
Elton: a Cloud Resource Scaling-out Manager
for NoSQL Databases

Athanasios Naskos #1, Anastasios Gounaris #1, Ioannis Konstantinou ∗2

Aristotle University of Thessaloniki, Greece
1 {anaskos,gounaria}@csd.auth.gr

∗ National Technical University of Athens, Greece
2 ikons@cslab.ece.ntua.gr

Abstract—We present the Elton tool, a publicly available cloud
resource elasticity management system tailored to NoSQL data-
bases. Elton is integrated in the Ganetimgr web platform, and
offers an easy to use web interface, through which monitoring
and horizontal scaling of NoSQL databases can be performed
and what-if analysis queries are enabled. Elton uses Markov
Decision Processes (MDPs) as the underlying modeling frame-
work, and encapsulates state-of-the-art horizontal scaling policies
that offer different trade-offs between performance and monetary
deployment cost. Its main novelty is that it employs probabilistic
model checking to allow for both efficient elasticity decisions and
analysis of scaling actions and serves as a case study about the
benefits of model checking in online decision making and analysis.

I. INTRODUCTION

A key feature of cloud environments is the ease of scaling
with regards to provided resources. Users are able to add
or remove system (e.g., RAM) and computing (i.e., virtual
machines (VMs)) resources, known as vertical scaling or
scale-up and horizontal scaling or scale-out, respectively, or
move the computing resources to different physical locations,
which is termed as migration. The adaptation of the cloud
resources is referred to as cloud elasticity, and is typically
performed in an automated manner. The cloud applications that
make use of the latter feature try to lease just the appropriate
amount of resources at any point to guarantee for their proper
functionality without incurring unnecessary monetary cost.

Cloud-hosted databases can benefit from all types of elas-
ticity (e.g., [1], [2], [3]). However, NoSQL databases fit
better to the scaling-out paradigm, given that they are usually
equipped with built-in mechanisms for dynamic expansion
or shrinkage over a distributed environment. To efficiently
handle the horizontal elasticity in NoSQL database systems,
we need to take into consideration their special behavior. More
specifically, such systems might be unpredictable, exhibiting
significantly varying performance under similar external work-
load for the same number of VMs, which is not amenable
to analytical modeling [1], [4]. Moreover, elasticity actions
may be followed by significant transient periods, which, if not
treated with care, may lead to destabilization of the system.

The known cluster and cloud management systems and their

interfaces (e.g., OpenStack1, Amazon EC22, Ganeti3,
Ganetimgr4) offer limited or even no elasticity handling
mechanisms for NoSQL databases. Most of the proposals offer
generic elasticity handling mechanisms with simple decision
policies (e.g., rule-based ones). Our contribution is the presen-
tation of a scaling-out manager tailored to NoSQL databases.
The novelty of our approach is in the usage of model checking
in a non-traditional manner, namely to assist in dependable
online decision making.

More specifically, we build upon the state-of-the-art elas-
ticity approach for NoSQL introduced in [4], which have
been incorporated to ganetimgr, a web platform on top
of the Ganeti manager, forming the Elton application5. We
offer a range of decision policies that strike configurable
balance between performance and deployment cost. Unlike
other proposals that treat the elasticity handling problem as
only an optimization one, we also focus on dependability
through (probabilistic) model checking. We further leverage
this feature to offer an analysis service so that users better
understand the behavior of their NoSQL cluster and the con-
sequences of the applied elastic actions. An example analysis
query is: “What will the probability of mean latency exceeding
a threshold in the next three periods be, if no VM is added
now?” Such analyses are also employed to drive elasticity
decisions. In Elton, we have developed a web interface to
access our decision making mechanism and/or submit analysis
queries in the form of Probabilistic Computation Tree Logic
(PCTL) properties. The verification of PCTL properties is
capable of supporting several what-if scenarios. In addition,
we offer the capability to emulate elasticity decisions using
past traces.

To showcase the Elton’s functionality, we have used an
Apache Cassandra NoSQL cluster deployed in a private cloud
infrastructure. The workload for submitting requests is ac-
cording to the YCSB benchmark6. In the demo scenario, we
show how to conveniently set-up, enact, monitor and analyze

1https://www.openstack.org/
2https://aws.amazon.com/ec2/
3http://www.ganeti.org/
4https://github.com/grnet/ganetimgr
5http://interlab.csd.auth.gr/anaskos/elton
6https://github.com/brianfrankcooper/YCSB

elasticity. Ease of use is a main design principle, therefore, for
the non-experts, pre-built PCTL properties and default values
for all main configuration parameters are provided.

In Section II, we briefly present the technical background of
our decision mechanism. In Section III, we present the Elton
elasticity management system. We briefly discuss related work
in Section IV, and we conclude in Section V.

II. SUMMARY OF ELTON’S TECHNICAL DETAILS

In a nutshell, Elton is an implementation of the framework
in [4], where, in each time period, a MDP model is instantiated
on-the-fly. Then, PCTL properties are verified on top of these
models, in a way that their results can be directly translated
in elasticity decisions. In horizontal scaling, such decisions
include add one or more VMs, remove one or more VMs, or
keep the current configuration.

The rationale of MDP modeling is to have a distinct
model state for each combination of (i) cluster configuration
(abstracted by the number of VMs) and (ii) expected system
behavior captured by representative query latencies. These
latencies are derived through clustering past latencies for
similar past conditions in terms of the volume of incoming
requests kept in the log files. The state transition probabilities
are commensurate to the cluster sizes. The model captures the
evolution of the system for a configurable number of future
periods, whereas prediction modules forecast the anticipated
workload in these periods. Finally, each state is associated
with a reward, which is defined according to user-defined
utility functions. Both the model creation and verification are
performed with the help of the PRISM tool [5].

The elasticity decision making is directly supported by the
verification of PCTL properties on top of the MDP model.
When the decision involves a change in the number of VMs,
decision making is suspended to allow the system to stabilize
before the next decision, whereas this suspension is captured
by the MDP models. The main scenario that Elton targets
is to ensure that the query latency does not exceed a user-
defined threshold without paying for more resources than
necessary; therefore, both over- and under-provisioning need
to be avoided. The policies that Elton supports include the
following (assuming that the utility functions are defined in a
way that the lower the reward the better):

1) Optimal Reward Advanced (ORadv): At a first stage, the
elastic actions with the minimum reward are selected;
then the action among all candidates from the first stage
with the least maximum probability of latency violations
is selected.

2) Bounded Reward Simple (BRsimple): The goal of this
policy is to reduce the deployment cost at the expense
of allowing a decrease in the reward up to a user-
defined proportion of x%. To this end, the remove or
no operation action belonging to the beginning of the
strategy with the minimum sub-optimal reward (i.e.
reward up to x% higher than the optimal reward) is
selected.

3) Bounded Reward Economy (BRecon): Similarly to the
previous one, this policy chooses the remove action with
a sub-optimal reward (i.e. not necessarily the minimum
sub-optimal one) that achieves the greatest reduction in
the number of VMs.

4) Bounded Reward - Bounded Probability Economy
(BR − BPecon): This policy adds a quantitative veri-
fication step to the previous policy. It chooses the action
with a sub-optimal reward that is going to remove the
greatest number of VMs provided that its maximum
probability of latency violation falls below an additional
user-defined threshold.

5) Bounded Reward - Bounded Probability Quality (BR−
BPqual): This policy has exactly the opposite logic
compared to the previous one, as it firstly chooses the
action that adds the greatest number of VMs, then it
chooses the no operation action and, as a last option, it
chooses the action, which is going to remove the least
number of VMs.

6) Bounded Reward - Bounded Probability Stability (BR−
BPstab): This policy tries to balance the previous two
policies and make as small changes as possible. It prefers
the least change in the number of VMs with a slight
preference in the additions.

The policies above are further detailed and evaluated in [3],
[6], where it is shown that (i) they can significantly improve
upon other policies, such as rule-based ones (e.g., compared
to rule-based ones, under-provisioning is improved by an
order of magnitude while also avoiding over-provisioning);
(ii) no policy dominates each other; and (ii) they are capable
of yielding a particularly wide range of trade-offs between
monetary cost and meeting user-defined latency thresholds.
All policies are charging model-aware: if VMs are charged per
hour, no VMs are released before the current hour expires.

III. ELTON INTERFACE AND DEMO SCENARIOS

Elton’s interface is designed in a way that is easy to
use through hiding the aforementioned technical details and
providing default configuration. After briefly presenting its
design, we describe the intended demo scenarios7.

A. Front-end

We have integrated Elton in the Ganeti Manager web
platform (aka Ganetimgr). The latter is an open source project
which stands on top the Ganeti virtual machine cluster man-
agement tool. It is developed in python and uses the DJango
web framework. DJango’s modular nature has simplified the
development of Elton as a standalone add-on application
embedded to Ganetimgr. Similarly, Elton can be integrated in
Ganeti Web Manager (Ganeti-webmgr), which is akin to Gane-
timgr; we have selected the latter due to its more advanced
interface. We have extended Ganetimgr with three features:
i) Elasticity, ii) Analysis, and iii) Monitoring; screenshots are
presented in Figure 1.

7demo video at https://www.youtube.com/watch?v=UkgLs89ifzQ

Fig. 1. Elton’s Web Interface for elasticity (top), analysis (middle) and monitoring (bottom).

Considering the Elasticity interface, a summary of all the
available elasticity configurations is displayed in the figure.
The user can interact with each configuration by deleting it,
editing it, or starting the corresponding NoSQL cluster and
elasticity manager. Multiple clusters and elasticity managers
may be deployed simultaneously. Clicking on the “Create new
Elasticity Handler” button, the user is transferred in a form
containing the available configuration for both the NoSQL
cluster and the elasticity handling mechanism. In the same
form, the user also selects whether to emulate the deployment
or to deploy a real NoSQL cluster. In the case of emulation,
the user provides system traces. Using Ganglia, Elton can
be also guided to gather such traces, which will be used as
training input to our decision making mechanism. Clusters of
Cassandra, Hbase and Infinispan are supported; support for
further NoSQL systems can be easily added. In addition, in
the emulation mode, the user is able to set an imaginary load
pattern (e.g. sinusoidal with spikes), which is useful for testing.

In each configuration, the decision policy is selected. Fur-
ther, the user defines the utility functions that are used to
assign rewards to MDP model states. We currently support
three templates of utility functions for assigning state rewards:
(i) reward decreases in manner that is inversely proportional
to the number of VMs; (ii) reward decreases in manner that
is inversely proportional to the actual deployment of VMs;
and (iii) reward being a linear function of observed latency
and deployment cost. In each template, if latency exceeds the
user-defined threshold, a (high-value) penalty reward can be
set. The pros and cons (along with configuration issues) of
these templates are discussed in [6]. Finally, the manager is
equipped with standard mechanisms to forecast future load
(ARMA, ARIMA, or linear regression).

While an elasticity manager is running, the user can analyze
the behavior of the system using one of the several pre-
specified PCTL properties in the Analysis interface, presented
in Figure 1(middle), or providing a custom PCTL property. An

option to download the corresponding instantiated MDP model
in the PRISM format is also available to allow for further
analysis. The analysis can refer to past points during emula-
tion, e.g., to answer questions of the type “what would be the
maximum probability of latency violation if, at a given time
point, 2 more VMs were added?” In PCTL and in accordance
to the underlying MDP models, instances of such queries are
expressed as follows: Pmax=? [F (phase=4) & (latency > la-
tency threshold) & (num nodes=6) & (init num nodes=4)].

At the bottom of the figure, the visual representations of
the variation of the number of VMs and the response latency
in relation to the variation of the incoming load, based on the
collected logs, is shown. The diagrams are also accompanied
by information about the estimated current deployment cost,
the proportion of latency violations, the running time and
other useful measurements. The deployment cost is indicative,
since we employ private machines and is computed if the
deployment cost of VMs was set by Amazon EC2, e.g.,
assuming c3.4xlarge instance types.

B. Showcase Scenario

The aim of the demo is to show how a user can easily i)
set-up and enact; and ii) monitor and analyze elasticity in both
emulated and real settings.

During set-up, we show how to define a cluster assuming
the existence of pre-build VM images containing Cassandra
in Ganeti. The user can set the minimum and maximum
number of VMs, along with the initial number of VMs. In
both emulated and real settings, past logs (traces) are required.
These are in a simple csv format containing the following
fields: timestamp, number of vms, latency, throughput and
CPU utilization (the last two are not used by our demonstrated
elasticity policies). Expert users may opt to modify the default
configuration of the elasticity manager changing the default
values regarding the maximum number of VMs allowed to
add/remove in a single step, weights in the utility functions,
exact algorithm for load forecasting, and other aspects, such
as the usage of a smoothing window through moving average-
based techniques, whether the charging model is hourly based
and MDP details (transient period length, log clusters withing
states, model steps, and so on). All these settings come with
pre-completed default values for non-experts.

When elasticity making is enacted, the focus will be shifted
to monitoring and analysis. Given that elasticity actions may
be triggered every 5 minutes or less frequently, during the
demo we aim to emulate a real deployment consisting of 8-16
VMs running Cassandra and processing the YCSB benchmark.
The monitoring will be performed through the interface shown
in Figure 1 (bottom), which provides a concise overview of the
main metrics of interest (and their evolution). Finally, analysis
queries like the two examples given earlier in the text will be
run during the demo.

IV. RELATED WORK

A framework for cloud service elasticity behavior estimation
and evaluation, which evaluates the impact of an elastic action

to the cloud service, assisting users to define more accurate
elasticity decision rules is proposed in [7]. In a more recent
work [8], a solution is presented to support the development
and the deployment of elastic systems. The authors propose
a framework for monitoring and analyzing rule-based elastic
systems, called MELA. We differ in that we build upon
probabilistic model checking for both decision making and
analysis, being able to verify a wider range of properties,
namely those supported by PCTL, and we also depart from
relying on rules to guide elasticity.

Similarly to our approach, authors in [9] apply what-if
analysis. They propose a prediction framework for estimating
the distribution of the response latency of a request in a
cloud hosted web applications, given a hypothetical cloud
resource configuration and its workload. The estimation is
done using causal dependencies. Analyzing multiple what-
if scenarios the user is able to determine the optimal cloud
resource configuration. We differ in that we tightly couple
analysis and decision making within our policies, rather than
merely providing analysis functionalities.

Finally, the high-level module design of Elton is based on
the Tiramola elasticity manager, which employs MDPs but not
probabilistic model checking [10].

V. CONCLUSIONS

In this work, we present Elton, a cloud resource elasticity
management system tailored to NoSQL databases. We have
integrated Elton in Ganetimgr and presented the three added
interfaces, namely i) Elasticity, ii) Analysis and iii) Moni-
toring. Finally, we have showcased the functionality of the
proposed tool in both an emulated and a real environment.

REFERENCES

[1] S. Das, F. Li, V. R. Narasayya, and A. C. König, “Automated demand-
driven resource scaling in relational database-as-a-service,” in Proc. of
SIGMOD, 2016, pp. 1923–1934.

[2] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, “Albatross:
lightweight elasticity in shared storage databases for the cloud using
live data migration,” Proc. of VLDB, vol. 4, no. 8, pp. 494–505, 2011.

[3] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos,
I. Konstantinou, and S. Sioutas, “Dependable horizontal scaling based
on probabilistic model checking,” in Proc. of CCGrid, 2015, pp. 31–40.

[4] A. Naskos, A. Gounaris, H. Mouratidis, and P. Katsaros, “Online
analysis of security risks in elastic cloud applications,” IEEE Cloud
Computing, vol. 3, no. 5, pp. 26–33, 2016.

[5] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: probabilistic
model checking for performance and reliability analysis,” SIGMETRICS
Perform. Eval. Rev., vol. 36, no. 4, pp. 40–45, 2009.

[6] A. Naskos, A. Gounaris, and P. Katsaros, “Cost-aware horizontal scaling
of nosql databases using probabilistic model checking,” Cluster Com-
puting, vol. 20, no. 3, pp. 2687–2701, 2017.

[7] G. Copil, D. Trihinas, H. L. Truong, D. Moldovan, G. Pallis, S. Dustdar,
and M. D. Dikaiakos, “ADVISE - A framework for evaluating cloud
service elasticity behavior,” in Proc. of ICSOC, 2014, pp. 275–290.

[8] G. Copil, D. Moldovan, H. L. Truong, and S. Dustdar, “Continuous
elasticity: Design and operation of elastic systems,” IT - Information
Technology, vol. 58, no. 6, pp. 329–348, 2016.

[9] Y. Jiang, L. R. Sivalingam, S. Nath, and R. Govindan, “WebPerf:
evaluating what-if scenarios for cloud-hosted web applications,” in Proc.
of ACM SIGCOMM, 2016, pp. 258–271.

[10] I. Konstantinou, E. Angelou, D. Tsoumakos, C. Boumpouka, N. Koziris,
and S. Sioutas, “TIRAMOLA: elastic nosql provisioning through a cloud
management platform,” in Proc. of SIGMOD, 2012, pp. 725–728.

