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Abstract—In recent years we observe the rapid growth of
large-scale analytics applications in a wide range of domains –
from healthcare infrastructures to traffic management. The high
volume of data that need to be processed has stimulated the
development of special purpose frameworks which handle the
data deluge by parallelizing data processing and concurrently
using multiple computing nodes. These frameworks differentiate
significantly in terms of the policies they follow to decompose
their workloads into multiple tasks and also on the way they
exploit the available computing resources. As a result, based
on the framework that applications have been implemented in,
we observe significant variations in their resource utilization
and execution times. Therefore, determining the appropriate
framework for executing a big data application is not trivial.
In this work we propose Orion, a novel resource negotiator
for cloud infrastructures that support multiple big data frame-
works such as Apache Spark, Apache Flink and TensorFlow.
More specifically, given an application, Orion determines the
most appropriate framework to assign it to. Additionally, Orion
reserves the required resources so that the application is able to
meet its performance requirements. Our negotiator exploits state-
of-the-art prediction techniques for estimating the application’s
execution time when it is assigned to a specific framework
with varying configuration parameters and processing resources.
Finally, our detailed experimental evaluation, using practical big
data workloads on our local cluster, illustrates that our approach
outperforms its competitors.

Index Terms—scheduling; Big Data; resource management

I. INTRODUCTION

In recent years we observe the proliferation of large-scale
analytics applications in various application domains ranging
from traffic management [1] to financial processing [2]. The
main difference from traditional analytics workloads (e.g.,
SQL queries) is the volume of data that need to be processed.
In order to be able to support the execution of such appli-
cations, novel distributed big data frameworks like Apache
Spark [3], Apache Flink [4] and Tensorflow [5] have been
developed. The majority of these frameworks split the pro-
cessing into smaller tasks that can run in parallel on multiple
computing nodes.

At the same time, cloud computing has allowed the efficient
management, deployment and configuration of clusters where
the aforementioned frameworks can be deployed by taking
advantage of both the elastic nature of the cloud, where
reserved resources are used for as long as they are needed
(i.e., pay-as-you-go), and the deployment/management ease of

use. To exploit these two properties and fulfill enterprise needs
for minimizing infrastructure maintenance and operation costs,
companies follow a similar approach for either public or on-
premise cloud offerings: they utilize a service that launches
and manages big data clusters in order to execute the requested
workloads whereas a single storage back-end is used to host
data (i.e., Amazon’s S3, Microsoft’s Azure storage, etc.).

Amazon’s EMR1, Microsoft’s HDInsight [6] (in collabora-
tion with Hortonworks) and Google’s Cloud Dataproc [7] are
the three major public cloud platforms for managed big data
deployments, whereas a typical on-premise managed service
solution is Apache Ambari2. All these offerings support the
launching and management of configurable cloud-based Big
Data clusters supporting a variety of frameworks (Hadoop,
Spark, Flink, Tensorflow etc.) and a variety of hardware and
software configurations. Nevertheless, these frameworks offer
only the necessary “plumbing” to allow configuration and
management, leaving it up to the user to decide upon and
configure both appropriate resources (i.e., amount and type of
cloud resources) and configuration settings (i.e., framework
and OS settings, etc.) for every workload and framework
combination.

An important observation is that the current state-of-the
art big data frameworks differ significantly on the way they
exploit the available processing resources, the configuration
parameters that can be tuned (e.g., the amount of memory
an application will reserve) and the policies they follow
in decomposing the processing into multiple tasks. It has
been documented that notable discrepencies in terms of per-
formance can be observed between implementations of the
same application in different frameworks [8]. We verify this
observation in our local 8 node cluster (i.e., 7 workers and
1 master node). Each node is equipped with eight CPUs
(i.e., Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz) and
16 GB RAM. We evaluate the performance of three widely
utilized and extremely popular big data frameworks, Apache
Spark, Apache Flink and TensorFlow with respect to four
different applications (the applications are further described
in Section V) with varying input data sizes and examine their
performance in terms of execution time when executed over

1https://aws.amazon.com/emr/
2https://ambari.apache.org/
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Fig. 1. Comparison of different big data frameworks for different applications.

different frameworks.
As can be observed in Figures 1(a), 1(b), 1(c) and 1(d), no

framework outperforms all others for the applications under
consideration. In general, Spark is more efficient than the oth-
ers for most applications as it was also reported in [8] mainly
due to its popularity. However, Flink and TensorFlow outper-
form Spark in some cases. As we illustrate in Figure 1(d),
TensorFlow achieves better execution time than Spark and
Flink for the linear regression application (if the input data is
locally available to the worker nodes), as it is able to efficiently
parallelize and orchestrate the processing. In Figure 1(b) we
observe that Flink outperforms Spark for the TPC-H query.
The displayed experimental results elaborate on the fact that
it is beneficial for organizations to consider implementing their
applications in different big data frameworks and choose the
implementation which yields the best performance.

While there are multiple schedulers for orchestrating the
execution of applications on specific big data frameworks [9],
[10], there has been limited work in environments like the
one we are describing here, where different frameworks can
be deployed on dedicated clusters. Only recently has the
problem of scheduling applications in such multiple cluster
environments [11], [12] started to attract interest. However, the
techniques presented in previous work on the subject assume
that all clusters use a single framework. Additionally, they
do not investigate how tuning the applications’ configuration
parameters can affect performance.

In this work we propose Orion, a novel online resource
negotiator for multiple big data framework environments.
Orion’s goal is to meet application performance requirements
(expressed via deadline constraints) and at the same minimize
the required monetary cost for executing them. More specifi-
cally, whenever a big data application is submitted to Orion,
the latter determines (i) the big data framework in which
the application should be executed, (ii) the time when the
execution should start (i.e., Orion may decide to stall an appli-
cation until an already running application has finished and its
reserved resources become available), and (iii) the tuning of
the application’s configuration parameters (i.e., the number of
reserved nodes) which satisfies its deadline constraint. More
specifically, our contributions are the following:

• We propose a machine learning technique that exploits
and extends regression trees by adding linear regressors
at the leaf level to construct execution time cost models
taking into consideration an arbitrary number of param-
eters which can affect the application’s execution time.

• We formulate the problem of detecting the optimal con-
figurations that satisfy submitted applications’ deadline
constraints as an integer linear programming problem.

• We provide a novel online and framework-agnostic re-
source negotiator that enables the scheduling of big data
applications across multiple clusters that support different
big data frameworks.

• We exploit the elasticity provided by public cloud infras-
tructures to dynamically change the computing resources
(i.e., VMs) that are allocated to the newly assigned
applications with respect to the user’s budget.

• Finally, we evaluate our approach using applications from
different big data frameworks including Spark, Flink
and TensorFlow. Our experimental results indicate the
working and benefits of our approach.

II. PRELIMINARIES

In this section we provide a brief description of the three
big data frameworks we used (i.e., Apache Spark [3], Apache
Flink [4] and TensorFlow [5]). We note though that our
resource negotiator can easily support other frameworks like
Twitter’s Heron [13].
Apache Spark. Apache Spark is the most widely utilized
framework for big data analysis. It can support the execution
of both batch and stream processing applications. The funda-
mental data structure that enables the in-parallel processing of
the data is the Resilient Distributed Dataset (RDD) which is
an immutable fault-tolerant distributed collection of objects.
RDDs enable two types of operations, Transformations and
Actions. Transformations lead to the creation of a new RDD
while actions are operations that perform a computation on an
RDD resulting to the return of a value.

There are multiple configuration parameters that can affect
the performance of a Spark application. In Table I we present
the parameters which mainly affect the application’s execution
time, the most important being the number of CPU cores
reserved for the execution of an application as it controls
parallelism. Furthermore, in Table I it can be observed that
memory related parameters (i.e., like the executors’ memory)
are also important since Apache Spark’s main benefits arise
from the efficient utilization of the available RAM. However,
determining the parameters’ values that minimize the applica-
tion’s execution time is far from trivial [14].
Apache Flink. Apache Flink is a recently developed big data
analytics framework that aims at supporting the execution
of both batch and stream processing applications. Flink uses
a dataflow programming model that enables a record at a



Parameter Description Default Value
spark.cores.max The number of reserved CPU cores Not set

spark.executor.memory The reserved memory 1g
spark.shuffle.compress Whether shuffle data should be compressed True
spark.deploy.spreadOut Whether tasks should be spread out across nodes or try to consolidate them onto as few nodes as possible True

spark.shuffle.file.buffer Size of the in-memory buffer for each shuffle file output stream. 32k
spark.speculation Whether to start the speculative execution of slow running tasks. False

TABLE I
SPARK CONFIGURATION PARAMETERS

time processing on both finite and infinite datasets. A Flink
application consists of a set of streams and transformations. A
stream can be seen as a potentially infinite flow of data, and a
transformation is an operation that receives one or more input
streams, and generates one or more output streams. When a
Flink application is assigned to a cluster, the application is
mapped to a streaming dataflow with one or more sources
and one or more sinks.

Moreover, Apache Flink is limited in terms of the configu-
ration parameters that can be tuned. While the user can easily
tune the parallelism of an application (i.e., how many tasks
will be spawned at each operation) by controlling the −p
parameter whenever an application is submitted, in order to
change other parameters such as the reserved memory he/she
must stop the cluster and update the appropriate configuration
file as Flink uses the same JVM for the execution of every
submitted application. Due to this limitation, we only consider
parallelism degree as a tunable parameter for Flink applica-
tions. An alternative approach would be to spawn another Flink
cluster for each submitted application and thus be able to set
parameters like the reserved memory at the cost of having to
manage multiple Flink cluster instances. We leave as future
work the applicability of such an approach for tuning other
parameters in Flink.
TensorFlow. TensorFlow is an open source software library for
numerical computations using data flow graphs. The computa-
tion graph nodes represent mathematical operations, whereas
the edges represent the multidimensional data arrays (tensors)
communicated between them. A computation expressed using
TensorFlow can be executed with little or no change in a wide
variety of heterogeneous systems including commodity CPUs,
or specially designed hardware accelerators, GPUs.

Designed for deep learning applications, TensorFlow imple-
ments the parameter server architecture, where a job comprises
two disjoint sets of processes: stateless worker processes
that perform the bulk of the computation when training a
model, and stateful parameter server processes that maintain
the current version of the model parameters. All instances of
TensorFlow are single python3 processes and as such, they
greedily claim the resources of their hosts with no direct
control on the amount of the available resources that will be
used. Consequently, we only consider parallelism degree as a
configurable parameter for TensorFlow applications as well.

III. SYSTEM MODEL

Our multiple clusters environment is defined via the
Clusters set and each cluster supports a dedicated big data
framework (e.g., Spark, Flink, Tensorflow). In the context of
this work we make the following assumptions:

• Communication overhead for retrieving data (i.e., from
an external data source like CEPH3) is not included in
the applications’ execution time.

• All clusters can scale in and out (i.e., dynamically in-
crease the number of processing nodes).

• Implementations of the same application for multiple
frameworks are available4.

• Several profiling runs of the applications have been
executed to gather the necessary historical data. [10].

• Finally, every application has an amount of computing
resources dedicated to it from start to finish – thus, mak-
ing the resources utilized by one application independent
to resources used by others.

Cluster Parameters. For each cluster c ∈ Clusters we define
as frc the big data framework supported by cluster c. We
assume that the cluster is setup in a public cloud infrastructure
like Amazon’s EC2 so users are charged based on the amount
and type of Virtual Machines (VMs) they reserve on a per hour
basis. The costc parameter controls the amount of money that
will be spent for each reserved node. Moreover, we define as
RNodesc,a the set of nodes that have been reserved in cluster
c for application a. This set is updated: i) when an application
is added to cluster c and new computing resources are reserved
or ii) when an application finishes and its reserved resources
are released. We also store, in Tc, the points in time (i.e.,
in ascending order) when the applications already assigned
to cluster c are expected to complete their execution. Finally,
the cluster administrator can optionally define a maximum per
hour spending budget in the cluster via the Bc parameter.
Application Parameters. Each application a has a user-
defined deadline constraint, da, on the application’s end-to-
end execution time in seconds and an sta parameter depicting
the exact system time that the application has been submitted
for execution. We define as Fa the set of frameworks (e.g.,
Flink, Spark or TensorFlow) on which the application has been
implemented. For each application a we have to determine
the ca parameter which depicts the cluster that the application
will be assigned. Furthermore, when an application is assigned
to ca we tune the applications’ configuration parameters, tca,
based on the big data framework it will be executed on (i.e.,
frca ). For instance, in Table I we present the configuration
parameters that we examine when we assign an application
to Apache Spark. For Flink and TensorFlow we only tune
the number of reserved nodes as both frameworks require

3https://ceph.com/
4Users need to provide the source code of these implementations. Solutions

such as the recently proposed Apache Beam framework [15] can be exploited
to facilitate development.



…
…

…

B
ig D

ata 
Fram

e
w

o
rks

Decision 
Tree

Scheduler

Orion 𝑨𝒑𝒑𝟏𝑨𝒑𝒑𝟐

𝑨𝒑𝒑𝟑𝑨𝒑𝒑𝟒

𝑨𝒑𝒑𝟓𝑨𝒑𝒑𝟔

valid
configurations

deadline
frameworks

App

Historical data

Fig. 2. Orion’s High Level Overview.

restarting the cluster in order to change parameters like the
amount of memory that will be utilized per computing node.

Additionally, we define, as ica, the set of the immutable
configuration parameters for application a. We characterize
them as immutable as they cannot be modified by the system
(i.e., in contrast to the parameters that comprise the tca set)
but only by the end user. For example, this set includes the
input data size and application specific parameters like the
number of iterations that need to be performed in machine
learning applications. Finally, the last parameter that needs
to be defined is ta, the starting time of the application in
the chosen cluster. This parameter is determined based on the
clusters’ load and the possibility of increasing the processing
resources by adding more computing nodes in the ca cluster.

IV. METHODOLOGY

The goal of Orion, our novel online resource negotiator, is to
effectively schedule big data applications across multiple big
data frameworks executing on different clusters. In Figure 2
we provide the high level overview of Orion. Users submit
their big data applications to the negotiator and the latter
is responsible to determine the big data framework that will
execute the application and tune appropriately the correspond-
ing configuration parameters. Orion consists of two main
components: (i) a Decision Tree based prediction approach
which is used to estimate the applications’ execution time over
different frameworks and to suggest configuration parameters
that satisfy a performance target (e.g., deadline constraint),
and (ii) a Scheduler which examines these suggestions and
determines the appropriate framework and configuration ac-
cording to a specific policy (e.g., minimize the user’s per
hour spending budget). In the following sections we provide
the implementation details of the two core components that
comprise Orion.

A. Orion’s Regression Tree Based Model

To be able to schedule applications across multiple frame-
works successfully (i.e., minimizing the number of missed
deadlines) Orion needs a mechanism to support its decision
making; one which can (i) accurately predict the execution
time of a given application in various frameworks and various
configuration settings and parameters and (ii) be reversely
queried in order to recommend the appropriate framework
and configuration settings for an application to be executed

within a given time and values for the immutable configu-
ration settings mentioned in the previous section. Using the
formalization we introduced, we require our solution to be
able to express the following:

execT imea = f(frca , tca, ica) (1)

(frca , tca) = f−1(execT imea, ica) (2)

where execT imea is the execution time of application a given
parameters frca , tca, ica.

In general, supervised learning techniques utilize a set of
labeled data called training set in order to build a “model”
of the environment which will be used to classify objects into
discreet classes or predict future values based on historical
ones. According to whether the class variable takes discrete
or continuous values we are faced with a classification or
regression problem respectively. In our case, in order to meet
user requirements and utilize the necessary cluster resources
without overspending, we model the environment after a
regression problem where the dependent variable is the appli-
cation’s execution time whereas the independent ones are the
application to be executed, the execution framework and all the
immutable (i.e., ica) and tunable configuration parameters (i.e.,
tca). We build our model using a solution based on decision
trees for regression, the details of which are presented in the
following paragraphs.
Decision Trees for Regression. Classification and Regression
Trees (CART) [16] constitute a very popular and easily in-
terpretable approach for solving prediction problems using a
form of supervised machine learning. Regression Trees can
be employed in situations where the dependent variable is
continuous, as in our case (i.e., execution time). The entire
environment is initially represented as the root of a single-node
decision tree. We use traces of executions of the applications
which are supported by Orion with different combinations of
the parameters that are included in the model (i.e., tca and
ica) in order to build a training set.

During the training phase, which is repeated either period-
ically or when the model’s accuracy drops below a threshold,
the algorithm which creates the decision tree examines all
measured values of all independent variables (often referred to
in literature as features or predictors) in the sample’s training
set. The value of each tree node is calculated as the sample
mean of the dependent variable of the training samples it con-
tains. For every distinct (feature, value) pair, the algorithm
calculates the drop of a selected impurity metric that would
be observed if the sample set were to split at that point into
two distinct sets, by means of ordering on the selected value
for the selected feature. In the case of a regression tree, the
typical splitting policy requires the minimization of the sum
of squared errors, SSE5, as an impurity reduction metric. The
algorithm then creates a splitting point using the pair with the
maximum impurity decrease and recursively applies the same
steps for the newly created nodes until a stopping condition

5SSE =
∑n

i=1 (yi − f(xi))
2, where yi is the ith value of the variable

to be predicted, xi is the ith value of the independent variable, and f(xi) is
the predicted value of yi
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is satisfied. In contrast to more complex supervised learning
methods, such as the random forest technique, regression
trees produce a model which is easier to interact with by
unambiguously partitioning the search space and producing
a set of rules for each of the partitions, a property which
is exploited by Orion to improve its prediction accuracy
and formulate an optimization problem for each partition as
explained in the rest of this section.
Linear Regression at the Leaf Level. Typical regression
trees partition the search space into smaller hyper-cubes by
constraining the values which different features can take as
we move from the root towards the leaves. When such models
are queried for predictions, the tree is traversed from the root
down to a single leaf, which contains the predicted value. In
essence, they build piecewise constant models by partitioning
the initial state space into sub spaces. For each of these
partitioned spaces, the sample mean of the dependent variable
is calculated and assigned as the predicted value for that
specific partition.

In order to acquire more accurate predictions, we enrich the
typical regression tree technique by building linear regression
models and applying them to the leaves of the tree, as
introduced in [17]. This allows us to make more fine grained
predictions, also taking into account information which the
regression tree has not utilized, as all features are used for the
creation of these models – not just the ones which participate
in the tree. To visualize the impact of this technique, we
present a typical non-linear curve of how execution time scales
in relation to the number of nodes in a distributed system,
where the initial performance gain due to parallelization drops
when too many nodes are added, consistent with [18]. We
test our tree based solution by comparing it with the two
techniques it borrows from, simple linear regression and a
piecewise constant decision tree. Adding random noise, we try
to fit the curve as well as possible. The results are presented
in Figure 3, where one can observe that Orion’s solution fits
the data more smoothly than either the simple decision tree or
the linear regression model. We should note that while our
approach in most cases improves a naı̈ve regression tree’s
predictions, it might be vulnerable to outliers in the training set
which can deteriorate its performance, as we further discuss
in Section V.
Search Space Partitioning. Having implemented the pre-
viously described model, we can answer queries regarding
execution time predictions for specific applications in given

frameworks and configuration parameters. This, however, is
not enough for the enforcement of a scheduling policy. We
need a way to query our model for the framework and optimal
configurations under which applications can be executed while
respecting execution deadline constraints. This process in-
volves searching across all possible combinations of meaning-
ful values for the different features in our model for solutions
which satisfy user requirements. To make the solution of
such a problem feasible, there is a strong requirement for
limiting the search space as much as possible, even more
so in cases where the number of features is large since the
complexity increases in an exponential manner in relation to
dimensionality.

We can recognize four distinct sources which dictate bound-
aries in the values of the features we are working with,
thus shrinking the search space. Those are the following: (i)
Logical constraints. All of the features we use (i.e., number
of nodes in the cluster, memory capacity etc.) take positive
integer values, usually following specific patterns (i.e., VMs
usually come with 2/4/6 cores, 2/4/6/8 GB of memory etc.), (ii)
Infrastructure specific constraints. These are closely related to
the underlying infrastructure our clusters are deployed on. We
make the assumption that it is not desirable for computing
resources to arbitrarily scale beyond a certain point. These
kinds of constraints help us apply upper boundaries to most
of our features (i.e., the total number of nodes cannot exceed
a fixed number). (iii) Regression tree generated constraints.
These constraints come in the form of rules, describing our
decision tree. Each leaf has been produced from the initial
state following a certain set of rules which differentiate it from
the rest. Orion needs to search every sub space, represented by
a leaf, for solutions to the problem in hand. This search will
strictly be performed within the boundaries of each partition
itself. (iv) Human input. For every workload there are user-
defined immutable features (i.e., input size, batch size, etc.)
which affect both the execution time and cost.

When a user submits a job to Orion, the immutable features
are evaluated on-the-fly. Orion uses this information to narrow
the search space even further. It is obvious that constraints
which fall into (i), (ii) and (iv) have a global effect whereas
constraints which fall into (iii) affect only their respective
space partition. For each of these hyper-cubes, there exists a set
of constraints which significantly restrict the complexity of the
search for solutions. Formulating the problem as a piecewise
linear function where all parameters in Equation 1 are included
into vector X, we get:

execT imea(X) =



α0 +
∑n

i=1 αixi, X ∈ A ⊂ S
β0 +

∑n
i=1 βixi, X ∈ B ⊂ S

...
ξ0 +

∑n
i=1 ξixi, X ∈ Ξ ⊂ S

...

, (3)

where S ≡ (A ∪ B ∪ . . . ∪ Ξ ∪ . . .) is the initial state space,
X =

[
frca , tca, ica

]
the vector of independent variables of

dimension n and αi, βi, etc. are the coefficients of the linear
regression models corresponding to the regression tree leaves.



The search space partitions A,B, . . .Ξ . . . are defined by the
aggregation of the constraints analyzed above.
Integer Linear Problem Formulation. The motivation be-
hind this work is to propose a solution to the problem of
scheduling applications across multiple clusters in a way
which will allow them to respect deadlines while also min-
imizing a utility function, C(X), which represents cost and is
aligned with the scheduling policy. The cost function will be
further discussed in Section IV-B. Going back to our analysis
so far, we observe that multiple solutions might appear in
either the same or different partitions of the initial space.
These solutions need to be located and evaluated, in terms
of the cost function. Our problem can be broken down into a
number of sub-problems equal to the number of leaves in our
regression tree model. As previously highlighted, the features
of our models (i.e., number of cluster nodes, memory capacity,
buffer size) take integer values. This allows us to introduce the
following integer linear programming6 problem [19]:

minimize C(X)

subject to: execT imea(X) < D,

X ∈ Sk ⊂ S,
X ∈ Zn,

where Sk is each of the partitions of the search space
(A,B, . . .Ξ . . .) and D the maximum execution time we can
afford. To find the desired configurations, we need to solve this
problem for every partition, collect the partial solutions and
evaluate them. The problem formulation allows us to utilize
SCIP [20], a state-of-the-art non-commercial software for
constraint programming, mixed integer programming, and sat-
isfiability modeling and solving techniques. SCIP’s approach
is built around a branch-and-bound approach, along with
many optimizations. Branch-and-bound is a general method
for finding optimal solutions to typically discrete problems.

The algorithm [21] searches the entire space of candidate
solutions by excluding large parts of the search space using
previous estimates on the quantity being optimized. The worst
case performance of such an approach is equal to an exhaustive
search over all possible solutions, however in the cases we
encountered, solutions were produced within 0.1 second. To
start solving the problem presented above for all leaves, we
first have to reversely traverse the tree (leaves to root) and
extract the constraints which define each partition, consistently
with our precious analysis. This process is presented in Algo-
rithm 1 and only needs to happen once after the creation of
the tree. Subsequently, we add the global constraints to the
leaf-specific ones for the definition of the problem and solve
each sub-problem separately. The solutions are then gathered,
aggregated and evaluated by the Orion’s Scheduler component
which is described in more detail in the next section.
B. Orion’s Scheduler

The goal of the Orion’s Scheduler is, given an application
a, to determine the cluster ca that the application will be

6An integer linear programming (ILP) problem is a mathematical optimiza-
tion or feasibility program in which some or all of the variables are restricted
to be integers and the objective function and constraints are linear.

Algorithm 1 Rule set extraction
1: Input: leaves: The set of all leaves in the tree.
2: function RULEEXTRACTOR(leaves)
3: for each leaf ∈ leaves do
4: current node← leaf
5: while current node.has parent() IS TRUE do
6: rule setleaf .append(current node.rule())
7: current node← current node.parent()

8: return rule setleaf , ∀ leaf ∈ leaves

assigned to, its starting time ta and the tca configuration
parameters in order to satisfy the application’s deadline (i.e.,
da) and at the same time minimize a utility function. Different
utility functions can be used for determining the appropriate
assignment of an application to a cluster. For example, we
can assign the application to the cluster that minimizes the
application’s execution time [9] or leads to the smallest
increase on the user’s spending budget [22]. In this work, we
decided to consider the minimization of the user’s spending
budget as optimization goal. We envision multiple applications
being submitted to each cluster so it is highly important to
allocate computing resources for each application optimally.

Our scheduler exploits the decision tree technique de-
scribed in Section IV-A to estimate the execution time of
the application and suggest candidate solutions (i.e., all the
solutions to the optimization problem introduced in Section
IV-A for each of the search space partitions). Applications
might not always start executing immediately upon submission
for various reasons (i.e., cluster congestion, scheduling policy
etc). Therefore, based on the estimations on the application’s
execution time we use the notion of slack [10] to capture
whether the application will be able to meet its deadline
taking into consideration its deadline and the time its execution
starts. The slack metric depicts how close the estimated
execution time is to the user-defined deadline. More formally,
we define the slacka(frca , tca, ica, da, ta) metric for a chosen
assignment as:

slacka(frca , tca, ica, da, ta) = da − execT imea(frca , tca, ica)

+sta − ta, ta ≥ sta ∧ ta ∈ Tca ∪ {sta}
(4)

Matching this formalization to the optimization problem pre-
sented in the previous sub-section, we set D = sta + da− ta.
Thus:

execT imea < D ⇔ slacka > 0 (5)

Small positive slack values indicate the application is close
to missing its deadline, while negative values indicate it is
bound to miss its deadline. The slack metric depends on the
time ta, when execution begins. Ideally, if the application
starts as soon as it is submitted (ta = sta), then the slack is
simply computed as the difference between the deadline and
the estimated execution time. However, it is possible to stall
the execution of an application (i.e., by setting ta > sta) until
some of the nodes reserved by other applications in cluster
ca are available. In such cases, we incorporate this delay (i.e.,
ta − sta) by adding it to the computation of the slack metric.

Furthermore, a utility function (i.e., objective or cost func-
tion) which expresses how scheduling decisions affect a user’s
spending budget needs to be decided upon. Without loss of



Algorithm 2 Orion Scheduler
1: Input: a: the submitted application, da: the application’s deadline,

Clusters: the set of available clusters, dt: the decision tree that will
be used for estimating the application’s execution time.

2: Output: c
′
: the cluster where the application will run, t

′
the point in time

when the application will start, tc
′
: the tunable configuration parameters’

values.
3: minBudget←∞; t

′ ← −1
4: for all c ∈ Clusters do
5: if frc /∈ Fa then
6: continue
7: T ← Tc ∪ {sta}
8: for all t ∈ T do
9: s← dt.findSolution(c, a|slack > 0)

10: if s.b > Bc then
11: continue
12: if (s.b < minBudget) then
13: c

′ ← c
14: t

′ ← t
15: execT ime← s.execT ime
16: tc

′ ← s.tc
17: n

′ ← s.nodes
18: minBudget← s.b

19: if t
′
== −1 then

20: return NULL
21: T

c
′ ← {t ∈ T

c
′ ∧ t > t

′}
22: T

c
′ ← T

c
′ ∪ {t′ + execT ime}

23: RNodes
c
′ ← RNodes

c
′ ∪ {n′}

generality we consider the simple scenario where our clusters
are homogeneous. The cost in that case depends on the number
of nodes that are utilized by the cluster, the per hour fee
charged by the service vendor and the application’s execu-
tion time. More formally, we compute the cost of executing
application a on cluster ca:

b = costca ×RNodesca,a × execT imea (6)

We use the budget cost function b as the utility function C
introduced for the optimization problem.
Refining the Optimization Problem. Given a set of clusters
Clusters, where each cluster c supports a different big data
framework frc and an execution deadline da our goal is to
determine the cluster ca to which a submitted application a
should be assigned to, the time ta its execution should start
and the optimal configuration parameters tca. Using the notion
of slack we have introduced, the initial optimization problem
can be expressed as follows:

minimize b(ca, tca, ica, da, ta)

subject to: slacka(frca , tca, ica, da, ta) > 0

b(ca, tca, ica, da, ta) < Bca

frca ∈ Fa

The goal of the optimization problem is to assign the applica-
tion to the cluster that will lead to the minimum spending
budget and at the same time will maximize the probabil-
ity that the deadline constraint is satisfied. We propose a
greedy algorithm for solving this problem (i.e., Alg. 2). The
algorithm receives as input the available clusters, the big
data application to be executed, its deadline and the decision
tree based model. It examines each cluster and checks all
the valid timestamps when the application may start. These
timestamps correspond to points in time when the execution

Application Dataset Input Data da
Linear Regression Year MSD [23] 5 GB 500

ALS User’s ratings [24] 500 MB 100
K-Means Random Points [25] 6 GB 350
TPC-H 3 Random Data [26] 20 GB 200
TPC-H 10 Random Data [26] 20 GB 250
Wordcount Amazon reviews [27] 106 GB 500

Grep Amazon reviews [27] 106 GB 400
Pi Random Samples 100, 000 600

TABLE II
APPLICATIONS’ DESCRIPTION

of applications already assigned to the cluster have finished,
thus the available resources can be utilized by the newly
submitted application. We include the application’s submission
timestamp into this set (i.e., T in Alg. 2) because we want to be
able to start the application’s execution immediately without
waiting for the scheduled applications to finish if its deadline
cannot be satisfied otherwise. The algorithm examines these
timestamps in ascending order and for each timestamp utilizes
our proposed decision tree based approach (see Section IV-A
for more details) to estimate the appropriate configuration
parameters which satisfy the deadline constraint and minimize
the cost function for each partition of the initial search space.
The decision tree model will return a valid combination of
the configuration parameters. Then the Scheduler will consider
these parameters and cluster only if they minimize the cost (see
Equation 6) without violating the budget constraint. Finally,
Orion assigns the application to the framework which yields
the minimum cost and updates the timestamps set and reserved
nodes for the selected cluster.

V. EVALUATION

Setup. We conduct an extensive experimental evaluation con-
sidering three different clusters. Each cluster runs a dedi-
cated big data framework (either Spark, Flink or TensorFlow)
and comprises 1 Master and 7 worker nodes. Each node is
equipped with eight CPU processors (i.e., Intel(R) Core(TM)
i7-3770 CPU @ 3.40 GHz) and 16 GB RAM. We use Spark
2.0.2, Flink 1.4.0 and TensorFlow 1.3.0. For the evaluation of
Orion we consider eight big data analysis applications used
in similar settings [8], [28] (see also Table II). Applications
are submitted in Orion in a round-robin fashion and the
applications’ submission time follows a Poisson distribution.
For applications assigned to Spark, we consider as tunable
parameters (i.e., tca in Section III) the ones illustrated in
Table I. In contrast, for applications assigned to either Flink or
TensorFlow we use the per application reserved CPU cores as
the sole tunable parameter due to the limitations we explained
in Section II. We set the reserved memory of these frameworks
to 12 GB per worker node. Our goal in the experimental
evaluation is to measure the performance of our techniques in
terms of: (i) accuracy in estimating the applications’ execution
times, (ii) the number of deadline violations as we increase the
number of applications submitted to Orion and (iii) the number
of reserved nodes during the course of the experiments as they
are an indication of the user’s expected spending budget.
Prediction Models Comparison. In the first set of experi-
ments we evaluate how well Orion captures the applications’
execution times. As already explained in Section IV, Orion
exploits the use of a decision tree based solution to estimate the
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(b) Flink.
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(c) TensorFlow.
Fig. 4. Comparison of the different estimation techniques for the regression application implemented on the different big data frameworks.
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(a) KMeans.
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(b) TPC-H 3.
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(c) TPC-H 10.
Fig. 5. Comparison of the different estimation techniques for different Spark applications.

execution time of the applications. We compare our solution
against linear regression and a piecewise constant decision
tree. In Figures 4(a), 4(b) and 4(c) we evaluate the accuracy
(i.e., R2 score) of the estimations for the Linear Regression
Application in the three different frameworks and three differ-
ent prediction models when we vary the percentage of data that
is used for training. We vary the training data percentage from
20% to 80% and evaluate the accuracy of the models using the
remaining data points (i.e., test data). The results prove that
Orion in most cases outperforms the alternative techniques
while is, at worst case, on par with them. Orion’s tree based
solution consistently performs well compared to the poor
accuracy of linear regression and the typical regression tree
for some of the benchmarked frameworks (Figures 4(a), 4(b)
respectively). In Figures 5(a), 5(b), 5(c) we illustrate the
accuracy of the predictions for the Spark implementations for
three applications (results for other applications omitted for
lack of space). Orion still outperforms the other techniques
with the exception of the TPC-H query, where regression
yields better results. This can be attributed to outliers having
a negative impact on Orion’s performance by affecting the
model’s linear regressors.

Comparison against other Scheduling Techniques. In the
second set of experiments we compare Orion against a work-
load agnostic baseline (i.e., Least Loaded in the figures),
which assigns the application to the least loaded framework (in
terms of assigned applications) reserving for each application
all the available nodes. More specifically, whenever a new
application is submitted to the Least Loaded negotiator, the
latter assigns the application to the framework with the least
running applications. As we illustrate in Figures 6 and 7,
Orion outperforms the Least Loaded negotiator as it is able to
satisfy more deadline constraints and requires less nodes. In
Figure 6 we observe that Orion is able to satisfy 70% deadline
constraints even when 75 applications have been submitted.

In contrast, Least Loaded manages to satisfy only 31% of
the deadline constraints. The results are as expected, as Least
Loaded does not consider the performance of the application
on the available frameworks when it makes an assignment.
Furthermore, it can be observed in Figure 7 that Orion
achieves better resource utilization than the Least Loaded
technique as it increases the computing nodes only in cases
that it is truly beneficial. We elaborate further on the reserved
resources per framework in Figure 11 where we show the
per framework reserved nodes. Orion schedules applications
to all three frameworks and increases the resources only if it
is necessary for avoiding a deadline violation.

Evaluating different Cluster Setups. In order to illustrate
the benefits of using a multiple frameworks environment we
compare it against two alternative infrastructures. The idea
is to reserve all the available nodes (i.e., 21 nodes in total)
initially for a Spark cluster and then a Flink cluster. The
scope of the experiment is to examine whether it is helpful to
have smaller sized clusters comprising different frameworks
or a single cluster of one framework type (either Spark or
Flink). We can see in Figures 9 and 10 that our infrastructure
is able to meet significantly more deadline constraints as it
exploits all frameworks, due to the fact that some applications
execute better on specific frameworks (e.g., Linear Regression
has better results when executed over TensorFlow as we
illustrate in Section I). Furthermore, Figure 11 showcases
how our technique exploits the TensorFlow framework for the
execution of the Linear Regression applications allowing it to
use less resources than the other setups.

Impact of Applications’ Inter-Arrival Times. In the last
set of experiments we evaluate the deadline violations (i.e.,
Figures 12 and 13) and the reserved resources (i.e., Figure 14)
when we vary the applications’ inter-arrival times in seconds.
As we illustrate in the Figures the lower the inter-arrival time
the harder it is to satisfy the deadline constraints and also
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Fig. 6. Comparison of different scheduling
techniques in terms of deadline violations.
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Fig. 7. Comparison of different scheduling
techniques in terms of reserved resources when
50 jobs have been submitted.
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Fig. 8. The number of nodes reserved by the
different frameworks when 50 jobs have been
submitted.
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Fig. 9. Comparison of the total deadline viola-
tions for varying number of applications.
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Fig. 10. Comparison of the deadline violations
over time on the different clusters when 50 jobs
have been submitted.
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Fig. 11. Comparison of the total reserved nodes
on the different clusters when 50 jobs have been
submitted.
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Fig. 12. Impact of inter-arrival times on the
deadline violations for varying number of ap-
plications.
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Fig. 13. Impact of inter-arrival times on the
deadline violations over time when 50 jobs have
been submitted.

0 500 1000 1500 2000 2500 3000
Time (sec)

0

5

10

15

20

25

#R
es

er
ve

d
N

od
es

Comparison of Total Reserved Nodes

10
30
50

Fig. 14. Impact of inter-arrival times on the
number of reserved nodes over time when 50
jobs have been submitted.

the more resources need to be reserved. This is expected, as
when the application submission rate increases, it becomes
harder to satisfy all the deadline constraints. Nevertheless, as
we illustrate in Figure 12, Orion satisfies 70% of the assigned
applications’ deadlines even when the inter-arrival period is
set to 10 seconds with more than 75 submitted applications.

VI. RELATED WORK

There have been multiple previous works that tackle the
problem of scheduling big data applications in distributed sys-
tems with the objective of minimizing the monetary cost [22],
the makespan [9], [29] or both metrics [12]. However, most of
these efforts target a specific framework (e.g., Hadoop) so the
proposed prediction models cannot be applied to others (e.g.,
Spark). Additionally, they assume that the complete workload
is known beforehand and do not consider the number of
resources that should be reserved and how the applications’
configuration parameters (e.g., whether compression should be
applied) affect their execution times.

Furthermore, there exist multiple cluster-wide schedulers
like Apache Mesos [30] and Apache YARN [31] which enable
the scheduling of big applications on shared resources. In con-
trast to those solutions, in our setup we have a dedicated cluster

per framework and need to determine both the cluster and
necessary resources and configurations for satisfying deadline
constraints. A similar problem to the one we examine in this
work, is the resource management and scheduling in multiple
MapReduce clusters [11], [12]. Our setting is coherently
different as we consider the fact that the performance of an
application varies across different frameworks as well as the
impact of various configuration parameters.

Moreover, there is increasing interest within the research
community in the problem of modelling the impact of the
amount of computational resources and the different frame-
work’s configuration parameters on the applications’ execution
time [18], [32]. Our work differs in that we consider how
the implementation of an application on various big data
frameworks can affect the performance and also extend a
novel prediction technique based on decision trees [33], [34] to
efficiently search the parameters’ space and tune them appro-
priately so that applications can meet user defined deadlines.
Finally, there are multiple auto-tuning frameworks [35] for
configuring the parameters of big data frameworks but those
are not generic and target specific frameworks [36].



VII. CONCLUSIONS

In this work we present Orion a novel online resource
negotiator for scheduling big data applications across different
big data frameworks. Orion exploits algorithmic improvements
over the decision trees prediction technique to estimate the
impact of the per framework configuration parameters on the
application’s execution time and also to efficiently traverse the
large parameters’ search space to determine the parameters’
values that satisfy the application’s performance requirements.
Furthermore, Orion aims at minimizing the amount of re-
sources that will be reserved by an application in order to
reduce the user’s budget cost without violating the applica-
tions’ deadlines. Therefore, Orion automatically determines
the framework to which each incoming application should be
assigned and when execution of the application should start.
It also appropriately tunes its configuration parameters. Orion
can support different big data frameworks including but not
limited to Apache Spark, Apache Flink and TensorFlow. Our
experimental evaluation considering three state-of-the-art big
data frameworks illustrates that Orion is capable of accurately
estimating execution times, successfully meeting the deadline
constraints with a high probability and minimizing the cost on
the user’s spending budget. In the future we plan to enable the
preemptive scheduling of the assigned applications to be able
to satisfy more deadlines.
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[17] A. Karalič, “Employing linear regression in regression tree leaves,” in

ECAI, Hamburg, Germany, 1992, pp. 440–441.
[18] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:

efficient performance prediction for large-scale advanced analytics,” in
NSDI. Santa Clara, CA, USA: Usenix, 2016, pp. 363–378.

[19] T. Achterberg, “Constraint integer programming,” 2007.
[20] ——, “Scip: solving constraint integer programs,” Mathematical Pro-

gramming Computation, vol. 1, no. 1, pp. 1–41, 2009.
[21] A. H. Land and A. G. Doig, “An automatic method of solving discrete

programming problems,” Econometrica: Journal of the Econometric
Society, pp. 497–520, 1960.

[22] Y. Wang and W. Shi, “Budget-Driven Scheduling Algorithms for Batches
of MapReduce Jobs in Heterogeneous Clouds,” Cloud Computing, IEEE
Transactions, 2014.

[23] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million
song dataset,” in ISMIR, Miami, FL, USA, 2011.

[24] MovieLens, https://grouplens.org/datasets/movielens/.
[25] K-Means Data Generator, https://github.com/apache/flink/blob/master/

flink-examples/flink-examples-batch/src/main/java/org/apache/flink/
examples/java/clustering/util/KMeansDataGenerator.java.

[26] M. Poess and C. Floyd, “New tpc benchmarks for decision support and
web commerce,” SIGMOD, Dallas, TX, USA, vol. 29, no. 4, pp. 64–71,
2000.

[27] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[28] S. Maroulis, N. Zacheilas, and V. Kalogeraki, “Express: Energy efficient
scheduling of mixed stream and batch processing workloads,” in ICAC.
Colombus, OH, USA: IEEE, 2017, pp. 27–32.

[29] Y. Wang, J. Tan, W. Yu, L. Zhang, X. Meng, and X. Li, “Preemptive
reduce task scheduling for fair and fast job completion.” in ICAC, San
Jose, CA, USA, 2013.

[30] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, Boston, MA, USA, 2011.

[31] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache hadoop
yarn: Yet another resource negotiator,” in SOCC. New York, NY, USA:
ACM, 2013, pp. 5:1–5:16.

[32] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in NSDI, Boston, MA, USA, 2017, pp.
469–482.

[33] K. Lolos, I. Konstantinou, V. Kantere, and N. Koziris, “Adaptive state
space partitioning of markov decision processes for elastic resource
management,” in ICDE, San Diego, CA, USA. IEEE, 2017, pp. 191–
194.

[34] ——, “Elastic management of cloud applications using adaptive rein-
forcement learning,” in BigData. Boston, MA, USA: IEEE, 2017.

[35] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “Boat: Building auto-
tuners with structured bayesian optimization,” in WWW, Perth, Australia,
2017, pp. 479–488.

[36] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A self-tuning system for big data analytics.” in CIDR,
vol. 11, 2011, pp. 261–272.


