
Gredia Middleware Architecture ∗

Ioannis Konstantinou, Katerina Doka, Athanasia Asiki, Antonis Zissimos

and Nectarios Koziris

National Technical University of Athens
School of Electrical and Computer Engineering

Computing Systems Laboratory
Zografou Campus, Zografou 15773, Greece

email: {ikons, katerina, nasia, azisi, nkoziris}@cslab.ece.ntua.gr

Abstract

In this paper, we present RDLS (Rich Data Location Services),
a grid middleware for data management designed to meet the require-
ments posed by the GREDIA project [1]. The main purpose of the de-
scribed Middleware components is to provide the prerequisite services
for storage, search and retrieval of annotated, rich media content in a
large-scale distributed environment. These services can be efficiently
integrated in existing Grid middlewares, such as Globus Toolkit 4 [5],
to manipulate rich media content. The users of GREDIA platform will
be able to upload their files in the distributed GREDIA repository and
to perform advanced searches in the annotations of the stored content.
A Peer-to-Peer overlay will be implemented to store the provided anno-
tations. Every node connected to the platform will be able to act not
only as a consumer of storage resources, by means of searching existent
files, but also as a provider of storage capacity and data services.

1 Introduction

The explosive evolution of networking infrastructures along with the grow-
ing adoption of grid computing initiatives in resource sharing create attractive
perspectives for the deployment of large-scale, distributed computing and stor-
age systems. On the other hand, as far as data management is concerned,
Peer-to-Peer (P2P) algorithms have emerged as a promising solution, offering
incontestable advantages in terms of scalability, fault-tolerance and the ability
to adapt in dynamic node arrivals and departures [2]. A distributed facility in-
corporating practices from both areas has been envisioned by numerous related
research initiatives.

The GREDIA middleware architecture has two significant characteristics: It
is modular, namely it has well defined different components that interact with
each other in a clear way and it is standardized, that is, it complies with well
defined and widely accepted by the Grid community standards.

∗The described work is partly supported by the European Commission through the FP6
IST Framework Programme (FP6-34363 [1]).

2 Interoperability

The development of RDLS is based in Open Standards, to facilitate interop-
erability with other currently used systems. The existing services layer exposes
the functionality of the data architecture to other components of GREDIA plat-
form. Considering this fact, this layer should use standard protocols, in order
to communicate with other services. Well defined interfaces should be sup-
ported to enable the integration of services from different subsystems. The most
appropriate technology to achieve interoperability is the Open Grid Services Ar-
chitecture(hence OGSA), as it was suggested by Foster et al. in [6] and was later
enhanced, in [4]. The OGSA architecture is based upon another standardiza-
tion protocol adopted by the majority of both the academic and the industrial
community, the Web Services Architecture [3].

The mechanics of a Web Service are described in a Web Service Descriptor.
The WSD is a machine-aware specification of the Web service’s interface, written
in WSDL (Web Services Description Language). In a WSD the web service’s
interface is documented in a machine readable manner, using XML tags to create
the WSDL document. Services use each other’s WSD to discover the appropriate
interfaces in order to communicate.

In the Web Services Resource Framework [4], the appropriate extensions are
presented, so as to apply the notion of state in the otherwise stateless Web
Services. As of this, WSRF services, in contrast to pure WS services, have
persistent state that remains consistent during numerous transactions with
other services. During the initialization of a WSRF service, a unique identifier
is created and passed to the client. Using this identifier, the client can query
the state of the service at anytime, and this applies to all other clients that are
aware of the specific unique identifier.

3 Components Interaction

The RDLS components interact with each other to offer a set of core data
services to other GREDIA Components. In Figure 1, the detailed stucture of
the proposed architecture is presented.

3.1 Data Service

The Data service is the service for manipulating data items. Its role is double:
• It receives a client’s request for upload of a data item and stores it through

a web based application. A unique identifier (CurrentID) is assigned to
the data item, which is then uploaded to the Storage overlay.

• It retrieves a file from the Storage overlay and returns a data stream to
the search clients, which are then able to download the data item using
the GridTorrent protocol [10].

This service is executed in conjunction with the Metadata service. The
unique identifier, called (CurrentID) is used to map the metadata file to the

DATA SERVICE
Interacts with the

STORAGE overlay
providing basic put/get
primitives and informs

DRLS about file
replicas

STORAGE
Repository containing
data files along with

their replicas

METADATA
OVERLAY

Contains multidimensional
Indexing (Space filling

curves) + Load balancing.
Metadata is stored in a P2P

overlay

DRLS
P2P overlay

containing replica
locations for each
Logical File Name

APPEA DATA
ACCESS
CLIENT

METADATA
SEARCH CLIENT

Collects metadata query
from user, forwards it at

the metatada overlay and
returns matching files.

INSERT FILE
CLIENT

Collects metadata fields
from user input and a file

handle in the local
filesystem

METADATA
SERVICE

Provides interface to
interact with the

METADATA OVERLAY

Sends metadata
in XML format

Creates datastream to
upload local file in the

data storage

Get files using
GridTorrent Protocol

Informs
metadata

overlay about
CurrentID of

new files

DRLS is informed
about created

replicas

RDLS
S

ecurity

FiV
O

Client-side
encryption

Secure communication
between peers

Authorization

Data is replicated and
inserted in the storage

Updates
metadata overlay

Set user access rights

Secure
Communication and

Authentication

Send queries to the
metadata service and

retrieves results

Fig. 1: GREDIA Middleware Architecture

corresponding date file stored in the Storage overlay. After the initial invocation
of the Data Service for the upload of a file, the specific file is available to other
users of the GREDIA platform. This service is also responsible for the data re-
trieval from the physical locations of data replicas. The mappings of CurrentIDs
to physical locations are stored in a distributed catalogue implemented in the
DRLS overlay. It is obvious that a user needs to be authenticated in order to be
granted access to the DataService.

3.2 Metadata Service

The Metadata Service is responsible for the assignment of metadata files, de-
scribing a data item, to the peers of the Metadata Overlay. It also processes and
answers queries initiated either from the Appea Data Client, or by a separate,
web-based metadata search client. This is achieved by forwarding the queries
to the Metadata overlay in order to retrieve relevant files, according to their
metadata description. In case of data insertion, the Metadata service receives
the CurrentID of the data item produced by the DataService. The CurrentID
along with the object’s metadata are used to calculate the exact metadataId
using an algorithm to reduce dimensions [9],[7]. The metadataId is used to find
the node in the Metadata overlay responsible for storing the data item’s XML
description. In the case of data search, it forwards the XML query to the Meta-

data Overlay, which should return the XML metadata description of the data
items satisfying the query. This service also prerequisites user authentication
and secure communication.

3.3 Metadata Overlay

The Metadata overlay is a P2P DHT-based overlay [8] holding meta-
data files. Metadata files are assigned to a corresponding node according to its
metadata values. To ensure system scalability and to achieve minimization of
response time and communication overhead implied by the searching procedure,
multidimensional indexing techniques based on Space Filling Curves [9],[7]
are exploited during the implementation of the Metadata Overlay. All com-
munication among peers should be secure, and only authorized users should be
granted access.

3.4 DRLS (Distributed Replica Location Service)

DRLS is a Distributed Replica Location Service (RLS) and consists
of a P2P overlay that contains the mappings of LFNs to PFNs. The DRLS
overlay returns all replica locations for a specific LFN. It interacts with the
Data Service, namely DRLS provides the Data Service with PFNs indicating
replica locations of requested files and the Data Service informs DRLS about
newly created replicas. All communication between peers of the P2P overlay
should be secure.

3.5 Storage

This is the actual repository of data items. The Storage component receives
the data item along with its replicas from the Data Service and stores them to
the physical nodes. Authorization is needed to access a data item.

4 Middleware Services API

In this section, we will elaborate on the aforementioned services, describing
in detail the exact way to invoke them. In more details, the middleware provides
the following services:

4.1 Name: saveMetadata

Purpose: It makes the metadata entered by a user available to other peers,
which can locate them with the search service later.

Description: During the insertion of a new file in the GREDIA repository,
a user fills in a form with metadata to describe the actual file. The metadata file
is uploaded at the Metadata overlay and it is indexed for fast retrieval. A unique
identifier is needed to describe each file. This identifier is the system-generated
CurrentID. The same identifier is used both in the storage and replica location

overlay. The saveMetadata service is invoked along with the saveData service,
to ensure that the LFN is the same both in the metadata and storage overlay.

Parameters: XML Metadata: XML document
IN: An XML document containing all the keywords that a user has inserted

during the upload procedure. The structure of this XML is described by an
appropriate XSD file.

Returns: If the file is successfully uploaded, the saveMetadata service re-
turns an ”OK” signal. Otherwise, it returns an error code describing the error
cause (for instance, if the user has no write permission).

4.2 Name: Search

Purpose: It sends a query to the Metadata overlay to retrieve relevant files.
Description: GREDIA users upload files in a large-scale geographically dis-

tributed repository. The uploaded files are annotated according to a predefined
metadata schema. These annotations are stored in the Metadata overlay and
properly indexed to avoid latencies and to ensure redundancy. The indexing
procedure is transparent to applications; they are able to send their queries us-
ing only this service. The output of this service is an XML document containing
the LFNs corresponding to files answering the imposed query.

Parameters: XMLQuery XML document
IN: An XML document containing the user queries.
Returns: An XML file, which contains a list of the metadata XMLs, which

are returned as results.

4.3 Name: saveData

Purpose: It stores a local file in the Storage overlay.
Description: Users are able to share their files with other users participating

in the GREDIA platform. The role of this service is to upload a file at the
storage overlay and assign to it a unique identifier. This service is executed
in conjunction with the saveMetadata service, as the unique identifier must be
the same for the metadata and the storage overlay. After the execution of the
service, the file is available for search and retrieval by users with the required
permissions.

Parameters:
Current ID
IN: The desired unique ID that identifies a specific version of the file in the

storage overlay (in the overlay different versions of files with the same LFN
will exist, as there is support for versioning. As of this, the distinguishing
characteristic of the different file versions is the Current ID)

Datastream
IN: A pointer to a data stream in the local repository of the user
Returns: Returns an ”OK” signal if the file is successfully uploaded, other-

wise it returns an error code describing the error cause (for instance, the LFN
already exists, or the user may not has write permission).

4.4 Name: getData

Purpose: Retrieves a file from the storage overlay
Description: This service returns a data stream to the application Layer of

the file it wants to receive.
Parameters: Current ID
IN: The desired unique ID that identifies a specific version of the file in the

storage overlay (Multiple versions of the same file have the same LFN and are
distinguished by the different Current IDs. In this way, a versioning scheme is
provided.)

Returns: A pointer to a data stream for the requested file in the storage
overlay

5 Conclusion

Our goal is to develop extensions to the existing grid middleware [5] to sup-
port management of Rich Media Content, which is currently missing. Using
OGSA and open source code, we are developping generic data middleware that
can be reused by other grid platforms, facilitating interoperability between dif-
ferent grid systems.

References

1. Gredia.eu. http://www.gredia.eu/?Page=home.
2. H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking

up data in p2p systems. Commun. ACM, 46(2):43–48, 2003.
3. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and

D. Orchard. Web services architecture. W3C Working Group Note, 11:2005–1,
2004.

4. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire,
D. Snelling, and S. Tuecke. From open grid services infrastructure to ws-resource
framework: Refactoring & evolution. Global Grid Forum Draft Recommendation,
May, 2004.

5. I. Foster. Globus toolkit version 4: Software for service-oriented systems. Network
And Parallel Computing: IFIP International Conference, NPC 2005, Beijing,
China, November 30-December 3, 2005: Proceedings, 2005.

6. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The physiology of the grid.
Grid Computing: Making the Global Infrastructure a Reality, pages 217–249, 2003.

7. H. V. Jagadish. Linear clustering of objects with multiple attributes. Proceedings
of the 1990 ACM SIGMOD international conference on Management of data,
pages 332–342, 1990.

8. P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. Proceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS), 258:263, 2002.

9. B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering
properties of hilbert space-filling curve. Analysis, 13:124–141, 2001.

10. A. Zissimos, K. Doka, A. Chazapis, and N. Koziris. Gridtorrent: Optimizing data
transfers in the grid with collaborative sharing. In 11th Panhellenic Conference
on Informatics (PCI2007), Patras,Greece, May 2007.

