluster size to range from 2 to 14 nodes with
resize moves that correspond directly to the changes in load.

D. Changing the Action and Training sets

So far, we have assumed that resize actions of any size
are possible. Yet, our framework allows for customization
of available actions. Actions of small granularity (e.g., 1–2
nodes) may not be adequate to optimize cluster performance
when loads change abruptly; actions of larger granularity
(e.g., allowing up to 8 concurrent node additions/removals at
once) perform more radical changes at the risk of partially
failing. Utilizing the training set and load of the previous
experiments, we vary the number of maximum nodes that can
be added/removed at a single action. For instance, using a
maximum of 4 nodes allows the addition/removal of 1, 2, 3,
or 4 nodes at a time.

Fig. 6 shows the results under the default load and one
changing four times as fast using r4(s). The graphs clearly
demonstrate the trend we described: When only a single node
is allowed to change, cluster resizes come at a fine-grained
manner, but, due to the inherent system delay, they cannot
fully observe load variations. As more actions are allowed, the
situation noticeably improves. For the faster changing load, our
observations become more acute. Altering the cluster size by
one node substantially fails to capture the changes in load, as
our cluster moves between 11–13 VMs. While resize actions
take place with the periodicity of the load, they are too small to
allow for a proper contraction. Allowing larger resizes enables
the cluster to shape its behavior (albeit at steeper notches)
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Fig. 7. Performance with min training and full training using T1, T2 and r4(s)
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Fig. 8. Mean Absolute and Mean Square Error under varying input load
frequency, resize actions and training points, using r4(s)

relative to the incoming load.
To measure the impact of training to the performance of

TIRAMOLA, we vary the number of training points before
a challenging load is applied to the system. Specifically, we
apply a sinusoid-like load of 80K req/sec average rate and 60K
req/sec amplitude with half the periodicity of the training set.
We utilize two training sets, T1 and T2: T1 has an average
around 60K req/sec and an amplitude of 45K req/sec (closer
to the applied load with a difference in peak of about 35K
req/sec), while T2 has an average around 40K req/sec and an
amplitude of 20K req/sec (more challenging, up to 80K req/sec
difference). For both training sets, we take two extreme cases,
namely full training (i.e., a total of 5600 points over a 350
min period) and min training (i.e., a total of only 32 points
collected). Results are shown in Fig. 7.

When using T1 (first 2 graphs), the system is generally able
to quickly assume the required periodicity regardless of the
size of the collected experience. Yet, min training takes over
100 minutes to do so, while this happens immediately for full
training. A striking difference is the amount of adaptivity to
the load amplitude (compared to the training set): Min training
has trouble choosing more than 12 nodes, while more informed
training allows the system to reach 15. These findings are more
evident in the case of training set T2 (last 2 graphs): The
system gradually learns more appropriate states using real-
time experience; the difference between more and almost no
training is the learning rate: Full training reaches a 12-node
cluster while min training achieves an increase from 4 to 9
nodes. From our findings, we deduce that both the amount as
well as the quality of training experience affects performance.
The larger the experience and closer it is to the real load,
the faster the convergence to optimal resource management.
Yet, the system is able to learn and move to the correct states
as time and more real data points are collected. For a long-
running production cluster this effect is even less significant:
Training and real-time experience is never reset (like in all the
experiments presented in this work), adding up to the required
knowledge for an informed decision by the system.

To measure how close the system is to an “optimal” policy,

we re-consider all decisions after the end of each experiment,
assuming full monitoring knowledge (based even on measure-
ments that were not present at the time) and an unlimited set
of actions available. For each decision c ∈ [1, 16] denoting
the decided cluster size, we compute the optimal cluster size
c∗ and the Mean Absolute Error (MAE) and Mean Squared
Error (MSQE) quantities: MAE= n−1

∑
1≤i≤n

|ci − c∗i | and
MSQE= n−1

∑
1≤i≤n

(ci − c∗i )
2,where n is the total number of

resize actions. These metrics approach zero as decisions move
close to the optimal ones. MAE, in particular, indicates the
average difference (in number of VMs) of the clusters created
through consecutive decisions from the optimal ones.

Fig. 8 demonstrates that TIRAMOLA is robust and behaves
very closely to an optimal decision maker. The first graph
shows that increasing the number of allowed operations brings
the allocation policy close to optimal: Allowing 4 or more
VM resizes causes an average error of less than one VM
per operation. After that point the algorithm is very close
to the optimal policy. The second graph indicates that our
method is extremely robust to loads even 10× faster than
the training set. Finally, the third graph shows that increasing
the number of training points per cluster configuration also
improves performance. After just 100 points, our system takes
actions less than one VM different to the optimal ones, a
feature combined with learning of unseen loads (see Fig. 7).

V. CONCLUSIONS – DISCUSSION

This work presented TIRAMOLA, a fully modular, cloud-
enabled, open-source framework that can adaptively resize
NoSQL clusters according to user-defined policies and in-
coming load. Our system allows seamless interaction with
most IaaS platforms, requesting/releasing VM resources and
orchestrating them inside a NoSQL cluster. It also features
a monitoring module that reports both client and server side
metrics in a scalable and efficient way. Resize decisions are
modeled as a Markov Decision Process that automatically
decides the most advantageous state to move the cluster to
in real-time according to user- or application-defined policies.
The system is very customizable, allowing different NoSQL
engines, optimization strategies, permissible actions, input and
training loads and, finally, varying degree of adaptation. To the
best of our knowledge, this is the first open-source attempt to
provide a cloud-based system for automatic VM provisioning
for NoSQL clusters.

This work spans a broad set of topics; we briefly discuss
(due to lack of space) some important related issues here:
Scalability: Such issues relate to both storage- and compute-



intensive operations carried out by the decision-making mod-
ule. In the first case, we use a look-up table store for Q
values; given that the permissible actions are bounded (e.g.,
add/remove b VMs, b << N the cluster size) and the available
main memory of a typical modern server, storage is hardly
a concern. The same holds for maintaining the training and
real-time data sets. In the case of computational burden,
TIRAMOLA is hardly affected: only the relative Q-values
from equation (1) are updated per decision. The clustering
operations are also not affected by an increase in the number
of states, as clustering is only applied for permissible states.
Moreover, each operation (with polynomial complexity in the
number of points, dimensions and clusters produced) is applied
on a bounded number of data points given that experience
outside a certain time-frame is disregarded. Finally, Ganglia
is shown to scale up to the order of thousands of participating
peers due to its inherent low overhead and high concurrency
nature.
Load: Sudden and frequent changes in load may lead to oscil-
lations in which nodes are continuously added and removed.
In such cases, any effort to follow these trends is highly
unprofitable for both users and the provider, since decisions are
constantly invalidated. The decision-making module’s reaction
time is in the order of the time required per operation it
commands, i.e., VM additions and removals and cluster setup
from the underlying IaaS provider. In the case that the shifts
are temporary, TIRAMOLA employs a 3-fold technique to
avoid oscillations. This comprises load smoothing techniques
such as moving averages with an adjustable time window,
adjustment of the time interval between decisions and the
addition of a penalty factor in the reward function to penalize
consecutive or close (in time) opposite direction decisions.
Applicability: Our monitoring and decision making modules
can be more generally applied. Specifically, given a set of mea-
sured metrics and a reward function, TIRAMOLA can monitor
and adaptively resize a variety of applications that can scale
out. A common denominator is that application performance
should be expressible and measurable through well-defined
metrics; moreover, it should be deterministically correlated
with the resources it occupies. Oppositely, the actions of the
Cluster Coordinator module are NoSQL-specific, requiring
per-engine script development and workflow execution.
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