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ABSTRACT
NoSQL databases focus on analytical processing of large
scale datasets, offering increased scalability over commodity
hardware. One of their strongest features is elasticity, which
allows for fairly portioned premiums and high-quality per-
formance and directly applies to the philosophy of a cloud-
based platform. Yet, the process of adaptive expansion and
contraction of resources usually involves a lot of manual ef-
fort during cluster configuration. To date, there exists no
comparative study to quantify this cost and measure the ef-
ficacy of NoSQL engines that offer this feature over a cloud
provider. In this work, we present a cloud-enabled frame-
work for adaptive monitoring of NoSQL systems. We per-
form a study of the elasticity feature on some of the most
popular NoSQL databases over an open-source cloud plat-
form. Based on these measurements, we finally present a
prototype implementation of a decision making system that
enables automatic elastic operations of any NoSQL engine
based on administrator or application-specified constraints.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems

General Terms
Design, Performance
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1. INTRODUCTION
Computational and storage requirements of applications

such as business intelligence and social networking over peta-
byte datasets have pushed sql-like centralized databases to
their limits [8]. This led to the development of horizontally
scalable, distributed non-relational data stores, called No-
SQL databases, such as Google’s Bigtable [9] and its open-
source implementation HBase [5] and Facebook’s Cassandra
[12]. NoSQL systems exhibit the ability to store and index
arbitrarily big data sets while enabling a large amount of
concurrent user requests. They are perfect candidates for
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IaaS clouds such as Amazon’s EC2 [1] or its open-source
alternative, OpenStack [6]: NoSQL admins can utilize the
cloud API to throttle the number of acquired resources (i.e.,
number of virtual machines – VMs and storage space) ac-
cording to application needs.

This is highly-compatible with NoSQL stores that offer
elasticity and sharding. The former refers to the ability
to expand or contract resources in order to meet the ex-
act demand. The latter refers to the horizontal partitioning
over a shared-nothing architecture. It is obvious that these
two properties (henceforth referred to as elasticity) are in-
tertwined: as computing resources grow and shrink, data
partitioning must be done in such a way that no loss occurs
and the right amount of replication is conserved.

Many NoSQL systems (e.g., [5, 12, 7]) claim to offer adap-
tive elasticity according to the number of participant com-
modity nodes. Nevertheless, the “throttling” is usually per-
formed manually, making availability problems due to unan-
ticipated high loads not infrequent (e.g., the recent Four-
square outage [3]). Adaptive frameworks are offered by
major cloud vendors as a service: Amazon’s SimpleDB [2]
and Google’s AppEngine [4] are proprietary systems offering
(virtually) unlimited processing power and storage. How-
ever, these services run on dedicated servers, their architec-
ture is not publicly documented, their cost is prohibitive and
their performance is questionable [11].

Recent works [11, 10] have dealt with the performance
of various analytics platforms, without dealing with elastic-
ity in virtualized cloud resources. The studies presented in
[13, 15] deal with this feature but do not address NoSQL
databases. Thus, although both NoSQL and cloud infras-
tructures are inherently elastic, there exists no actual study
to report how effective this is in practice. To the best of our
knowledge, there also exists no actual system that combines
these two technologies to offer automated NoSQL cluster
resize according to dynamic workload changes.

Having reviewed the most popular NoSQL solutions and
the OpenStack IaaS [6], our contributions are the follow-
ing: We provide a generic control module that monitors No-
SQL clusters, We identify how each metric of interest (CPU,
RAM, etc) varies under various workload types and rates.
We document the costs and gains after a cluster resize. We
register the performance gains when increasing the cluster
size in varying workloads. We demonstrate the applicability
of our framework by presenting a prototype implementa-
tion that allows for adaptive and automatic cluster resize.
To show our framework’s modularity, we incorporate three
popular NoSQL implementations, HBase [5], Cassandra [12]
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Figure 1: Architecture of our Cloud-based NoSQL
elasticity-testing framework.
and Riak [7] that support elasticity and we utilize YCSB
[10], Yahoo’s open-source client. Our findings are presented
more thoroughly in the following technical report1.

2. ARCHITECTURE
Our elasticity-testing framework, an open-source project2

with over 2K lines of Python code, features an architec-
ture that is illustrated in Figure 1. The Command Issuing
module is used to initiate a cluster resize operation. It in-
teracts with the Cloud Management module that contacts
the cloud vendor to adjust the cluster’s physical resources
by releasing or acquiring more virtual machines. The Re-
balancing module makes sure that newly arrived nodes join
the cluster contributing an equal share of the work. The
Cluster Coordinator module executes higher level add, re-
move and rebalance commands according to the particular
NoSQL system used. Finally, the Monitoring module main-
tains up-to-date performance metrics that collects from the
cluster nodes. Below we describe the modules in detail:
Command Issuing Module: This is the ‘coordinator’
module. In the current implementation phase, this mod-
ule requests addition or removal of a number of VMs using
the Cloud Management and Cluster Coordinator modules.
Monitoring Module: Our system receives data from Gan-
glia [14], a scalable distributed system monitoring tool that
allows the user to remotely collect live or historical statis-
tics (such as CPU load averages, network, memory or disk
space utilization) through its XML API and present them
through its web front-end via real-time dynamic web pages.
Apart from general operating-system statistics, Ganglia may
also gather NoSQL performance metrics such as the current
number of open client threads, number of served operations
per second, etc.
Rebalancing Module: The rebalancing module is acti-
vated after a newly arrived virtual machine from the cloud
vendor has successfully started (i.e., has booted and re-
ceived a valid IP). When this happens, the module executes
a “global rebalance” operation, in which client requests are
spread equally among the cluster nodes according to the spe-
cific NoSQL implementation and semantics.
Cloud management: Our system interacts with the cloud
vendor using euca-tools, an Amazon EC2 compliant REST-
based client library. The command issuing module inter-
acts with this module when it commands for a resize in the
physical cluster resources, i.e., the number of running VMs.
The use of euca-tools guarantees that our system can be
deployed in Amazon’s EC2 or in any EC2-compliant IaaS

1http://www.cslab.ntua.gr/~ikons/elastic_nosql.pdf
2http://tiramola.googlecode.com

cloud. We have created an Amazon Machine Image (AMI)
that contains pre-installed versions of the supported NoSQL
systems along with the Ganglia monitoring tool.
Cluster coordinator: The coordination of the remote VMs
is done with the remote execution of shell scripts and the
injection of on-the-fly created NoSQL specific configuration
files to each VM. A higher level “start cluster”, “add NoSQL
node”and“remove NoSQL node”command is translated in a
workflow of the aforementioned primitives. Our framework
implementation makes sure that each step has succeeded be-
fore moving to the next one.

For instance, the Command Issuing module requests an
“add virtual machine” command using the euca-tools API
and waits until it is started and has been assigned with an
IP. After this, the Cluster Coordinator creates the appro-
priate configuration scripts on-the-fly, transfers them to the
new VM, and remotely starts the NoSQL service along with
the Ganglia tool. The Rebalancer module inserts the node to
the cluster and rebalances client requests among the server
nodes. Our framework currently incorporates HBase, Cas-
sandra and Riak. Yet, the system is extensible enough to
include more engines that support elastic operations by im-
plementing the system’s abstract primitives in the Cluster
Coordinator module and by including the system’s binaries
to the existing AMI virtual machine image. The precooked
AMI is available for download from the project’s web site.

3. EXPERIMENTAL RESULTS
Our experimental setup consists of an OpenStack private

cluster of 16 worker nodes and a single cluster controller.
We were allocated enough resources for a cluster of 20 client
VMs (load generators) and 28 server VMs (each with 4 vC-
PUs and 8GB RAM). First, we identify the affected perfor-
mance metrics under heavy load, second, we measure the
performance gain/loss after cluster resize for various work-
loads and resize choices and finally we present a prototype,
fully automated system setup where resources are adaptively
resized according to user-defined policies.

Clients and workloads used: We utilize fixed HBase
(v. 0.20.6) Cassandra (v. 0.7.0 beta) and Riak (v. 0.14.0)
initial 8 node clusters with default configurations which are
loaded with 20M 1KB objects (i.e., 20GB of plain raw data)
by utilizing the YCSB [10] load function. We use 4 work-
loads (namely UNIFORM READ, ZIPFIAN READ, UNI-
FORM UPDATE and UNIFORM RMW) with fixed query
arrival rates λ in order to better understand the behaviour of
the databases for different types of load. These correspond
to uniform and zipfian random reads, and uniform random
updates and read-modify-writes respectively.

For the 8-node clusters, we first identified the maximum
sustained query throughput in a simple UNIFORM READ
workload. The HBase, Cassandra and Riak clusters achieved
a maximum throughput of 80, 13 and 10 Kreqs/sec for a λ
of 80, 20 and 10 Kreqs/sec respectively. Cluster CPU us-
age increased as throughput increased, reaching a 50% and
75% usage in their maximum throughput. For higher λ rates
(up to 280 Kreqs/sec) query throughput remained the same
while query latencies increased linearly for HBase and Cas-
sandra, with HBase being constantly faster than Cassan-
dra. Riak servers became unresponsive above 10 Kreqs/sec,
therefore we did not include Riak in the following experi-
ments. For the zipfian read and uniform update workloads,
with a λ of 180 Kreqs/sec, Cassandra had an average CPU
usage of 68% and 55% respectively, whereas HBase had 55%

http://www.cslab.ntua.gr/~ikons/elastic_nosql.pdf
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Table 1: Data rebalancing effect for a 8+8 resizehhhhhhhhhhhMetric
Cluster

HBase Cassandra Riak

Reb No Reb No Reb
Completion time (min) 98 5 665 5 150

Data moved (GB) 22.5 - 87.7 - 44.8
Througput (Kreqs/s) 154.5 129.6 18.3 14.9 18
Avg. Latency (s) 0.7 1.1 7.1 9.3 0.2
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Figure 2: Query throughput and CPU usage for
an HBase cluster of 8 nodes after adding 8 and 16
more nodes for the UNIFORM READ and UNI-
FORM UPDATE workload with λ = 180 Kreqs/sec

and 45%. Average query throughput was 77 and 8 Kreqs/sec
respectively for the zipfian read, whereas for the update it
was 30 and 12 Kreqs/sec.

Cluster resize performance measurements: Our first
concern on the costs and gains of a resize operation relates to
the rebalancing of the database data. Since data rebalancing
is by itself a resource intensive procedure, we only perform
node additions and data migration in an idle cluster for this
case. This scenario is valid, since data rebalancing is usu-
ally scheduled for off-peak time periods. Nevertheless, in
our experiments conducted with extra client workload dur-
ing data rebalance, all systems exhibited erratic behaviour.
In Table 1 we present our results. We have started an 8-
node cluster in each case and added 20M tuples. We then
expanded each cluster by adding 8 more nodes and applied
a UNIFORM READ workload with a λ = 180 Kreqs/sec
(“No” column for every database - for Riak that rebalances
data automatically as soon as a new node joins the ring, this
is not applicable). After this, we manually rebalanced data
in HBase and Cassandra. When data rebalancing finishes,
we applied the same workload λ = 180 Kreqs/s for HBase,
Cassandra and 18 Kreqs/s for Riak (Riak could not oper-
ate with a higher workload). The results for this setup are
presented in the “Reb” column.

The data rebalancing costs far outweigh its benefits for
the cases of HBase and Cassandra. For HBase a net gain
of about 20% in throughput was achieved compared to a
non-rebalanced 16 node cluster, which could be easily offset
by adding two extra nodes without using data rebalancing.
The results were better for Cassandra with a net gain of
22% for the average throughput. In terms of latency, sim-
ilar performance benefits were achieved (33% and 23% for
HBase and Cassandra respectively). The data moved during
data rebalancing for HBase is 25% of the entire dataset. In
Cassandra’s case the whole dataset was moved. HDFS’s cen-
tralized balancer is more advanced than Cassandra’s decen-
tralized balancer. Riak rebalancing is also a costly operation
(43% of the dataset was transferred). Given the large time
costs for data rebalancing operations (93, 660 and 150 min-
utes in HBase, Cassandra and Riak respectively), and the
fact that simple caching can do the work (see the following
analysis) we conclude that gains do not outweigh costs.

We continue our evaluation with node additions in an ini-

tial 8-node cluster without data rebalancing for HBase and
Cassandra. We utilize a high load of λ = 180 Kreqs/sec
for two workload types: UNIFORM READ and UNIFORM-
UPDATE (referred to as READ and UPDATE henceforth).

For each workload and database combination we perform
an addition of 8 and 16 nodes. The cluster resize occurs at
about t = 370 sec.

Figure 2 shows the HBase results. Legends refer to the
workload type along with the resizing action (e.g., READ+8
represents a read workload with an 8-node resize). Regard-
ing mean query latency (graph omitted due to lack of space),
adding nodes during READ loads has a transient negative
effect, attributed to the HMaster table region reassignment.
Clients cache region locations which however change during
cluster resizing. As a result, latency increases due to client
cache misses. In the updates we notice an oscillation due to
the compaction and caching mechanisms of HBase. Incom-
ing data is cached in memory (i.e., low latency) but when the
memory is full and a I/O flush occurs with a compaction,
the latency is increased. Throughput µ increases in read
workloads: adding 16 nodes results in about 170 Kreqs/sec
in the steady state and 100 Kreqs/sec for the READ+8 case
(compared to about 55K before additions). More servers are
able to simultaneously handle more requests that results in a
higher throughput (roughly doubling and tripling it respec-
tively). Although items are not actually transferred, this
speed is due to the caching effect of the RegionServers. Re-
garding updates, since they are I/O-bound operations, µ is
not significantly altered.

The final graph reports the aggregate cluster CPU us-
age. In the read workloads we notice that the initial load
of around 55% is reduced to around 42% in both cases
since new nodes immediately start handling incoming que-
ries. The addition of 16 against 8 nodes does not result in a
further decrease in the average CPU, as the load is still large
enough for all servers to contribute. The extra 8 nodes make
a difference in terms of throughput, as shown in the second
graph. In the update workloads, we notice that in both ex-
periments the initial CPU load continues to drop until run
completion since servers freeze incoming requests until the
updated regions are flushed to the file system.

In Figure 3 we present the Cassandra results. The first
graph presents query latency. In both READ cases, we no-
tice that the latency drops from 22 secs to 10 secs and 8 secs
respectively. New servers are assigned half of the data par-
titions of existing servers, they cache portions of their data
and answer queries on their behalf. The larger the resize,
the bigger the decrease in latency. The same hold for the up-
date workloads. We notice here that writes are faster than
reads, due to the weak consistency model followed by Cas-
sandra. Query throughput µ shows a similar linear trend
in reads and updates. Extra servers immediately join the
p2p ring and take portions of the applied workload. Finally,
in the third graph of Figure 3 we present the CPU usage.
In the read case adding 8 nodes decreases CPU usage to
around 60%, whereas adding 16 servers decreases CPU load
to around 50%. The same trend holds for the updates.

Both NoSQL systems take advantage of extra nodes: H-
Base exhibits very fast concurrent reads compared to Cas-
sandra. On the other hand, Cassandra is more efficient with
object updates because of the weak consistency model. Fi-
nally, we notice that Cassandra does not exhibit a negative
transient effect when new nodes enter the ring. Its decentral-
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Figure 3: Query latency, query throughput and CPU usage per time for
a Cassandra cluster of 8 nodes after adding 8 and 16 more nodes for the
UNIFORM READ and UNIFORM UPDATE workload with a query rate
of λ = 180 Kreqs/sec
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Figure 4: CPU usage
for an HBase cluster of
8 nodes under dynamic
load changes.

ized nature allows for a transparent cluster resize, whereas
in HBase the HMaster coordinates the whole procedure.

Elasticity-provisioning prototype: We now present
some initial results achieved using our framework to deploy
a fully automatic cluster resize system. We utilize a long
running read-heavy load, for a total load of 9 Kreqs/sec on
an 8-node HBase cluster. After 7 min, an additional high
load of 180 Kreqs/sec is created for a short period of time.
Utilizing the experience from our previous experiments, we
trigger node additions when CPU usage is over 40%, for any
one server on the cluster and we remove nodes when the
CPU usage is 15% or lower for all nodes in the cluster. To
avoid oscillations, we utilize a 5 minute running average of
the load. In Figure 4 we show our results. The low initial
load stresses the servers enough to avoid a node removal but
not enough for a node addition. When load increases, CPU
increases dramatically and 10 minutes are needed for the
new node to be fully operational and monitored. The high
load requests complete before the addition of the fourth ex-
tra node. At this point the total load decreases significantly,
but not substantially for a new node addition. The system
continues its normal operation, since the medium load is just
enough to prevent node removal. Once the load drops under
the lower threshold, node removal proceeds. Node removal
is much faster than node addition, thus the system returns
to its original size in about 5 minutes. CPU usage does not
drop during single node addition, as there are not enough
nodes added to accommodate the high load.

4. DISCUSSION AND CONCLUSIONS
In the following section, we argue on the design choices,

we offer recommendations based on our experience in setting
up this system and we conclude our work.

Concerning monitoring, the selected metrics are impor-
tant: We showed that we can accurately distinguish the sys-
tem’s critical state using passive, general purpose metrics.
Finally, Ganglia’s rich set of available metrics and ease of
use enable the automatic decision making module to take
accurate and prompt decisions.

Regarding region rebalancing, in HBase it is performed
automatically when new nodes are added or removed from
the cluster. HBase is extremely elastic, as all new nodes can
quickly assume load, increasing the cluster’s performance in
very short time, as reported. Conversely, Cassandra does
not split data into regions of equal size. It reassigns regions
on a per node basis, i.e., region rebalancing is performed
in node pairs between newly arrived and previously exist-
ing ones by splitting the key-space in half. Riak divides
data space into partitions and as new nodes are added, they
claim an equal slice of partitions. However, the fact that
the cluster turns unresponsive for a throughput higher than

what its nodes can handle, prevents us from examining its
elasticity under high load. Concerning data rebalancing, it
should only be performed when the system administrator
can accurately predict a constant load for a large amount of
time, that is in the order of days. In this case, even if the
performance is affected for a while, the overall gain justifies
this transient rebalancing cost. On the contrary, variable
and unpredictable short-term load does not justify such an
expensive of operation, and should be avoided.

In this work we quantified and analyzed the costs and
gains of various NoSQL cluster resize operations, utilizing
three popular NoSQL implementations. HBase is the fastest
and scales with node additions (only for reads though); Cas-
sandra performs fast writes and scales also, without any
transitional phase during node additions; Riak was unre-
sponsive in high request rates, could scale only at lower rates
but rebalances automatically; all three achieve small gains
from a data rebalance, provided they are under minimal
load. Based on our findings, we offered a prototype im-
plementation of our automatic cluster resize module, that
matches the number of provisioned resources against the to-
tal demand and the application expert’s rules of required
operation. Our open-source implementation can provide a
good basis on which numerous applications can test their
adaptivity at very-high scale.
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