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Abstract—Modern large scale computer clusters benefit signif-
icantly from elasticity. Elasticity allows a cluster to dynamically
allocate computer resources, based on the user’s fluctuating
workload demands. Many cloud providers use threshold-based
approaches, which have been proven to be difficult to config-
ure and optimise, while others use reinforcement learning and
decision-tree approaches, which struggle when having to handle
large multidimensional cluster states. In this work we use Deep
Reinforcement learning techniques to achieve automatic elasticity.
We use three different approaches of a Deep Reinforcement learn-
ing agent, called DERP (Deep Elastic Resource Provisioning), that
takes as input the current multi-dimensional state of a cluster
and manages to train and converge to the optimal elasticity
behaviour after a finite amount of training steps. The system
automatically decides and proceeds on requesting/releasing VM
resources from the provider and orchestrating them inside a
NoSQL cluster according to user-defined policies/rewards. We
compare our agent to state-of-the-art, Reinforcement learning
and decision-tree based, approaches in demanding simulation
environments and show that it gains rewards up to 1.6 times
better on its lifetime. We then test our approach in a real life
cluster environment and show that the system resizes clusters
in real-time and adapts its performance through a variety of
demanding optimisation strategies, input and training loads.

Index Terms—Elasticity, Resource Management, Resource Pro-
visioning, Cloud computing, Deep Reinforecement learning, Dou-
ble deep Q learning, NoSQL databases, DERP

I. INTRODUCTION

The last years an explosive growth of cloud computing

services has taken place. The evolution of cloud technologies

and also the large growth of information that needs to be

stored and managed created the need of new technologies

that could handle these large amounts of data. As a result,

traditional SQL databases gave their place to the NoSQL [23]

databases and cloud services have emerged. The issue with

cloud technologies is the allocation of resources to the cloud

users in a way that no resources are being wasted to a user

that does not strictly require them at a certain time. In order to

achieve that, cloud services are using elasticity [1], a property

of cloud computing that allows the services to dynamically

allocate resources based on a user’s needs.

In this paper we examine elasticity in terms of adding or

removing VMs from a user’s cluster in order to achieve a

desired balance between the cluster’s throughput and latency

while keeping the costs for the user low. The combination

of all of the system parameters (throughput, latency, number

of machines, average free memory or disk per machine etc)

is defined as the cluster’s state in a given point in time.

Many approaches have been used to solve the problem of

optimal elastic resource provisioning. The issues that occurs

with other approaches, as we show in Section II, is that they

often fail to generalise over the input and perform efficiently

when the number of the input parameters and consequently the

size of the space-state increases. Furthermore some of those

approaches are difficult to calibrate and optimise.

In this work we present DERP, a system that deals with

the elasticity issue by using Deep Reinforcement Learning

techniques. DERP is a robust approach that manages to deal

with the complex and large size of space-state issue, adapt

rapidly to its environment, generalise over the input in a

sufficient way, decrease the space consumption needed by

former elasticity agents and collect greater rewards in its

lifetime when compared to the most efficient of the past

approaches presented in Section II.

DERP is based on the Deep Reinforcement learning [2]

algorithm introduced by Deepmind [3]. Deepmind used a

combination of Deep convolutional neural networks [4] and

Q learning algorithm to train an agent that was able to play

and achieve sizeable results at a series of Atari games. Since

then, lots of updates and improvements were implemented on

this idea [5] so now we can talk about agents being able to beat

top class DotA players [6], by training themselves in complex

screen environments.

We are using three different agents, the Simple Deep Q
learning agent which implements Deepmind’s approach (but

with the use of fully connected neural networks [7] instead of

convolutional [4] neural networks) as a base approach, upon

which we then build the more sophisticated Full Deep and

Double Deep Q learning agents.

II. RELATED WORK

The most common way to deal with the issue of elastic-

ity is auto-scaling. Amazon’s auto-scaling [8] for instance

dynamically increases or decreases a user’s resources based

on thresholds applied on user cluster’s specific metrics. Mi-

crosoft’s Azure [9] and Celar [10] use the same technique. Yet,

as shown in [11], these approaches are difficult to calibrate and

optimise.

In [12] the authors use a dynamic programming algorithm

that tries to determine through a series of past experiences

the optimal behaviour for the system’s next-state. Markov

Decision Processes (MDPs) [13] and Reinforcement learning

[14] algorithms have been used in [15], [16] to address the
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issue, as well as an approach involving wavelets for prediction

of a cloud state and resource provisioning. [17]. However, the

efficiency of those approaches decreases, as the number of

possible states increases. The input parameters of the system

(metrics of the cluster) are continuous variables, therefore the

number of discrete states can grow exponentially.

To manage this issue in [11] the authors propose an RL

approach combined with decision-trees algorithms, in order

to split the input parameters based on some split criteria. This

approach manages to generalise over the input and to train the

agent so that it can find out on its own which state parameters

matter to the desired outcome and which not. For instance

if the user’s policy considers only the high throughput as a

desired parameter then the metric of the free memory space

per VM does not affect the decisions that should be made by

the elasticity agent. Nevertheless, this approach also struggles

with large space of states.

III. DERP OVERVIEW

We call reward the minimisation of a user’s defined policy

function that describes the user’s preference of the system’s

behaviour on a mathematical form, as presented in Section

IV. We show that our approach collects rewards up to 1.6

times better than the past approaches of the MDPS [15] and

the decision-trees [11] agents. The policy function combines

the throughput, latency and number of VMs parameters per

timestep, in order to fit the user’s needs. We show that if the

number of our input parameters grows, which means that the

number of input states grows, our agents succeed in getting

improved and more accurate results. Furthermore, because

our input is significantly small in oppose to other deep RL

algorithms (most deep RL agents are used to manage image

or sound vectors as inputs, meaning thousands of pixels as

state parameters), using 13 input parameters, we manage to

construct a neural network solution that uses only three hidden

layers. Thus our space complexity is significantly smaller than

past approaches, which use Q tables [14]. In neural networks

all the information is stored on neurons weights and not in

other memory or storing units aw we are showing in Section

IV.

We are building DERP, a cloud based system that handles

dynamic resource allocation for a cloud user. The user provides

DERP with some policy parameters, meaning the reward

function, where he specifies the most crucial parameters for

his needs. If a user needs a high throughput for his appli-

cations then DERP focuses on maintaining the user’s cluster

throughput on high levels. If the user needs to keep his cluster

at low costs then DERP gives more attention on keeping

the number of VMs on the cluster low. DERP then uses

its monitor module to collect metrics from the cluster every

ten seconds (with the use of Ganglia’s XML API [18]). The

metrics consist of a variety of different parameters such as

cluster’s throughput, latency, number of VMs, percentage of

free memory per VM, percentage of free disc space per VM

etc. We use 13 different parameters that describe a state. Then

DERP uses its decision module, which is either our Simple

Fig. 1: Derp’s Architecture

Deep Q learning, Full Deep Q learning or Double Deep Q

learning agent, to determine its next action. We make use of

Bellman equation to define our network’s Q targets

Q ∗ (s, a) = r(s, a) + γmaxQ ∗ (s′, a′|s, a)
where γ is the discount factor, that represents the impact of

future rewards in our current decision making if we choose a

specific action at this timestep. r(s, a) is the reward our agent

will get if it takes action a from state s and Q ∗ (s′, a′|s, a) is

the Q function given that our agent next, is on state s and takes

action a. We will elaborate on the use of Bellman equation

on Section IV. If an increase or decrease on the cluster’s size

is decided, then DERP uses its coordinator module to add or

subtract VMs accordingly.

We can see DERP’s architecture in Figure 1.

IV. DERP DECISION ALGORITHMS

The Simple Deep Q learning algorithm that we are using

is based on Deepmind’s algorithms for Deep Reinforcement

learning. Many programs created to efficiently compete with

humans in Atari and Go games [19] -as well as in other

demanding fields- make use of the aforementioned algorithms.

For now we assume a weighted network IV-A, considered as a

black box. The replay memory as described in subsection IV-B

consists of a buffer that contains N past sequences (s, a, r, s′),
that we are going to feed our agent with, on the course of each

training lifetime. M is the number of training steps. L is the

overall size of the mini batches that we are training our agent

with, on every step.

A. Neural Networks

The basic idea behind a neural network is to use the network

as a function approximator that computes the output based

on a given input. The network’s output is then compared to

a given target. We want our output to be as close to the

target as possible, so we are using Backpropagation [20] to

alter our network’s weights so that future outputs will be

closer to our desired target. Backpropagation deploys gradient

descent [21], a first-order iterative optimisation algorithm used

to find a function’s minimum. The neural network’s function

is basically the multiplication of an input with the network

weights to produce an output.
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It is clear that if a certain input parameter does not influence

the outcome of a prediction then the weighs that regard

this parameters become zero. In the end the weights of the

network describe the importance of an input parameter, or

the correlations between some input parameters. The above

procedure is called training the network. We see that the

networks weights hold all the information that a network has

absorb during its lifetime.

In the most common example a neural network is used to

determine if an image depicts an object of class A or B, so

the target is the actual object of the image, that our network’s

approximator tries to predict its class.

In Deep Reinforcement learning the difference is that there

are no specified targets, but we compute our targets using our

network to compute the Bellman equation at each state,

Q ∗ (s, a) = r(s, a) + γmaxQ ∗ (s′, a′|s, a)
The Q target obtained from Bellman equation, becomes our

respective target. So we are using Q learning equations in

order to compute some basic targets upon which our network

is going to be trained. The r(s, a) factor above is our reward

function. We define our reward function as a function that

describes the “goodness” of being in a state based on a user’s

defined parameters.

R(s, a) = B ∗ throughput− C ∗ |VMs| −A ∗ lat
the user defines the B, C, A parameters. We observe that a

cluster’s goal is to have sizeable throughput, while obtaining

the latency on low levels and minimising the user’s cost on

resources.

At the early steps of our agent’s life, it takes random actions

in the environment. We define as annealing steps, the number

of steps that our agent has to take before reducing the probabil-

ity of taking a random decision and increasing the probability

of taking the optimal decision. This is our e-policy. After

i∗annealing−steps our algorithm decides to take a random

action and not action a, where a = argmaxa′ Q(s, a′), with

probability 1−i∗annealing−steps. If i∗annealing−steps is

equal or greater than our training steps, then all of our agent’s

decisions are optimal (i represents the iteration index). We

adopt this strategy to answer the exploitation vs exploration
dilemma, meaning that if our agent takes the most likely to be

the optimal decision from the beginning of its lifetime then it

might miss the opportunity to explore the whole environment

and obtain better rewards in the future.

We split our data into a training and a testing subset, to

evaluate our agent’s performance after the training procedure.

In this way we make sure that our agent will not overfit on

the training data. Overfitting is “the production of an analysis

that corresponds too closely or exactly to a particular set of

data, and may therefore fail to fit additional data or predict

future observations reliably”.

B. Experience replay

In order to achieve better results the use of a memory buffer,

known as experience replay, has been proposed. This approach

Algorithm 1: Simple Deep Q Learning

1: Initialize replay memory D
2: Initialize action-value function Q with random values θ
3: s = initialstates1
4: for episode = 1 to M do
5: Observe state s (by collecting metrics with the monitor

module)
6: With probability ε select a random action at (add/remove

VM using coordinator module) otherwise select
a = argmaxa′ Q(s, a′)

7: observe reward r and new state s′ (by collecting metrics
with the monitor module).

8: Store sequence (s, a, r, s′) at the experience replay buffer
9: Sample L number of past experiences < ss, aa, rr, ss′ >

from our memory buffer and training our agent with them,
by calculating the Q targets (tt) for each minibatch
transitions

tt =

⎧⎪⎨
⎪⎩
rr if ss′ is a terminal state

rr + γmax′
aQ(ss′, aa′)

for non terminal ss′

10: train the Q network using gradient descent with
(tt−Q(ss, aa))2 as loss

11: s = s′

12: end for

suggests that we store some previous memories consisting of a

state s, an action a, the reward r that we gain from this action

a and the resulting state s’ (s, a, r, s′). In each step of our

agent’s training life we feed our network with a mini batch

of past experienced samples from our memory buffer. This

leads to more effective training, since experience is potentially

used in a variety of weight updates, allowing for greater data

efficiency. Furthermore by receiving random samples from

the mini batch, we ensure that the experiences that we feed

our network with are not consecutive, thus avoiding strong

correlations between the data. Before proceeding to the core

algorithm, the first D steps are being utilized for the proper

initialization of our replay memory buffer D.

C. Simple Deep Q learning

This is our basic implementation of Deep Reinforcement

learning using experience replay. Our agent’s train workflow,

presented in algorithm 1, is based on what we already pre-

sented in the previous paragraph.

D. Full Deep Q learning

In this approach, presented in algorithm 2, we are using

an additional second network. The second network is a clone

of our main network, used to compute the target values. It

generates the target-Q values that will be used to compute the

loss for every action during training. The benefit of using a

second network is that at every step of training, the Q-networks

values shift, and if we are using a constantly shifting set of

values to adjust our network values, then the value estimations

can become unmanageable. The network can be destabilised

by falling into feedback loops between the target and estimated

Q-values. In order to mitigate that risk, the target networks

weights are fixed, and periodically updated to the primary Q-

networks values. In this way training can proceed in a more
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Algorithm 2: Full Deep Q Learning

1: Initialize replay memory D
2: Initialize action-value function Q with random weights θ
3: Initialise target function Q’ with random weights θ

s = initialstates1
4: for episode = 1 to M do
5: Observe state s (by collecting metrics with the monitor

module)
6: With probability ε select a random action at (add/remove

VM using coordinator module)
otherwise select a = argmaxa′ Q(s, a′) observe reward r
and new state s′ (by collecting metrics with the monitor
module)

7: Store sequence (s, a, r, s′) at the experience replay buffer
8: Sample L number of past experiences < ss, aa, rr, ss′ >

from our memory buffer and training our agent with them,
by calculating the Q targets (tt) for each minibatch
transitions

tt =

⎧⎪⎨
⎪⎩
rr if ss′ is a terminal state

rr + γmax′
aQ(ss′, aa′)

for non terminal ss′

9: train the Q network using gradient descent with
(tt−Q(ss, aa))2 as loss

10: s = s′

11: Every C-steps reset Q′ = Q
12: end for

stable manner. Every C steps we reevaluate our target networks

with our main network values.

E. Double Deep Q learning

The main intuition behind Double Deep Q learning (DDQN)

or Double Deep Reinforcement learning (DDRL) is that the

regular Deep Q Network often overestimates the Q values

of the potential actions to take in a given state. While this

would be fine if all actions were always overestimated equally,

there is reason to believe this is not the case, as it has

been suggested [5]. One can easily imagine that if specific

suboptimal actions were regularly assigned higher Q-values

than optimal actions, the agent would have a hard time ever

learning the ideal policy. In order to correct this, the authors

of DDQN [5] proposed a simple solution: instead of taking the

maximum over Q-values when computing the target-Q value

for our training step, we use our primary network to choose

an action, and our target network to generate the target Q-

value for that action. By decoupling the action choice from

the target Q-value generation, we are able to substantially

reduce the overestimation, and train faster and more reliably.

We adopt and customise this approach to create our Double

Deep Q learning agent, presented in algorithm 3. The new

DDQN equation that we use for updating the target value is:

Qtarget = r +Q(s, argmax(Q(s′, a, s′′), s′))

V. NETWORK ARCHITECTURE

A. Architecture

We are using Google’s Tensorflow framework [22] to build

and train our neural network agent. Our network consists of

Algorithm 3: Double Deep Q Learning

1: Initialize replay memory D
2: Initialize action-value function Q with random weights θ
3: Initialize target function Q’ with random weights θ
4: s = initialstates1
5: for episode = 1 to M do
6: Observe state s (by collecting metrics with the monitor

module).
7: With probability ε select a random action at (add/remove

VM using coordinator module) otherwise select
a = argmaxa′ Q(s, a′) observe reward r and new state
s′ (by collecting metrics with the monitor module).

8: Store sequence (s, a, r, s′) at the experience replay buffer.
9: Sample L number of past experiences < ss, aa, rr, ss′ >

from our memory buffer and training our agent with them,
by calculating the Q targets (tt) for each minibatch
transitions

tt =

⎧⎪⎨
⎪⎩
rr if ss′ is a terminal state

rr + γQ(s, argmax(Q(s′, a, s′′), s′))
for non terminal ss′

10: train the Q network using gradient descent with
(tt−Q(ss, aa))2 as loss

11: s = s′

12: Every C-steps reset Q′ = Q
13: end for

three hidden layers (example in Figure 2). This means that the

computer space that our agent consumes is reduced adequately.

The first layer consist of 64 neurons, the second of 128 and the

third of 256. We use a fully connected and not convolutional

NN. The second one is commonly used upon deep RL applica-

tions, however since we do not have image vectors as input, the

fully connected layers approach works as sufficiently, as our

input data cannot be considered spatial. Convolutional neural

networks manage to handle spatial data efficiently and discover

hidden correlations between them [23]. In our Simple Deep Q
learning agent we use only this network. When constructing

Full Deep Q learning and Double Deep Q learning agents,

we use two identical networks one to compute our values and

one to compute our targets, that only differ on their weights

values, as we showed in Section IV.

We are using an experience replay buffer which can store

up to 500 different tuples consisting of a state s, an action a,

the reward r that we collect for this action a and the state s’
that our agent finds itself in after taking the action a (s,a,r,s’).

At the first 360 steps of our algorithm which we call pretrain
steps we are just filling the buffer with memories. After that

we are feeding our agent with as many past experiences as

our batch size parameter suggests.

As a trainer we use the Tensorflow RMSPropOptimizer [24].

RMSProp can be seen as a generalisation of Rprop [25] and

is capable to work with mini batches as well opposed to only

full batches.

VI. SIMULATIONS

We are running two different demanding simulations, for

testing purposes.
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Fig. 2: Example of a three hidden layer neural network

A. Simple simulation scenario

Firstly we are using a simulation scenario from the field

of cloud computing, which we call the “simple scenario” for

convenience. In this scenario, the agent is asked to make

elasticity decisions that resize a cluster running a database

under a varying incoming load. The load consists of read and

write requests, and the capacity of the cluster depends on its

size as well as the percentage of the incoming requests that

are reads. Specifically:

• The cluster size can vary between 1 and 20 virtual

machines

• The available actions to the agent in each step are to

increase the size of the cluster by one, decrease the size

of the cluster by one, or do nothing.

• The incoming load is a sinusoidal function of time:

load(t) : 50 + 50sin( 2π
250 )

• The percentage of incoming requests that are reads is a

sinusoidal function of time with a different period: r(t) :
0.75 + 0.25sin( 2π

340 )
• If vms(t) is the number of virtual machines currently

in the cluster, the capacity of the cluster is given by:

capacity(t) = 10vms(t)r(t)
• The reward for each action depends on the state of the

cluster after executing the action and is given by: Rt =
min(capacity(t+ 1), load(t+ 1))− 3vms(t+ 1).

• Training steps ∈ [2000, 5000, 10000, 20000, 500000]

• Evaluation steps=2000

• max error: 106 (the largest acceptable value of

loss = (target− prediction)2 )

As we can see the reward function encourages the agent to

increase the size of the cluster to the point where it can fully

serve the incoming load, but punishes it for going further than

that. In order for the agent to behave optimally, it needs to not

only identify the way its actions affect the clusters capacity

and the dependence on the level of the incoming load, but

also the dependence on the types of the incoming requests. An

important goal of our algorithm is to recognise which input

parameters matter for the outcome and which are not and also

discover correlations between the input parameters. So we feed

our agent with 7 more randomly valued parameters (meaning

that our agent should be able to find out on its own that these

parameters do not influence the outcome). Before performing

our experiments we calibrate our network after testing it to the

simulation environment with 5000 training steps. We conclude

that the best parameterization given the simulations is to pick

a value of about 360 experience batch size for our memory

buffer, a value of about 0.00025 for our backpropagation’s

learning rate [20] and a value of annealing steps equal to our

training steps/10 every time, so that our e value decreases

linearly to our input.

B. Complex simulation scenario
After observing that our agents perform efficiently in the

“simple simulatio”, as we show in sec VI-C, we test them in

a more demanding environment, which we call the “complex

simulation scenario”. Cluster setup:

• The cluster size can vary between 1 and 20 virtual

machines

• The available actions to the agent in each step are to

increase the size of the cluster by one, decrease the size

of the cluster by one, or do nothing.

• The incoming load is a sinusoidal function of time:

load(t) : 50 + 50sin( 2π
250 )

• The percentage of incoming requests that are reads is a

sinusoidal function of time with a different period: r(t) :
0.75 + 0.3sin( 2π

340 )
• I/O operations per second: IO(t) : 0 : 6 + 0 : 4sin( 2π

195 )
• I/O penalty:

IOpen(t) =

⎧⎪⎨
⎪⎩

0 if 0.7 > IO(t)

IO(t)− 0.7 if 0.7 < IO(t) < 0.9

0.2 if IO(t) > 0.9
(1)

• If vms(t) is the number of virtual machines currently

in the cluster, the capacity of the cluster is given by:

capacity(t) = 10vms(t)r(t)
• The reward for each action depends on the state of the

cluster after executing the action and is given by: Rt =
min(capacity(t+ 1), load(t+ 1))− 3vms(t+ 1).

• Training steps ∈ [2000, 5000, 10000, 20000, 500000]

• Evaluation steps=2000

• Learning rate: 0.00025

• batch size: 360

• max error: 106 (the largest acceptable value of

loss = (target− prediction)2 )

To increase the difficulty of this scenario, we have increased

the effect of the types of the queries to the capacity of the

cluster, and have also added one more parameter that affects

the behaviour of the system in a non-linear manner, namely

the I/O operations per second. This parameter takes values

between 0.2 and 1.0, but only affects the performance of the

cluster if its value is higher that 0.7 by adding a penalty to

the performance of each VM. Just like in the simple scenario

we included 6 additional random input parameters. Three of

them followed a uniform distribution within [0, 1], and another

three took integer values within [0, 9] with equal probability.

C. Simulation results
We use the network that we have now fully described to

test our three agents. We compare our agents to MDP and
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Q-learning approaches as presented in [15] and to MDDPT

and QDT approaches as presented here [11]. The last two

approaches are an MDP and a Q learning algorithm combined

with decision trees for better clustering over the input. It is

worth mentioning that these last two algorithms were the most

efficient approaches on the elasticity issue to the point that

we were building DERP as suggested here [11]. We test all

algorithms for a variety of different size of training steps.

1) Simple simulation scenario: Firstly we test our agents

in the “simple simulation scenario” as presented above. In

Figure 3a we show the performance of our Double Deep RL

when trained for 5000 steps. We show the results of the past

approaches and our approaches at Figures 3b and 3c. And we

show the comparison between our best agent Double Deep Rl

and the best past approaches in Figures 3d and 3e.

2) Complex simulation scenario: Now we are testing our

agents in the “complex simulation scenario” as presented

above. In Figure 4a we show the performance of our Double

Deep RL agent when trained for 5000 steps. We show the

results of the past approaches, our approaches at Figures 4b

and 4c. And we show the comparison between our best agent

Double Deep RL and the best past approaches in Figures 4d

and 4e.

3) Meaning of the diagrams: At the diagrams that we

present the effectiveness of our agent (Figures 3a and 4a)

we present with a red line our cluster’s incoming load and

with blue dots our cluster’s number of VMs. We also present

our reward for each experiment. Most of the times the reward

function is directly proportional to the size of the incoming

load and inversely proportional to the number of our cluster’s

VMs. This is why we choose this representation. At the

diagrams that we show comparisons between agents (Figures

3e, 3d, 3b, 3c , 4e, 4d, 4b and 4c), we show the total gain

of rewards of different agents in their lifetime, with different

amount of training steps at each time (x-axis).

D. Conclusions of simulation results

Our Deep RL agents carry a lot of advantages as opposed

to former algorithms used for elasticity as we showed exper-

imentally for some [15], [11] and we discussed theoretically

in Section I for others. The most important being:

1) Adaptation: The adaptation of Deep RL model is robust

and rapid, regardless the size of the training set. As we notice

in former algorithmic models used, the more complex models

[11] needed larger set of data before fully adapting to the

problem and finding the optimal solution, whereas more simple

algorithmic approaches [15], adapted more quickly but did not

manage to find the optimal decision the most times in order

to obtain a more sufficient reward.

2) Clustering over the input: DERP’s agents manage to

cluster the data and find which input data truly matters to the

outcome of the algorithm and which not. Deep RL algorithms

can do that at any set of data, regardless of its size. They

do not need any number of states provided and as much more

data we can provide our agents (including the number of input

parameters) the better for its effectiveness. As is shown here

[2], deep learning agents deal with complex screen image

vectors, meaning that each state is described by a significant

variety of different pixels (parameters).

3) Space consumption: The space complexity of the

DERP’s approach gives it a large edge against other ap-

proaches. Thus because all other RL approaches need com-

puter space for storing every past experience or subsets of past

experiences. The attempt of this [11] decision-trees approach

was to find a way to manage the data without using to

much computer space and at the other hand extract as much

information as possible. Deep Rl uses Neural Networks which

give an important advantage in this aspect, as neural networks

do not use additional computer space for storing every past

experience as all the information needed is stored in the

networks weights. And as we previously showed, our network

consist of only three hidden-layers, minimising storage space.

That gives us the elasticity to handle as much data, experience

and information as we possible. In our approach we do use the

experience replay feature as shown in Section IV but the space

it needs is proportionally limited and with a upper bound.

4) Total rewards: Aas we can see in our examples our

Full DQN agent and our Double DQN agent manage to get

sufficient rewards, even better from all the previous approaches

that we compared our agents with. DERP surpasses its prede-

cessors in terms of sufficiency, efficiency, adaptation, storage

economy and scaling.

VII. EXPERIMENTAL RESULTS

In this Section we are going to present the experiments

we performed with DERP in real life environments. We are

using Okeanos service [26] as our cloud infrastructure. We

have built a Cassandra cluster upon Okeanos containing 16

VMs, which we trigger with different workloads produced by

YCSB service [27].

Our workloads are sinusoidal reads and writes on our Cas-

sandra database. The load of those reads and writes follows

a sinusoidal distribution. The percentage of reads or writes

requests is random. We use every single node of our cluster

as a receiver of our requests as in Cassandra every node can

serve requests and there is no central node. Every ten seconds

we collect metrics with ganglia XML API [18] and use our

DERP agent to determine the best decision on every step

of the procedure, after we have trained it. The programming

environment that we use is Anaconda [28] and the library that

provides us the neural network and training tools is Google’s

Tensorflow [22].

The metrics that we take represent the cluster current state

and consist of the following parameters:

• The number of active VMs on the cluster.

• The latency of the cluster.

• The throughput of the cluster.

• The amount of cached memory on the cluster.

• The current number of operations-requests served by the

cluster at the current point.

• The number of operations-requests served by the cluster

on the last state. We use this information to determine if
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(a) Double Deep RL with 5000 training
steps. Adaptation of the cluster size to the
incoming load

(b) Past approaches total lifetime rewards
when trained with the respective number
of steps (x-axis)

(c) DERP agents total lifetime rewards
when trained with the respective number
of steps (x-axis)

(d) MDPDT algorithm [11] vs DERP’s
DDQN agent in the simple scenario

(e) QDT algorithm [11] vs DERP’s DDQN
agent in the simple scenario

Fig. 3: Various results on a simple simulation scenario

(a) Double Deep RL with 5000 training
steps. Adaptation of the cluster size to the
incoming load

g

(b) Past approaches total lifetime rewards
when trained with the respective number
of steps (x-axis)

(c) DERP agents total lifetime rewards
when trained with the respective number
of steps (x-axis)

(d) MDPDT algorithm [11] vs DERP’s
DDQN agent in the complex scenario

(e) QDT algorithm [11] vs DERP’s DDQN
agent in the complex scenario

Fig. 4: Various results on a complex simulation scenario
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(a) Simple Deep RL with 20000 training
steps. Adaptation of the cluster size to the
incoming load

(b) Full Deep RL with 20000 training steps.
Adaptation of the cluster size to the incoming
load

(c) Double Deep RL with 60000 training
steps. Adaptation of the cluster size to the
incoming load

Fig. 5: Experimental results of DERP’s agents

the size of operations is currently more possible to be on

an increasing or decreasing slope.

• The amount of free memory on the cluster.

• The percentage of cluster CPU idle.

• The cluster amount of buffered memory.

• The cluster amount of available memory.

• The cluster amount of shared memory.

• The cluster amount of free disc space.

• The amount of bytes in, that each node of the cluster

experience in the current state.

• The amount of bytes out, that each node of the cluster

experience in the current state.

As we can see we use many input parameters to describe

our state as to demonstrate the ability of DERP to determine

which of those input parameters matter to its future decisions

and which are not. Our reward function is

Reward = 0.01∗ throughput−0.00001∗ latency−2∗VMs

Our network is described as follows:

• Training steps: 20000

• Evaluations steps: 2000

• Annealing steps: 2000

• Pretrain steps: 620

• max error: 106

• Batch size: 360 experiences

• Our learning rate: 0.00025

A. Evaluation

After the training part, we test our DERP’s agents for 2000

execution steps. We test it for our three different approaches,

Simple DQN, Full DQN and Double DQN. We observe that

our agent rapidly converges its behaviour to the optimal,

obtaining sizeable rewards. When Simple DQN is the case,

our agent, spends more time until it finds the optimal solution.

We see the results in Figures 5a and 5b. Then we test our

best agent, Double DQN with a biggest dataset for training,

containing 60000 different states. We see the result in Figure

5c.

VIII. CONCLUSIONS

In this work we presented a Deep Reinforcement Learn-

ing agent for cloud elasticity problems, called DERP, by

combining cutting edge algorithmic techniques in both deep

learning and cloud resource management areas. Our results

indicate that our agent outperforms the previous state-of-the-

art approaches that we compared it with in our work, [15] [11],

in terms of clustering the input data, managing large number

of input states, as well as collecting sufficient rewards on its

lifetime. To summarise, the advantages of our approach are

the following:

• DERP can learn and perform tasks in large environ-

ments where each state depends on multiple continuous

parameters. In addition, DERP does not demand space

partitioning or data clustering and does not experiences

issues when dealing with large input datasets. This gives

DERP an advantage to past approaches that we compared

it with, which struggled with large datasets.

DERP manages to determine by its own which input

parameters are significant for its future decisions as

shown in the simulations and our conclusions in Section

VI.

• DERP shows that we can efficiently use Deep Reinforce-

ment learning outside the field of image-related problems

where it is usually used, and achieve adequate results even

in an environment where the state is constructed by a

small number of parameters. Our agent behaved optimally

in a cloud environment where it provided each user with

the best resource provisioning based on his predefined

needs.

• DERP adapts rapidly to its environment and manages to

converge to the optimal behaviour.

• DERP manages to collect rewards at average 1.6 times

better than past approaches that we compared it with, at

its lifetimes experiences in different environments simple

or complex, simulated or real life.

In conclusion, DERP is the first cloud-based Deep Rein-

forcement Learning agent that manages to adequately adjust

to a cloud user behaviour, predict his next moves and needs

and follow an optimal resource management policy. It deals
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optimally with the large, continuous datasets, an issue that past

approaches struggled with. It manages to rapidly determine

which input parameters are important for its future decisions,

it uses considerably less computer space than past approaches

and it manages to collect 60 % better rewards at an average

case study compared to the past approaches. Furthermore it

can easily scale to large datasets (without consuming substan-

tially more computer space) and collect sufficient rewards.
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