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Abstract—The cloud computing paradigm allows service
providers to offer scalable and highly available applications to
their end users. Typical cases where this is required are content
serving applications, where a large number of connected users
manage arbitrary data amounts. In the Big Data era, where the
amount of information that is being produced and consumed
grows exponentially, centralized legacy approaches are inefficient,
as they cannot adequately scale according to the number of
connected users or the dataset sizes. In these cases, an efficient
cloudification of content serving applications is required in order
to benefit from the cloud’s offerings. In this work, we present
a generic architecture that can be used by almost any content
serving application in order to offer scalable and highly available
data management operations to their users by employing cloud
management techniques. We describe the architectural blocks of
our approach along with how they can be efficiently deployed in a
cloud environment. We document our experiences with an actual
deployment of a typical content serving application over okeanos,
an Openstack compatible public cloud service. We describe the
open source frameworks that we have selected from a plethora of
existing tools, we justify our choices and we describe our initial
observations during their operation. We give a detailed overview
of how we installed and configured these systems to achieve high
availability and scalability in a public cloud setting. Finally, we
document our initial performance evaluation where we showcase
the system’s ability to handle increasing workloads by elastically
scaling its resources.

I. INTRODUCTION

A typical need for many applications is the management
and handling of the digital content that they produce, consume
or serve. Applications such as e-learning [19], digital libraries
[5], news sites and generic enterprise content management [12]
(e.g., search, collaboration, records management, digital asset
management, workflow management, content and scanning)
are typical examples. In that cases, a number of different
system categories are employed to solve the encountered
challenges, according to the specific use cases [16]. Content,
document, information and knowledge management systems
are typical candidates to solve the respective needs.

Irrespective the application in hand, these systems follow
the same pattern in terms of software design and module
deployment: they employ a web serving front-end which im-
plements the respective business logic and acts as a gateway to
the users, and a data storage back-end where content metadata
is being stored, such as a typical RDBMS. In more complex
scenarios, a storage backend such as a file system is being
utilized, in order to store “raw data” that is not suitable for
the RDBMS, because, for instance, of their size or schema.
Finally, when extra processing is required to be done in either

the “raw data” or the metadata, a processing engine is utilized
to perform this task.

In essence, these systems are offered as bundled web
application frameworks [2] which are utilized by software
developers to design and implement the required solution.
Systems such as Drupal [20], Django-CMS [6] and Jahia
are a small subset. These frameworks are based on various
tools and can support a variety of implementations, software
languages and databases. The typical vanilla setup of such
systems follows a centralized approach, where web front-ends,
databases and, if any, processing and storage engines utilize a
single instance (i.e., a single machine) that serves the entire
workload. Not only legacy deployments, but even modern ones
are still utilizing this setup, due to its simplicity, ease of
installation and maintenance.

Although this setup was sufficient for the majority of the
applications up till now, the past few years this has been
radically changing. The explosion of the data being created,
consumed, stored and processed requires different approaches
to deal with the arising issues of the “Data Deluge” [4], or the
so called Big Data [13]. Many organizations from different
domains worldwide are coming across huge big data needs,
and this requires a different approach on the way content
management systems are being designed and deployed [3].
Moreover, companies that offer their services to end-users over
the Internet (for instance, social networking or Internet gaming
sites) typically experience varying resource demands according
to user traffic [15].

Taking into account the previous considerations, it is
clear that a scalable approach is needed both in the design
and the deployment, to handle both increasing and irregular
load patterns. As both the volume and the type of required
resources vary over time, legacy approaches that consist of
static application deployments over private data-centers are
not an option anymore. On one hand, the up-front cost of
building such infrastructures is totally prohibitive for small
companies that cannot tell beforehand whether their business
will grow sufficiently enough to pay off this initial cost. On
the other hand, even in the case where a private infrastructure
is already present, static deployments lead to sub-optimal
resource usage, due to time-varying resource demand per
application or component.

The answer to large up-front infrastructure costs, varying
resource needs and static resource allocation problems is
cloud computing. The pay-as-you go nature of public cloud
providers enables companies to allocate the necessary amount
of resources for as long as they want and being charged on
a fine-grained manner for the exact resource usage. Even in
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the case of private infrastructures where the pay-as-you go
feature does not apply, the virtualization capabilities offered
by private cloud solutions can easily tackle static resource
allocation problems. Therefore, whether inside a private data-
center, or entirely in the cloud, elastic platforms offer the dual
advantage of better resource utilization and cost minimization
[8], a win-win situation for both SMEs and larger companies.

Nevertheless, cloud technology is not the silver bullet that
“automagically” provides these characteristics out of the box
for any possible content serving application. Although the
cloud infrastructure can easily grow or shrink according to user
needs, this is not the case for applications running on top of
it. The majority of the web application frameworks [2] cannot
easily handle cloud deployments, and if they offer cloud ex-
tensions, they are limited to simple automations of centralized
deployments, i.e., without offering scalable solutions.

There are commercial “PaaS” offerings such as Google’s
AppEngine [17], Microsoft’s Azure [10], Heroku [14], Cloud-
Bees1, and Engine Yard2 that can be used to easily create and
deploy a scalable cloud application on premises. The resource
management is then performed automatically by the provider,
without allowing the user to control the underlying utilized
resources: users access a sandboxed system in which they
have only a limited set of available operations to perform,
without the ability to monitor and manage underlying IaaS
related aspects, since this is performed by the provider on a
user-agnostic manner.

In the case where the application user wants to have com-
plete control over his application, a different approach is re-
quired, where the “IaaS” feature of cloud computing is utilized.
Proprietary systems like Amazon’s Elastic Beanstalk3 and
OpsWorks4, Redhat’s openshift5, Vmware’s cloud foundry6

and Jelastic7 are being utilized. Nevertheless, these systems
are proprietary and can easily lead to a vendor-lock-in.

To avoid vendor-specific implementations, there are a num-
ber of open source configuration management systems [1],
such as Ansible, Chef, Puppet, etc. These systems utilize a
scripting language to describe complex application setups and
offer a mechanism to implement the entire application deploy-
ment using the execution of simple self-contained scripts.

Taking into account the previous shortcomings, in this
paper we present a generic cloud-enabled architecture for
content serving applications that employs scalability, high
availability and automated deployment functionalities. More
specific, we make the following contributions:

• We document the design and implementation of a scalable
architecture for serving, indexing and storing data on a
cloud-based infrastructure. We describe the design and de-
ployment of high availability mechanisms that we adopted.
• We describe the automation of the infrastructure instal-
lation configuration and management (scalability and re-
covery) procedure by utilizing configuration management

1http://www.cloudbees.com/
2https://www.engineyard.com/
3http://aws.amazon.com/elasticbeanstalk/
4http://aws.amazon.com/opsworks/
5https://www.openshift.com/
6http://www.cloudfoundry.com/
7http://jelastic.com/

scripts, following the DevOps [7] paradigm. We discuss our
approach towards elastic cloud deployment.
• We showcase the architecture’s ability to integrate different
tools and deploy the infrastructure to any private or public
cloud service. We describe how this is achieved with the use
of open sourced technology and non-proprietary software.
We used open source tools for our implementation and a
free cloud vendor.
• We present our initial experimental results where we
showcase that our architecture can scale almost linearly
and handle increasing workloads by simply adding more
infrastructure resources.

The structure of the paper is the following: In Section II we
give a brief overview of the basic sub-modules that a cloud-
enabled content serving system consists of. In Section III we
describe the proposed architecture along with some implemen-
tation details and a discussion about extending automations. In
Section IV we give a preliminary performance analysis and in
Section V we conclude our work.

II. BACKGROUND

A. Types of data, processing and storage systems
In this section we describe the different data types and their

storage requirements as well as the need for data processing
and propose the usage of appropriate systems. We also mention
typical data management use cases.

When talking about Big Data the first thing that we should
focus on is the efficient storage of many large datasets. One
dataset, therefore mentioned as resource, consists of two types
of data: the raw data (GB/TB scale) and the description
(metadata - MB/GB scale). Metadata are typically one order
of magnitude smaller than the raw data.

Raw data may have a semi-structured or unstructured form
and may consist of one or more data files. Metadata describe
the contents and context of the data files. The main purpose of
metadata is to facilitate in the discovery of relevant information
and they are used for searching. Metadata store and provide
information about one or more aspects of the raw data, such
as the means of creation of the data, time and date of creation,
the creator or author and the standards used.

In case data analytics are also requested on these large raw
datasets, a distributed processing engine can be used. Typi-
cal data analytics cases are for example pattern recognition,
machine learning, etc.

Because of the different storage requirements for metadata
and raw data, we employ different storage systems for each
of them. We also use a separate distributed processing system
for running resource hungry data analytics. We have selected
to design these systems with focus in scalability and high
availability and therefore we use cloud services for compute
and storage requirements. These are the proposed systems, as
shown in Figure 1:
a. Metadata Storage and Serving System: This storage

system contains data in the order of MB or a few GB that are
fully structured. These data are inserted in the infrastructure
by registered users when they describe a new resource and
can be accessed by any user during a search operation (i.e., a
read query). The type of these data is write-once read-many,
and therefore our storage solution needs to be optimized for
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Fig. 1: Cloud-based content management system

heavy reads. Also full-text search is supported by creating
lucene type indices.

b. Data Storage and Serving System: This storage system
contains the resources’ raw data that can be in the order
of GB per resource and in the order of TB in total. Raw
data are served to registered users for download. Because
multiple users may request access to many resources the
infrastructure needs to have an increased data network
bandwidth to serve the load of requests.

c. Distributed Processing System: This system takes as input
the type of processing and the input and output data loca-
tions in the data storage system. A virtual cluster will be in
stand-by with the necessary software components in order
to process the data and return the results.

B. Data management cases

Apart from application-specific use cases, the same generic
functionalities are offered by most content management sys-
tems for resource management. In particular, users can usually
perform the following data management actions through the
web application:

1. Insert a new resource: A registered user will be able to
describe and upload a resource. The resource will receive
a globally unique identifier (GUID), its metadata will be
stored in the metadata storage system and the raw data in
the data storage system.

2. Search for a resource: Any user will be able to make queries
in order to find the resource of interest. The search is based
on resources’ descriptions so these queries will be applied
to the indices built for the resources’ metadata.

3. Download a resource: A registered user will be able to
download the raw data of a resource that interests him.

4. Process a resource: A registered user will be able to select
an available processing tool, define as input a resource and
the processing result will be stored as a new annotated
resource in the data storage system.

III. SYSTEM DESCRIPTION

Based on our background analysis we implemented the
following subsystems using the undermentioned selected open
source tools. The tools were appropriately configured in order
to achieve optimal overall system performance.

A. Metadata Storage and Serving System
This subsystem stores the resources’ metadata and allows

users to search them. It consists of a web front-end and a
storage back-end. In both the web front-end and storage back-
end layers scalability and high availability are required.

For the web front-end we utilize HAproxy8, a software load
balancer that distributes the requests to a number of webservers
in a round-robin fashion. As requirements increase, new web-
servers can be launched and added to the load balanced cluster.
In each webserver the same web application runs as the site
frontend. We used the Django [6] web application framework
for our implementation.

For the storage back-end a PostgreSQL cluster is used in
master-slave mode. This means that one server is allowed to
modify the data (master) and the other servers track changes
in the master (slaves). Each slave has therefore a full copy of
the master’s data. All slaves are allowed to serve read-only
queries, i.e. they are in hot-standby mode, for load balancing
purposes. A software load balancer is also used here, Pgpool-
II9, that distributes read queries to slaves and the master is used
only for write queries. Moreover, Pgpool manages PostgreSQL
configuration in the database servers and in case of master
failover it automatically promotes a slave to master. In this
way scalability and high availability is easily achieved.

To search among the stored metadata without needing to
read the whole database contents, we use Apache SolrCloud
[11], an indexer that allows full text search in the metadata.
We created the cluster based on Apache ZooKeeper, which is
responsible for the servers’ coordination and synchronization.
Each server contains all existing indices: one server is auto-
matically elected as leader and it is responsible for writing new
data while the rest servers replicate its data. Our application
uses the Haystack API10 to express modular search queries
that can then be applied to whatever search engine Haystack
is connected to. Because Haystack connects to a single Solr
endpoint, an HAproxy load balancer for the Solr cluster was
used here too ensuring scalability and high-availability for
the Solr farm. A distributed SolrCloud cluster setup was also
studied as an alternative in case of a great amount of metadata.

Detailed system deployment description

The infrastructure is deployed with the use of Ansible
scripts. Scripts for both the initial setup and the later man-
agement of the infrastructure were created. The infrastructure

8http://www.haproxy.org/#desc
9http://www.pgpool.net/mediawiki/index.php/Main Page
10http://haystacksearch.org/
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setup and management were tested in a cloud service named
cyclades provided by the Okeanos IaaS [9]. For this purpose a
library was built to be used by Ansible for accessing cyclades
that uses kamaki, an Openstack compliant API.

The system architecture is shown in Figure 2. Virtual
Machines (i.e., VMs) were created with the Debian operating
system in a private network. We used a private network for
internal servers’ communication for safety reasons and because
public IPs are generally scarce. Only one VM was given
a public IP (matched to the site’s DNS record), where the
frontend HAproxy was installed. For high availability in case
this VM fails, a backup VM with HAproxy was also created
and Keepalived11 was installed in both proxies (master and
backup). In this way if one VM becomes unresponsive the
other one is aware and automatically receives the public IP
(running a user-defined script). HAproxy uses a list with
the webservers’ private IPs and distributes in a round-robin
fashion the requests to the webservers using session stickiness
[18]. The session stickiness attribute ensures that each user
will be served by a single internal webserver throughout its
entire session until he disconnects from the application (session
management and storage on a database is required in the web
application). Meanwhile, HAproxy automatically checks the
webservers operation and uses a webserver only if it is respon-
sive. This functionality ensures both high availability (in terms
of an HAproxy or an internal webserver malfunctioning) and
scalability (by easily and transparently adding more webserver
VMs) for the entire web farm.

Regarding the webfarm, each webserver is a VM where an
Apache http server is installed along with the web application.
Pgpool-II, Monit12 and HAproxy tools are also installed.
Pgpool is used as a load-balancer for the database farm,
as mentioned before. Monit is a monitoring and automatic
management tool for system services that we configured to
stop Apache and disable the webserver in case Pgpool is down.
HAproxy is used as a load balancer for the Solr farm. We
chose not to have the load balancers for the database farm and

11http://www.keepalived.org/
12https://mmonit.com/monit/#about

the Solr farm in separate VMs, but instead each webserver
uses its own balancer since the frontend proxy guarantees load
balancing until the level of the database and Solr farms. In
this way we also avoided the complexity of adding failover
detection for the VMs that would host these load balancers too.
HAproxy has automatic failover detection as well as Pgpool,
with the latest one allowing the user to perform extra actions
through a user defined script. An important difference is that
while HAproxy automatically reconnects operational servers,
Pgpool does not support this automation yet. However, we
implemented for this purpose an alternative procedure with
scripts that are automatically executed by Pgpool in case of a
failover. Scalability for the database farm and the Solr farm is
also easily achieved by letting Pgpool and proxy know about
the existence of new servers.

As previously mentioned, the database farm consists of
VMs with PostgreSQL installed in master-slave mode. The
master is configured to store in the WAL (write-ahead-log)
files the data changes (up to 512MB) and the slaves are
synchronized with the master using streaming replication.
Streaming replication allows a slave server to stay up-to-
date with file-based log shipping. The slave connects to the
master, which streams WAL records to the slave as they are
generated, without waiting for the WAL file to be filled. We
set up cascading replication, i.e. each server opens a stream
with the previous one and a chain of streams is formed for
copying data. Alternatively all slaves could stream directly
from the master but we avoided this implementation in order
to minimize network traffic on the master. For the database
we selected strong data consistency and the master responds
to write requests only after the next slave that streams from
it acknowledges that the data were written on its disk. There
are of course more options for a weaker consistency that can
be used in case of increased write workload. If a slave is
disconnected and reconnects after a short period of time, it
can synchronize its data if all the changes that it missed exist
in WAL files. If it was disconnected for a longer period and
the slave can not synchronize anymore its data must be rebuilt,
i.e., transferred by the master.

Finally a VM was set up with Ganglia and Nagios moni-

8686



toring frameworks to monitor resources’ usage metrics and the
status of all services.

Scaling/updating the system

Each part of the infrastructure can be scaled out in case of
increased user load. The addition of a new web/database/Solr
server to scale out the infrastructure is manually performed
with the use of a specific Ansible script that is implemented
for each of the three server types.
Updating the web application version is also possible with the
manual execution of the same script that setup the infrastruc-
ture initially. More Ansible scripts will be deployed in the
future for updating the versions of the selected installed tools.

Recovery protocol

In this section we refer to all possible failure situations,
how they are detected and the automatic or manual recovery
mechanisms that are used in each case. We have three types
of failures: service failure, network failure and VM failure.

1) Frontend proxies (both public and private IPs)

Failure detection: If in the master proxy the HAproxy
service stops or the VM is destroyed or the private IP has
connectivity issues (therefore there is no communication
with the webservers) Keepalived automatically detects it.
When this happens the backup proxy receives the public IP
of the problematic VM within a few seconds (<10). When
the private IP and HAproxy service function again normally
in the master proxy it automatically receives again the public
IP by executing the same script. Any connectivity issues
with the public IP are not manageable since the site simply
can not be accessed. In this case a possible solution would
be the use of 2 public IPs for the site with round-robin DNS.

Recovery: If the HAproxy service stops or the VM is
destroyed, manual actions are required in both cases. The
service must be manually started or the VM must be rebuilt
with the Ansible script that setup the infrastructure. Issues
with the private IP are automatically fixed.

2) Webservers (private IPs)

Failure detection: If the Apache service stops or the VM
is destroyed or the private IP has connectivity issues it
is automatically detected by HAproxy and the problematic
webserver is not used until it recovers.
If the Pgpool service stops, the webserver is not functional
anymore since it can not communicate with the database
farm. In this case Monit is configured to detect it and stops
the Apache service too.

Recovery: If the Apache or Pgpool service stops or the
VM is destroyed, manual actions are required in all cases.
The services must be manually started or the VM must
be rebuilt with an Ansible script that is used for webfarm
scaling. Issues with the private IP are automatically fixed.

3) Database servers (private IPs)

Failure detection: If the PostgreSQL service stops or the
VM is destroyed or the private IP has connectivity issues
Pgpool automatically detects it in each webserver and the

malfunctioning database server is no longer used. When
the Pgpool detects a database server failure it automatically
tries to perform some necessary actions with a custom
shell script. With this script we make sure to establish a
correct chain for cascading replication from the master
VM to functional slave VMs or to promote a slave to
master if the master VM failed. Pgpool does not detect
automatically when a database server is functional again
to start using it, but we have implemented an alternative
procedure. In case of network issues due to increased traffic
for example, we do not want slaves to be lost instantly
or permanently. For this purpose, we built a script that is
triggered after a failure happens, and it restores a slave to
the Pgpool list of functional VMs if the connectivity issue
is fixed within 5 hours and the malfunctioning slave can
still synchronize with the master. If a slave is restored the
script also fixes of course the chain for cascading replication.

Recovery: Issues with the private IP in a slave server are
automatically fixed if the server restores within 5 hours. If
more than 5 hours pass or there is an issue with the private
IP in the master or the VM is destroyed or the PostgreSQL
service stops, manual actions are required. In the first 3
cases the VM must be rebuilt as a slave with an Ansible
script that is used for scaling the database farm and in the
last case the PostgreSQL service must be manually started.

4) Solr servers (private IPs)

Failure detection: If the Solr service stops or the VM
is destroyed or the private IP has connectivity issues
HAproxy automatically detects it in each webserver and
the problematic Solr server is not used until it recovers. If
the leader VM fails then a slave is automatically promoted
to leader through ZooKeeper.

Recovery: Issues with the private IP are automatically fixed.
In case the leader recovers it is therefore used as a slave as
another server becomes the leader. If the Solr service stops
or the VM is destroyed, manual actions are required. The
service must be manually started or the VM must be rebuilt
with an Ansible script that is used for scaling the Solr farm.

B. Data Storage and Serving System
This subsystem is responsible for storing and serving the

resources’ bulk raw data. Raw data are stored by the web
application in a cloud storage service using the appropriate
adaptor, in our tests in pithos+ cloud storage provided by the
Okeanos IaaS. The system can however be connected to any
cloud storage service using the appropriate adaptor.

Storing/retrieving resources’ raw data to/from pithos is
done through user forms in the web application. The appli-
cation in our case uses the kamaki API to connect with pithos
and perform streaming upload or download. In order not to
cause increased traffic to the network of the metadata storage
and serving system from the raw data transfers performed by
webservers, a second team of webservers was set up, the D/U
(i.e., Download/Upload) servers, to be used exclusively for
transferring data to/from pithos. D/U servers run the same web
application with common webservers and they are normally
connected to the database farm and the Solr farm. Their
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difference is that they have their own public IP and DNS record
offering a greater and scalable (proportional to the number of
D/U servers) data transfer rate to/from pithos.

Because the data size may be in the order of GB or TB, data
uploading is performed by the application asynchronously i.e.
in a non-blocking way. For this purpose a task queue is used
for uploads based on a message broker called rabbitmq13. All
upload tasks are sent as messages to the rabbitmq queue and
each message can be serially received by a celery worker14. A
celery worker is a running thread ready to execute a function
(or task) written in any language when it receives the relevant
message. In our case we have a function that contains the
python code that actually uploads the data.

This system’s architecture is shown in Figure 3. In each
D/U server we initialize multiple celery workers to enable
multitasking and they all execute the upload tasks of a unique
queue. To build a unique but highly available queue, a rabbitmq
cluster was set up on top of the D/U servers in master-slave
mode. The master is automatically elected among D/U servers
and is in charge of distributing the queue’s upload tasks to all
the celery workers that serve the queue. The slaves forward
incoming messages to the master and the master’s queue is
mirrored across all slaves for high availability. The webservers
were then configured to distribute with their local HAproxy the
upload tasks to the D/U servers’ queues that are actually the
same mirrored queue. In this way, if a D/U server fails the
system will not be affected at all: a new master will simply be
elected if needed and if any tasks have failed they will be re-
executed in a user transparent manner. Finally, celery workers
were configured to listen to messages not only from the master
but from all D/U servers’ queues, for high availability purposes
(if the master changes they won’t be affected).

The frontend load balancer (HAproxy) that distributes the
requests to the webfarm, was configured to send download
requests in a round-robin fashion to the D/U servers while
preserving session information. D/U servers were configured
to only serve the /download url for simplicity. In each D/U
server Apache redirects the request to the server’s own domain
name so that the data is transferred through its public network

13https://www.rabbitmq.com/features.html
14http://www.celeryproject.org/

interface and is not routed through the frontend proxy. Only
registered users can therefore access the D/U servers for
downloading since the local web application will check for
the session existence in the common database. In this way we
have scalability and high availability in the upload/download
mechanism that we implemented too.

Scaling/updating the system

In case the system’s network is stressed by multiple trans-
fers performed by users the system can be scaled out. A new
D/U server can be manually added with the use of a specific
Ansible script that is implemented for scaling the DU farm.
Updating the web application version is also possible with the
manual execution of the same script that setup the infrastruc-
ture initially. More Ansible scripts will be deployed in the
future for updating the versions of the selected installed tools.

Recovery protocol

D/U servers (public and private IPs)

Failure detection: If the VM is destroyed or the private IP
has connectivity issues both the frontend HAproxy and the
webservers’ local HAproxy automatically detect it and the
problematic D/U server is not used until it recovers.
If the rabbitmq service stops, the webservers’ local HAproxy
automatically detects it and upload tasks are not sent to the
problematic D/U server’s queue until it recovers. The rabbitmq
cluster also automatically detects that the queue is not mirrored
in this server but uploads and downloads can still be executed
by the server.
If the Apache service stops, the frontend HAproxy automat-
ically detects it and the problematic D/U server is not used
for download requests until it recovers. In this case Monit is
configured to detect it and stops the celery service too so the
server does not execute upload tasks either. The server is still
used for queue mirroring though.
If the Pgpool service stops, the D/U server is not functional
anymore since it can not communicate with the database farm.
In this case Monit is configured to detect it and stops the
Apache service. The server is used only for queue mirroring
in this case too.
If the celery service stops, the problematic server simply can’t
execute upload tasks anymore but other servers’ workers will
serve the queue’s tasks.
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Recovery: If Apache or rabbitmq or Pgpool or celery service
stops or the VM is destroyed, manual actions are required
in all cases. The stopped services must be manually started
or the VM must be rebuilt with an Ansible script that is
used for scaling the DU farm. Issues with the private IP are
automatically fixed.

C. Distributed Processing System
This subsystem will be able to process data stored in

the cloud. The infrastructure can be created on-the-fly or be
in a stand-by mode: in the first case it will be destroyed
after completing a task and free cloud resources. We selected
the second mode and created a stand-by distributed Apache
Hadoop cluster [22] with a predefined initial size and the
available processing tools installed. The user will define an
input resource in the form of a GUID and a processing tool
from a list of available ones. The processing task will then
be sent by the application in a rabbitmq queue available in
the distributed processing system. Multiple celery workers
are installed to handle this queue’s tasks and each received
processing task is translated by a celery worker to a Hadoop
map/reduce job. In case of increased cloud resources usage, the
infrastructure can easily be scaled out by adding extra nodes
to the Hadoop cluster with the execution of an Ansible script.

The effective operation of the system is dependent on the
data transfer rate to/from the cloud storage service. Since we
are using large amounts of data, a Hadoop adaptor for the
cloud storage system in use was integrated so that Hadoop
can directly communicate with the cloud filesystem. In this
way it can fetch and process chunks of a specific dataset in a
parallel manner and achieve minimal execution time.

Also, taking into account that many users may require to
process with the same tool the same dataset, the processing
tasks’ history is saved in a PostgreSQL master-slave database
installed on this system. Before launching a new task each
celery worker checks the database to avoid performing the
same task again.

D. Automated infrastructure elasticity
Both the Metadata and Data Storage and Serving Systems

as well as the Distributed Processing System are designed with
an elastic architecture in mind. All the server farms included in
the infrastructure can easily be scaled out with an execution
of a specific procedure that was scripted with Ansible. The
deployed scripts offer horizontal scalability by adding more
servers to the infrastructure. Vertical scalability, i.e. increasing
the cloud resources consolidated by each VM, could also
be offered with automated scripts. However, we focused on
horizontal scaling because there are limits regarding a VM’s
size in every cloud service and vertical scaling will not be
possible at some point eventually. Also there is no difference
between choosing vertical and horizontal scaling in terms of
cost as long as total resources usage is the same.

The decision about whether a specific farm needs to be
scaled out and at what extent, still must be taken by an
application administrator. In case of increased load applied by
users to any of the subsystems, the supervisor can monitor
resources usage through the Ganglia platform and decide to
scale out specific farms to cope with the load. This is of course

not feasible in case of large scale content management systems
that have a frequently varying load of requests (proportional
to the number of concurrent users) as constant monitoring will
be required in this case. Automated elasticity is therefore an
important aspect that can be further investigated in a large
scale deployment.

IV. INITIAL PERFORMANCE RESULTS

To demonstrate how the number of concurrent user requests
affect the system’s end-to-end performance and each individual
component we executed a number of benchmarking tests on the
metadata storage and serving system using the siege tool. Each
database server was configured with 8 virtual CPUs (vCPUs),
8GB of RAM and 80GB disk space. Each web, Solr and proxy
server was equipped with 4 vCPUs, 4GB of RAM and 10GB
disk space. The infrastructure was initially deployed with two
proxies, one web server, one database server and one Solr
server to measure each single server’s performance.

We executed simple HTTP GET requests on three different
Urls for our experiments: the site’s home page, a page that
lists all available resources that are indexed by Solr and a
page that displays the stored metadata information about a
specific resource. We applied different loads by changing
the number of concurrent requests made for each Url. 50
concurrent requests for example will be translated into 50
requests sent from different HTTP connections (i.e., threads) to
represent 50 different users: whenever a request is answered
a new one is dispatched by the same thread until the entire
workload is executed. Each workload was applied for ten
minutes on each Url. It is important to notice that the Apache
disk cache was enabled in the webservers and that PostgreSQL
and Solr by default cache answered queries in-memory, so in
our experiments the first response for each url was cached and
all following requests were served from the cache.

In our first experiment we applied a load of 50 concur-
rent requests on the home page. The system throughput was
1146.46 transactions/sec with an average response time of
0.04 secs. We noticed that the CPU usage on the webserver
was constantly 23% during the workload execution. We then
increased the number of concurrent requests up to 100 and
then up to 200. In the 100 requests workload the throughput
was slightly increased to 1213.75 transactions/sec. The CPU
usage also slightly increased (26%) but the main difference on
performance was that the average response time was doubled
to 0.08 secs. In the 200 requests workload the performance was
also increased to 1387.37 transactions/sec and the CPU usage
to 30% but the average response time was nearly doubled again
to 0.14 secs. The increased load applied by users has therefore
an immediate impact mainly on the system’s response time
when the cache is used.

For the second page that retrieves all indexed resources
from Solr (for a total of 600 resources) we applied two dif-
ferent workloads of 50 and 100 concurrent requests. For both
workloads the webserver’s CPU usage was constantly 20%
and in the Solr server we noticed an initial CPU usage peak at
30% and then it remained very low (2%) since the result was
cached. In the 50 concurrent requests case the throughput was
560.35 transactions/sec and the average response time was 0.09
secs. In the 100 concurrent requests case the throughput was
decreased a little to 464.96 transactions/sec and the response
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time was doubled to 0.19 secs. We notice in this case that
the throughput was generally lower than in the homepage
case. This is expected since the Solr farm is also involved in
the request pipeline. The impact of increased input load was
similar however as the response time was doubled.

For the third page that retrieves a resource’s metadata from
the database we also applied two different loads of 50 and 100
concurrent requests. The CPU usage was similar to that of the
Solr index page except that the initial peak in the database
server’s CPU usage was observed at 50%. In the 50 concurrent
requests case the throughput was 762.13 transactions/sec and
the average response time was 0.06 secs. In the 100 concurrent
requests case the throughput was increased a little to 898.78
transactions/sec and the response time was doubled to 0.11
secs. We also notice here the similar negative impact of the
input load to the response time. The throughput was however
higher than that of the Solr farm but still lower than that of
the simple homepage as expected.

In the last experiment we added one more server to the web
and Solr farms and two more servers to the database farm and
applied the same workload. The results showed that the CPU
load was equally distributed to the servers of each farm and
each server exhibited half the CPU load compared to the pre-
vious execution. The throughput and response time remained
the same as the system was not overloaded in our previous
experiments due to the caching mechanism and the proxy
simply offered the maximum possible transaction throughput
in all our experiments. Both load balancing and scalability
were therefore confirmed when we increased the system’s
resources. The throughput and response time improvement
remains to be seen by applying a workload that includes a
large number of different requests that can stress the system
regardless of its caching capacity, or by completely removing
the caching mechanism during the experiment execution.

V. CONCLUSION AND FUTURE WORK

We have designed and presented in detail an architec-
ture for a cloud-based content management system based on
open source tools. Our system offers data serving, storing,
indexing as well as processing functionality. Scalability and
fault tolerance were thoroughly studied as our primary targets
since we have selected cloud services as the best option for
our implementation. The deployment and management of a
system based on our architecture has been fully automated
with Ansible scripts following the DevOps paradigm and was
successfully tested in a cloud provider.

Regarding the architecture’s flexibility to use various tools
and be deployed in any cloud, the required changes are to
update the ansible scripts and create a new library to be
used as a cloud connector. The web application can also
be configured to use another storage engine by using the
appropriate connector. For example, the application can use
Amazon S3 or Okeanos pithos+ for data storage, SolrCloud
or Elasticsearch for data indexing and PostgreSQL or MySQL
as the web application storage backend. The web application
may be built using the Django or NodeJs frameworks and
the deployment of the infrastructure can be done on various
cloud services such as Amazon EC2, Okeanos cyclades or any
Openstack compliant IaaS cloud. A thorough benchmarking for

every application subsystem will be performed in the future for
evaluation purposes in order to optimize their configuration.

Finally a mechanism for automated scalability will be
studied to avoid constant monitoring and manual actions over
the infrastructure. In [21] the authors present an open-source
automated resource provisioning framework that could be
integrated in our infrastructure. This framework could be used
to scale out each server farm automatically based on resources
usage by running the relevant Ansible script for scaling.
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