
2020 IEEE International Conference on Big Data (Big Data)

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 2416

SELIS BDA: Big Data Analytics for the Logistics
Domain

Nikodimos Provatas, Evdokia Kassela, Nikolaos Chalvantzis
Anastasios Bakogiannis, Ioannis Giannakopoulos, Nectarios Koziris

National Technical University of Athens, Athens, Greece
{nprov,evie,nchalv,abk,ggian,nkoziris}@cslab.ece.ntua.gr

Ioannis Konstantinou
University of Thessaly, Lamia, Greece

ikons@uth.gr

Abstract—In this paper we present the SELIS Big Data
Analytics and Machine Learning System (BDA), an open-source
cloud-enabled elastic system that has been designed and imple-
mented in order to address data related issues from the logistics
domain. By taking into consideration real-life data analytics
needs from more than 40 EU logistics providers we present the
detailed SELIS BDA architecture along with the generic data
and execution model devised to accommodate their diverse needs.
We describe the main technologies we have utilized to realize the
respective offering and justify our choices from the wider open-
source Big Data systems community. We experimentally test our
offering under various workloads where we prove that it can
scale to serve a large number of concurrent requests while its
abstraction/orchestration poses a very small overhead compared
to the stand-alone Big Data systems. We believe that the SELIS
BDA can be an easy-to-use entry point for the big data analytics
world for any logistics company especially from the SME domain.

Index Terms—Logistics, Cloud Computing, Analytics

I. INTRODUCTION

Supply chain ecosystems consist of networks of multiple
different agents such as retailers, 3PL companies, manufactur-
ers, etc. with the common goal of achieving efficient and cost-
effective patterns for the transfer of goods. These networks
produce a vast amount of heterogeneous information which is
constantly updated at extremely fast rates. IoT machinery such
as RFID sensors, cameras, GPS devices, etc. also contribute
to this ever flowing stream of information resulting in a
typical high volume, high velocity and high variety “Big Data”
setting. It is well known that the efficient collection, storage
and analysis of this sort of information in a timely manner
can often prove impossible with the use of traditional data
processing techniques. At the same time, however, it can offer
many advantages to organizations which have access to the
resources and skills required to implement and utilize solutions
that can help them gain valuable insights and understanding
of how the business works through data analysis. The logistics
domain is no exception to the above [1]. From supply chain
visibility, to inventory management and forecasting [2], Big
Data technologies are able to assist in solving complex prob-
lems and offer powerful tools to optimize the entire supply
chain operation.

According to a recent Third-Party Logistics study [3],
more than 98% of the participants agreed that data-driven
decision making will shape the future. However, while Big
Data analytics seem to be the solution for the optimization
of supply chain operation, certain prerequisites need to be
fulfilled before organizations are in the position to fully benefit
from the power that Big Data technologies can offer [4].
In our involvement in the SELIS project, we observed that
many logistics companies lack specialized IT expertise to
configure and operate the massive hardware resources which
are essential for Big Data analysis to be performed, especially
small and medium-sized enterprises (SMEs). Moreover, the
IT personnel of SMEs may lack the required data analytics
and IT skills to analyze the ever increasing amount of data at
their disposal. Finally, existing widely used legacy systems
are often not able to interoperate and exchange data in a
real-time manner, as required for state-of-the-art analytics
workflows (refer to section 2 of [5] for a thorough analysis of
respective adoption barriers). Thus, any necessary processing
is extremely difficult to schedule and execute since the data
need to be transferred in a centralized location beforehand,
following the “data lake” concept [6]. Even in cases where
logistics companies decide to adopt modern Big-Data-enabled
approaches, commercial solutions are often offered as black-
box products, without the flexibility to customize and modify
the purchased services according to their own needs.

Meanwhile, open-source general purpose Big Data frame-
works, systems and deployment tools have existed for close
to a decade and are widely adopted by both industry and
academia for large scale data processing. Specifically, so-
lutions from the Hadoop [7] and Spark [8] ecosystem can
be used for generic collection and storage of data, while
distributed Big Data enabled machine learning toolkits, such
as Spark MLlib, Google Tensorflow and GraphLab are able
to handle data of both high speed and volume. Cloud-based
deployment solutions enabling scalability and elasticity are
available, either directly as a simple service (e.g., Amazon’s
Elastic MapReduce [9], Google’s MapReduce and Spark on
Google Cloud Platform [10] and Azure [11]) or at higher
levels of abstraction (e.g., Docker containers [12] managed
by Mesos [13] or Kubernetes [14]). Last but not least,
open-source distributed real-time processing frameworks such
as Apache Storm [15], Spark Streaming [16], Kafka [17],

2417

Flink [18] and Heron [19] have also reached a very mature
state and are widely used in industrial settings. Although these
approaches are not specifically targeted towards logistics, they
do contain the necessary technology that can be tailored to the
logistics community’s needs.

One of the most important business requirements for a
network of collaborating logistics stakeholders is the seam-
less information exchange between participants. Towards this
direction, the multi-million EU research project SELIS1 with
more than 40 participants from the logistics and ICT domains
proposed and delivered a “platform for pan-European logistics
applications”. This aspired offering has been described as
a Shared European Logistics Information Space which can
be used to link participants’ existing systems and offer a
collaborative environment. In the heart of this project lies the
“SELIS Community Node” (SCN). The SCN is a collaboration
space shared between business partners in a specific logistics
ecosystem. It includes all the necessary technical components
(i.e., cloud-enabled software modules) which offer the data
processing, storage and exchange functionalities (for a thor-
ough description of the SCN refer to the SELIS Architecture
Deliverable D4.1 [20]). In this setup, data is a first-class
citizen and therefore the respective software subsystems have
been designed and developed so that they can address data-
related issues in a holistic, extensible and easy-to-use manner.
The ultimate goal of the SELIS approach is to offer all the
aforementioned functionalities either as a service through a
cloud deployment of choice, or as a package that can installed
on-premise with minimal effort while allowing fast integration
with existing systems. Thus, a centralized “data lake” will be
available where information flows from different sources in a
real-time and secure manner and useful insights are extracted
enabling the logistic chain stakeholders to perform accurate,
fast and optimal decisions while increasing their efficiency.

In this paper we present the SELIS Big Data Analytics and
Machine Learning subsystem (SELIS BDA), an open-source2,
innovative, cloud-enabled, elastic Big Data framework aiming
to tackle challenges stemming from the logistics landscape.
The BDA is the driving force of the SELIS technical offering,
which implements the concept of the SCN as introduced in
[20] and includes, besides the BDA itself, tools and subsystems
that enable external system integration, message exchange, ad-
ministration and monitoring, decision support services etc. The
main contributions we make in this paper are the following:

• We introduce business agnostic data and execution mod-
els which can fit the needs of the majority of the encoun-
tered cases within the logistics domain. The proposed
models are the result of a thorough study and analysis of
existing use cases within the SELIS project covering more
than 40 partners from the logistics and ICT domains.

• We present the architectural design of a system that
supports both streaming and batch data ingestion and
task execution and implements the proposed models.

1http://www.selisproject.eu
2https://github.com/selisproject/bda

Additionally, we thoroughly discuss the rationale behind
our design choices.

• We implement the proposed system using distributed,
open-source, big-data-enabled, state-of-the-art software.
Our solution is easily deployable to the cloud using
containerization technologies while it offers an easy to
use REST API. Although our implementation prototype
is based on specific widely adopted frameworks and
technologies (e.g., Spark, HBase, PostgreSQL), it remains
modular and is written in a way which makes it extensible
with little programming effort.

• We conduct experiments to show that i) the SELIS BDA
induces very low overhead to the tasks it is required
to execute and ii) that it can horizontally scale, thus
increasing its overall throughput when its infrastructural
resources increase.

The structure of the rest of this paper is as follows. In
Section II we discuss some of the use cases we worked with
in the scope of the SELIS project, highlighting their common
characteristics which lead us to a common design. In Section
III we present business agnostic data and execution models
based on the use cases. In Section IV we discuss technical
details on the implementation of our prototype system as
well as on its deployment. Section V presents and discusses
the experimental evaluation of the SELIS BDA. Section VI
briefly presents existing commercial solutions and discusses
the differences between their approach. Section VII concludes
this work with a summary where we expose our final remarks
and discuss some of the most interesting challenges to be
addressed in the future.

II. USE CASES

In this section, we present actual business use cases from the
logistics domain that we faced within the scope of the SELIS
project. While our system was designed taking into account
several more use cases, some of the most representative are
presented in this section. In the next few paragraphs we will
highlight the common patterns and properties which multiple
use cases share and have guided our system design choices.

• In one of the use cases, we worked with incoming
data flows from railroad networks provided by Adria
Kombi3, an intermodal logistics operator in South Eastern
Europe. Events related to trains, wagons and containers
(i.e., arrivals to or departures from specific stations, GPS
location updates etc.) are modelled as an incoming
flow of messages. Additionally, a static dataset including
station locations, train, wagon and container properties
etc. has been provided. Among the calculation of various
statistical metrics, the main requirement here has been to
accurately estimate the time of arrival of a train, wagon
or container to their terminal stations, based on historical
data and the incoming data stream.

• A similar use case demanded the estimation of the time
of arrival for trucks delivering goods for a Greek logistics

3https://www.adriakombi.si/

2418

company SARMED4. The Estimated Time of Arrival
(ETA) is calculated using an incoming data stream of
events declaring the truck’s GPS location and the pre-
diction was updated every time an update on the truck’s
location was received. Static datasets containing informa-
tion on the trucks, the various warehouses as well as drop
off points were separately provided. Moreover, for the
same use case, a recommendation service was built upon
arrival of order delivery requests, automatically offering
the task to the most suitable freelance transportation
agents available, taking into account proximity, shipment
properties (e.g., frozen/temperature sensitive cargo) and
service quality.

• A third use case involves container transportation through
a canal network using barges in the Netherlands sailing
to and from the Port of Rotterdam5 – the largest port
in Europe. In this case, static data including information
about the containers, barges, deep sea vessels and termi-
nals involved were provided. The movement of vessels
which are involved in the use case, captured through the
dedicated automatic identification system (AIS) which
every vessel is equipped with, is reported periodically
(every few seconds) to BDA. Using the data available, the
execution of analytical workloads and the calculation of
reliability metrics were requested by the SELIS business
partners.

• In the final use case we encountered the problem of
automating the ordering forecast process of SONAE6

– one of the largest retailers in Portugal. In this case,
incoming streams of sales forecasts arrive, produced by
SONAE’s proprietary legacy systems. Additionally, the
BDA has access to the stock levels of all warehouses.
Combining the two data sources and taking into consid-
eration specific rules and restrictions which apply to the
transportation of goods from the suppliers’ premises to
SONAE’s warehouses according to an agreement between
the two parties, the BDA produced order forecasts for the
following days.

Anonymized versions of the datasets that were provided
by business partners Adria Kombi and SONAE have been
made available through the zenodo.org platform7 per the EU
directives and initiatives to promote research via Open Access
to Data. A collection of AIS data is available seperately8.

The vision of the SELIS project is that for each use case,
a dedicated SCN is set up, configured and made available
to the business stakeholders. From a technical point of view,
the consolidated modelling of such diverse problems using
a common framework has been a great design challenge. To
address it, we exploited the observation that the logistics busi-
ness operation is largely based on message exchanges. These
messages could possibly describe events, status updates or

4http://www.sarmed.gr/
5https://www.portofrotterdam.com/en
6https://www.sonae.pt/en/
7https://zenodo.org/record/3248918
8https://zenodo.org/record/3342090

requests involving entities which are active in their respective
ecosystems. Exchanged messages modify the current state of
these ecosystems and the transient properties of their entities
(such as the location of vessels or vehicles). Additionally, such
messages typically arrive at a very fast rate (GPS location
updates can be produced as often as once every two or
three seconds for every individual vehicle or vessel). On the
contrary, most of the properties of the entities which appear
as actors in our use cases are static or change rarely, if ever
at all. This kind of static data is typically accessed for read
purposes only. Taking this top-down approach has allowed us
to envision, design and implement a system with very specific
characteristics which can fit to most of the problems that can
be encountered in the business environment of the logistics
domain. Based on these observations, we introduce the BDA
by describing its architecture in detail in Section III.

III. ARCHITECTURE

In this section, we present the architecture of our system.
Initially, we present the various modules which the BDA con-
sists of. The next subsection introduces our data and execution
models which can fit any single use case we have encountered
in a consolidated manner. Finally, we briefly discuss how our
system can support multiple use cases by using multiple SCN
instances and managing the respective metadata securely and
persistently.

A. System Overview

The BDA is organized in modules which are responsible for
its different operations, namely the Datastore, Analytics/ML,
Connector and Controller. These modules are wrappers which
manage internal sub-systems operating as data warehouses,
execution engines, etc. The BDA architecture is depicted in
Figure 1 and is organized in the following modules:

• Datastore: This module is a wrapper for Storage Engines.
Specifically, it is used to interact with them for i) con-
figuring SCNs, ii) data ingestion of streaming incoming
messages and iii) data retrieval. Each of the following
submodules contacts the Datastore, when it needs to
access data.

Datastore

Controller Connector

BDA

Analytics/ML

SubscriberREST API

REST API

Execution
Engines

(Streaming
+

Batch)

Event Log Entities + BDA DB

Relational
Database
System

Schema-less
Database
System

Storage Engines

Fig. 1: BDA architecture

2419

• Analytics/ML: This module is a wrapper around execu-
tion engines. It is responsible for the execution of any
type of computations, either batch or streaming, on the
execution engines, by serving them with the relevant data
retrieved from the Datastore module.

• Connector: This module acts as the data “gateway” for
the BDA as it receives messages from message exchange
pub/sub systems that the BDA may be connected to. It is
able to parse and validate any incoming messages, and
forward them to the Controller. Note that it is an optional
part of our system, since data can be send to the BDA
using the Controller’s REST API.

• Controller: This module is responsible for handling the
three aforementioned modules. Specifically, it informs the
Connector about the messages that it must listen to. It
then handles any incoming messages passing them to the
Datastore module for ingestion in the Storage Engines.
Moreover, it triggers the execution of any computations
related to the incoming message by calling the Analytic-
s/ML module and it is also able to schedule computations
to be performed periodically. Finally, it provides a REST
API which can be used to access any of the BDA’s
functionalities.

B. Data & Execution Model

Data Model. According to the SELIS vision, each distinct
logistics ecosystem is served by a dedicated SCN instance.
As discussed in Section II, the sample use cases stated show
us that the data which the BDA handles can be categorized
in i) those describing entities in a use case/SCN – mainly
static, or ii) those describing dynamic events which arrive in
the form of messages in real-time. The data schema we have
derived to model logistics use cases has a business agnostic
representation of a star schema [21]. Therefore, it consists
of a fact table that we will refer to as “Event Log”. It can
be considered as an append-only log that captures messages
flowing into the BDA. Additionally, our star schema includes

Entity 1 Entity 2 ... Message

...

N
ode 1

N
ode 2

N
ode 3

ID Field 1 Field 2

Entity 1 ID Field 1 Field 2

Entity 2

ID Field 1 Field 2

Entity 3

ID Field 1 Field 2

Entity 4

...

{“ent1”: 45,
“ent2”: null,
... }

{“ent1”: null,
“ent2”: null,
... }

Fig. 2: Event Log and Entites storage using star schema.

smaller dimension tables that contain further static information
about participating “Entities” in the ecosystem. The “Entity”
tables contain what is essentially the static master data of a
supply-chain. Figure 2 provides a visual representation of the
star schema as employed in the BDA Datastore.

While this schema is business agnostic, it should constantly
be aware of the participating Entities as they are considered
critical information for the function of the SCN, since the
messages flowing into the system and describing events in
a real-world logistics business often refer to these entities.
For this purpose, the Entities need to be first of all populated
during the SCN configuration process, that we will explain in
Section III-C. This information rarely changes and should be
easily referenced and queried.

While the Entity related data are considered static, every
message (i.e., event) that the BDA receives is stored in the
Event Log table. Messages are appended to the Event Log as
a new row and might refer to one or more existing Entities.
The messages that the BDA must subscribe to and ingest
are also defined during the SCN configuration. In particular,
each message is defined as a message_type resource,
which contains the message name (topic) and its format. This
information is used by the BDA as a message identifier.

Execution Model. BDA’s execution model supports two
computation modes, streaming and batch. Its streaming execu-
tion engines can execute fast computations, such as machine
learning inference tasks upon message arrival. On the other
hand, batch execution engines can periodically execute heavier
computational workloads, such as machine learning model
training or statistical workloads on huge chunks of historical
data. To support this functionality, the Execution Model of the
BDA, introduces the following resources:

• recipe: This resource refers to an executable program
written in a language supported by the BDA’s execution
engines. A recipe can be applied on specific types
of data as an operator. The recipe resource contains
meta-information regarding the location of the executable,
the execution engine it will use, the type of data it can
consume etc. which all need to be defined when the
recipe resource is created.

• job: According to our execution model, recipe re-
sources need to be linked with an execution trigger in
order to be used. There exist two different sorts of jobs:
i) Streaming jobs, which are launched upon the arrival
of a message of specific message_type on one of the
supported streaming execution engines (e.g., launching
the ETA calculation for a vehicle every time an update
for its location is received). ii) Batch jobs, which are
launched periodically with a user-defined period on one
of the supported batch execution engines (e.g., estimating
the greenhouse gas emissions for a fleet of vehicles for
the past 10 days every night).

Additionally, the BDA supports “workflows” consisting of
sequential tasks. A workflow in general is considered as a
Directed Acyclic Graph of tasks that exchange data between
them. For example, let jobX be defined as dependent on job

2420

(a) SCN Metadata. (b) BDA metadata.

Fig. 3: Metadata Schemas
Y . In such case, job X uses the output of job Y as input
and these two jobs are part of a workflow. This feature can
be used to create workflows which include many recipes
that must be executed in sequence.

C. The SCN in the BDA

The SELIS technical offering is a suite of software tools and
sub-systems which implement the conceptual idea of the SCN.
After careful thought and consideration of all available options
and impacting parameters – from technical aspects such as
deployment to commercialization strategies, it was decided
that the BDA would be implemented as an underlying frame-
work upon which multiple SCN instances can be deployed
and accessed following the Software-as-a-Service multi-tenant
paradigm. This decision has had a heavy impact on some the
design of the BDA. More specifically, to support multiple SCN
instances, a separate star schema is created for each SCN in
an isolated database. Dedicated database tables are created
storing SCN-specific meta-information regarding the resources
that are defined during the SCN configuration process9 which
are required for the operation of the BDA. Those resources
are stored at respective tables per SCN. We will refer to
these resources as SCN metadata. SCN metadata tables are
only accessible as a resource from within the respective
SCN. Finally, a few more tables are used, persistently storing
information regarding the state and contents of BDA itself.
Metadata on common resources such as shared_recipes
(i.e., recipes which are offered out-of-the-box by the BDA
and are available for all SCN instances to use), supported
execution_engines and execution_languages as
well as instantiated Connector and SCNs are stored in these
tables. The schema of these BDA metadata tables is presented
in Figure 3. The BDA metadata database is accessible by all
SCNs.

IV. BDA PROTOTYPE

A. Technologies

In this section we describe in detail the prototype implemen-
tation of the BDA and its storage and execution engines. Our
implementation choices are based on the architectural design
presented in Section III. We also provide an overview of the

9SCN configuration is the process where a user, guided through a
user interface defines and initializes important SCN resources such as
message_types, recipes, jobs and populates Entity tables

open-source technologies we use for storage and execution.
The code developed for the BDA modules will also be open-
sourced10 by the end of the SELIS project.

1) Controller: Taking into consideration its important role
inside the BDA, the Controller is implemented as a Java
interface that is deployed as a stateless Java-based REST
service that runs in a Jetty HTTP Web Server [22]. We
use multiple server instances which are accessible through a
proxy to achieve load balancing, scalability as well as high-
availability. We note here that the Controller’s REST service
also includes the interfaces of the Datastore and Analytics/ML
modules and is therefore the main ”gateway” for interacting
with the BDA. Since multiple users with different roles from
various organizations can have access to the BDA’s REST API,
its endpoints are secured using Keycloak [23], a state-of-the-
art Identity and Access Management (IAM) tool. Keycloak
supports the OpenId-Connect Protocol [24], which is a layer
over the OAuth 2.0 [25] Protocol for authorization. Thus, user
authentication and authorization is performed before service
access.

2) Connector: The Connector module is an optional part
of our system that can be used to connect the BDA with
an external pub/sub system. It is also implemented as a
Java interface that is deployed as a separate stateless Java-
based REST service offered through a Jetty HTTP Web
Server. The Controller interacts with the Connector through the
REST service to define the message types (or topics) it must
subscribe to. This module is initially configured to launch a
predefined standalone Pub/Sub subscriber instance (see Fig. 1).
Taking into account the requirements for load balancing and
scalability in terms of the message insertion throughput, we
do not use a single Connector instance but instead multiple
Connectors can be created and each SCN can have its own.
In Figure 4 we can see how multiple Connector instances are
used by the BDA. Each SCN has its own subscriber which
is connected with a specific Pub/Sub server, but generally the
same Connector (and Pub/Sub server) can be used by multiple
SCNs or the same Pub/Sub server can be used by multiple
Connectors.

3) Datastore: The Datastore module is implemented as a
Java interface that is exposed through the Controller’s service.
The Datastore uses predefined system connectors to interact

10https://github.com/selisproject/bda

2421

Connector instance 2

Controller

Connector instance 1

Pub/Sub
Server 1

SCN 1
Subscriber

SCN 2
Subscriber

Pub/Sub
Server 2

SCN 3
Subscriber

Message
types to

subscribe

SCN 4
Subscriber

Fig. 4: Connectors inside the BDA

with the underlying storage engines that include the EventLog,
the Entities and the BDA database, as shown in Figure 1. The
Event Log, as an append-only structure that constantly grows
can be stored in a distributed database or a distributed file
system. The Entity tables on the other hand, contain limited
and static information which may be accessed very often so
a replicated RDBMS solution or an in-memory database are
more suitable systems. Taking into consideration the afore-
mentioned, we use a distributed NoSQL Apache HBase [26]
database to store the Event Log table which offers out-of-the-
box scalability and high-availability features. In HBase data is
stored in a semi-structured and sparse format over HDFS [27]
thus allowing us to adopt any data schema that a use case
requires in an efficient way. User access can be controlled on
a database, table or even file system folder level. A different
Namespace is created for each SCN.

For the Entity tables, on the other hand, we used a more
appropriate replicated setup of a PostgreSQL [28] database.
Essentially, we create multiple instances of the same database
using master-slave streaming data replication. One instance is
considered as the master server that handles write requests and
the slaves only allow read access to the data that they contain.
Moreover, by using a proxy layer for the slave instances we
achieve load-balancing and scalability for the read throughput
when accessing the Entity tables. A slave will be turned into
a master in case the primary master server fails providing
high-availability. As a classic RDMB system, PostgreSQL
also offers adoptable database schema and user roles and
permissions. Each SCN has its own database created inside
this replicated setup, where the metadata of each SCN are
also stored using a separate database schema.

Regarding the BDA database, since the metadata it stores
contain limited amount of information, we place it in the same
PostgreSQL setup.

4) Analytics/ML: Similarly, the Analytics/ML module is
implemented as a Java interface that is exposed through
the Controller’s service. The module uses predefined system
connectors to interact with the underlying execution engines.
Given that the batch calculations can be performed on a

large part of the historical data, the batch execution engine is
selected as a scalable distributed Big Data processing system.
The fast streaming calculations on the latest data require at the
same time a streaming engine with the ability to store data in
memory in order to process them instantly with a scalable and
distributed in-memory processing system. Taking into account
the aforementioned, we deploy a Apache Spark cluster [8]
that offers both offline and online processing (using interactive
sessions) and out-of-the-box scalability and high-availability
features. Spark supports many programming interfaces such
as Python, Java and Scala so users can easily create their own
analytics recipes, and it also provides a standard SQL inter-
face where even simpler analytics can be programmed. Spark
also provides a built-in Machine Learning library that contains
most of the state-of-the-art machine learning algorithms that
can be used in our use cases as the black-box executables in
order to create and train a model.

In order to exploit Spark’s interactive sessions for fast
streaming calculations we use Apache Livy [29] that offers
a REST interface to facilitate programmatic and fault-tolerant
submission of both interactive and batch Spark jobs. Multiple
long-running Spark Contexts can be managed by Livy, offering
concurrency and each Context is identified using its own
session id. The same running Spark Context can be used by
multiple Spark jobs. In this way RDDs and Dataframes can be
shared across multiple jobs (RDDs are described in Sec. 2.1 of
[30] whereas Dataframes in Sec. 3 of [31]). Fault-tolerance is
also provided as session persistence and recovery is supported
in a state store like Zookeeper [32]. Finally, user authentication
is supported. By configuring the Analytics/ML module to
use the Livy service in order to communicate with Spark’s
execution engine, we are able to easily create a different ’live’
session for every streaming (message-triggered) job. Moreover,
the jobs that are part of a workflow are launched on the same
’live’ session one after the other. Finally, we use Hadoop
YARN [33] as a cluster manager, which Livy uses in order
to commit physical resources for the Spark jobs and then run
them.

It is also important to notice that when a recipe is
being executed it accesses only the Datastore’s data that the
Analytics/ML module allows. In order to ensure this, we use
Livy’s capability to run interactive sessions and we create
for each job an interactive Spark session where we pre-load
the required input data and models from the Datastore as
DataFrames using our own Spark-Storage Engine connectors
that are provided by the module as a library (depending on
the Execution Engine and the Execution Language). Then, the
recipe is launched on this session and receives as input
arguments the predefined DataFrames, so in this way it has
no access to other data of the Datastore or directly to the
Datastore itself. Similarly, the output data of a recipe are
saved before closing the Spark session using the appropriate
connector that the Analytics/ML module defines (depending
also on the selected output location for the job). The Analytic-
s/ML module employs code generation for the aforementioned
procedure. In the case of workflows of jobs that are executed

2422

on the same Spark session, the output data of one job are saved
as we previously explained and the session remains open so
that the output data are available for use from the next job
without the need to transfer them from the Datastore.

Currently, for the prototype that we have created, Python
is the only supported Execution Language for recipes
and the Analytics/ML module uses code generation with a
library of Spark connectors implemented in Python. In partic-
ular, the library contains a Spark-HBase connector, a Spark-
PostgreSQL connector, a simple PostgreSQL JDBC connector
and a Publisher implementation. In the future other languages
like Java and R could also be added depending on the use
case requirements. The Execution Engines catalog of the
BDA subsystem contains Apache Spark for executing PySpark
code, and also a local engine which is offered for executing
simple (Python) code with small input datasets locally on the
Controller. A second Python library is available for the local
Execution Engine which contains connectors to retrieve data
from a storage engine, save them locally in text files and use
them as input for the recipe. Similarly, output data are saved
in a file which is then handled by the library.
B. API

The BDA offers a REST API which is implemented to
allow easy interaction with its storage and execution layers.
The implemented interfaces can connect to different storage,
execution and Pub/Sub systems using the appropriate internal
connector defined during its initial configuration. From the
user’s point of view however, one can access BDA data
or process them without requiring prior knowledge of the
underlying systems themselves to be able to communicate with
them. The procedure in order to define a new SCN, initialize
its data model, and configure it in order to receive a message
and execute a recipe is performed with the following simple
REST calls (we enumerate the API calls made for the SONAE
use-case described in Sec II):

1) POST /api/datastore: register a new SCN with the speci-
fied scnSlug, create its database with the specified name,
create the Metadata schema and connect with the speci-
fied Pub/Sub server.

2) POST /api/datastore/scnSlug/boot: create Entities tables
and populate them with data. The posted JSON has the
following format:

{"tables":[{
"name": "items",
"schema":{

"columnNames":["sku","supplierpacksize","
businessunit"],

"columnTypes":[{
"key":"sku",
"value":"character varying(100) NOT NULL"

},{
"key":"supplierpacksize",
"value":"integer"},{
"key":"businessunit",
"value":"integer"}],

"primaryKey":"sku"},
"data":[{
"tuple": [{

"key": "sku",

"value": "2296118"},{
"key": "supplierpacksize",
"value": "4"},{
"key": "businessunit",
"value": "1203"}]},{

"tuple": ..}]},
...

]}

Listing 1: POST data in JSON format for inserting the Master
Data.

Since an RDMB system is used for the Entities tables,
the ”columnTypes” field can contain as values any SQL
compliant data types.

3) POST /api/messages/scnSlug: define a new Pub/Sub mes-
sage format and the subscription fields and subscribe to
it.

4) POST /api/recipes/scnSlug: define a new recipe, its
language, arguments and execution engine.

5) POST /api/recipes/scnSlug/recipeId/executable: Upload
the recipe executable which is written in the following
form:
def run(sparkContext, items_dataframe):

result = items_dataframe
.groupBy("businessunit")
.agg({"sku":"count"})
.toJSON().collect()

return result

Listing 2: PySpark code to compute the number of skus per
businessunit.

6) POST /api/jobs/scnSlug: create a new job either periodic
or message-triggered that launches the specified recipe
and specify the output location.

It is clear in the example that we presented, that the user
does not need to use database-specific drivers to load data
to the Entities tables or to fetch data inside the recipe. In
particular, the recipe contains a simple run() method that
takes as arguments the Spark Context and the dataframes that
contain the required input data and returns the final result as
a JSON. The input dataframes are created by the BDA taking
into account the recipe arguments, where the user defines,
among others, the EventLog message types and the Entities
tables that contain the required input data. The BDA uses
code generation to load data from the storage engines to the
Spark execution engine before running the user’s recipe.
Similarly, code generation is used to either save the job result
to the KPI db or publish it to the Pub/Sub according to the
job configuration. The code generated in the previous example
is the following (assuming the job result is selected to be
published as a message):
import RecipeDataLoader
import userRecipe
items = RecipeDataLoader.fetch_from_master_data(

spark, "jdbc://hostname:5432/scnDBname", "
scnDBusername", "scnDBpassword", "items")

result = userRecipe.run(spark, items)
RecipeDataLoader.publish_result("SCNpubSubAddress",

"SCNpubSubPort", "PubSubCert", "scn_slug", "
userRecipe_jobId", result)

Listing 3: PySpark code generated to run the recipe.

2423

In this case the fetch from master data() and publish result()
functions contain: the PySpark code in order to load data from
a PostgreSQL table into a Spark dataframe, and the Pub/Sub
client Python code to publish the result respectively.

The user can therefore perform any action with the BDA
using simple REST calls and with basic knowledge of Python
and PySpark commands for our current implementation.

Finally, in case different execution languages or storage
and execution engines are integrated into the BDA, the BDA
code can be extended with little programming effort as we
previously mentioned to support them. In particular, when a
new engine is integrated, either for storage or execution, it is
required to create the relevant engine connector to be used by
the BDA. In case of changes in the execution environment,
either the language or the engine, it is required to create or
extend the library (RecipeDataLoader in the previous example)
that will be used to handle data and extend the code generation
logic to create the appropriate data models using this library. In
any case the user interface remains the same as it is agnostic to
the underlying system/technologies, and the recipe generic
format will remain the same too. Of course, when changing the
execution environment, the appropriate execution language and
engine-specific operators must be used inside the recipe.

C. Cloud Deploymnet

The implementation of the BDA is based on established Big
Data technologies that provide us with many desired properties
like scalability, fault-tolerance, etc. However, deploying such
technologies on the cloud as part of a bigger system, such
as the BDA, and configuring their inter-connections is a
challenging task. To this end we choose to i) containerize
all the BDA’s components and deploy them on the cloud as
containers and ii) use a container orchestrator to handle all
the aspects related to deploying container based micro-service
applications.

We use Docker [12] as container technology and create
Docker images based on Dockerfiles for each one of the BDA’s
components. As container orchestrator, we choose Kubernetes
[14] since it is one of the most widely used and feature
rich orchestrators available. Through the use of Helm charts
[34] we can automatically deploy the SELIS BDA on a
given Kubernetes cluster, manage the connections between
different containers, handle container failures, easily scale
different components of the BDA as well as upgrade containers
individually.

While in a Kubernetes cluster containers are ephemeral,
some of the BDA’s components should keep state. Consider,
as an example, the Postgresql container that stores the “Master
Data” as mentioned in Section III-B. If the container crashes it
will be restarted by Kubernetes, the data however will be lost.
To achieve persistent storage for the components that require
it, we use Kubernetes Persistent Volume Claims (PVC). In our
prototype implementation we issue PVCs through Kubernetes
to a Ceph storage cluster in order to provide persistent storage
to containers.

V. EXPERIMENTS

In this section we present the results of our experimen-
tal evaluation of the SELIS BDA. Through the experiments
conducted we are aiming at proving that i) while our sys-
tem orchestrates the operation of various interconnected sub-
components, it adds minimal overhead to the core operations
of data ingestion and processing workload execution, and ii)
our system’s components can individually scale horizontally,
thus also making it scalable as a whole.

A. BDA Overhead

In the first of our experiments, we aim to prove that the over-
head of the orchestration of the various sub-components which
are abstracted by the BDA is minimal. We set up a SELIS
Community Node and simulate the workflow of messages
triggering a data processing task upon being published (i.e.,
pushed) into the BDA– it should also be taken into account that
all incoming messages are by default persistently stored. We
execute this experiment twice, modifying the message size: i)
the first time, sending a minimal message ii) the second time,
using real messages which correspond to one of the use cases
we came across in the SELIS project and record the overhead
which the BDA adds to the total workflow execution time.

According to the specifications of our implementation,
JSON formatted incoming messages are supported. To prove
that our implementation adds negligible overhead to the
system, we start by dispatching a message containing only
a minimal payload. In total, this message takes up about
100 bytes in size. We continue the experimentation useing
real messages. In this case, messages contain sales forecast
information provided for the SONAE use case and include
reports of the retailer’s expected sales of products of a specific
producer/supplier stored in a specific warehouse. Some of the
suppliers have a wide range of products to their name, while
others have only a few. Additionally some of the retailers
supply more than a single warehouse. The messages we have
used for this experiment include two indexed attributes –
acting as foreign keys to the supplier and product Entity tables
– and a deserialized JSON array type payload. We conduct
the experiment using 3 different message sizes (≈1 kilobyte,
≈10 kilobyte, ≈100 kilobyte). In all cases, we repeat the
experiment several hundred times and use the average metrics.
To quantify the overhead of the BDA, we record timestamps
at 5 different progress checkpoints of the workflow: i) upon
message arrival, ii) before it is permanently stored into the
Event Log, iii) after it is successfully stored, iv) before the
processing task it is associated with is executed and finally,
v) after task execution has finished. As described in Section
IV, the permanent storage where the Event Log resides is an
HBase NoSQL database, whereas the default execution engine
employed is Apache Spark. For the scope of this experiment
we are not interested in the time the HBase insertion or Spark
streaming execution require but only on the overhead of BDA.

1) Experimental Setup: For this experiment we deployed
an instance of the BDA on Docker containers (a total of 10
containers) running on a single Openstack VM with 4 virtual

2424

100 1K 10K 100K
Message Size (Bytes)

0

10

20

30

40

50
BD

A
Ov

er
he

ad
 (m

se
c)

Message Preprocessing
Code Generation

Fig. 5: BDA Overhead - Overhead per message size

cores and 8GB of RAM. We perform HTTP requests which
post identical messages to the BDA, one at a time, and wait
until the workflow execution has finished before we repeat to
ensure there is no interference between repetitions. As stated
in the previous paragraph, messages are saved in the Event
Log and consequently trigger a processing task emulating a
typical BDA workflow, meanwhile recording the checkpoint
timestamps and report on average time spent per execution
stage where the BDA is involved excluding the impact of
HBase data insertion and Spark data processing.

2) Results: We present the findings of our first experiment
in Figure 5. We have split the time spent in the BDA in
two phases, message preprocessing, which happens before
the insertion, and code generation, which happens before the
processing task execution, as described in IV. It is noticeable
that despite the varying in message sizes, the BDA is able
to handle the data ingestion and task execution workflow by
only adding sub-second overhead to set up and execute the
distinct sub-tasks which involve various sub-components and
underlying systems.

B. BDA Scalability

In this section we present experimental results which show
that the SELIS BDA can scale horizontally. Since the BDA is
comprised of a number of components it suffices to show that
each of our system’s components can scale individually. If so
by consequence the entire system can be considered scalable.

As we mention in Section III-B the BDA has two main
functions: data storage and computation. For storage we use
an HBase cluster and a PostgreSQL database. We refer to
existing literature [35] that verifies that an HBase cluster
can support massive volumes of data and high insertion rates
by scaling linearly with the number of region-servers added.
HBase is highly available through the use of Zookeeper and
fault-tolerant being based on HDFS. As a result we argue that
basing our storage layer in HBase allows us to handle massive
volumes of data and scale horizontally if required. PostgreSQL
on the other hand follows the master-slave architecture and

therefore scales vertically. Although, in theory, that could be
considered a bottleneck of our system, we use PostgreSQL to
store mostly metadata which we expect to change in very slow
rates. Consequently we consider sufficient the horizontal scal-
ing we achieve, only for reads, by adding more slave servers
and enabling reads from the slaves. Considering computation,
the BDA uses a Spark cluster to execute both streaming and
batch jobs. Again, we refer to existing literature [30] that
supports that Spark can handle batch jobs at any scale as well
as streaming computations based on micro-batching.

Consequently, to prove that the SELIS BDA is scalable
horizontally we show that the BDA controller, the component
that acts as the control hub of the whole system, can also
scale. By doing so we prove that we can achieve horizontal
scalability for all the system’s components and as a result for
the system as a whole. Since the BDA controller is a stateless
server it can scale seamlessly by introducing a load balancer
and distributing requests to a configurable number of BDA
controller servers.

1) Experimental Setup: We demonstrate the BDA con-
troller’s scalability by running a data ingestion workload. We
perform HTTP requests that post messages to the controller,
the messages are processed and then saved in the HBase clus-
ter emulating a typical data ingestion workflow. We conduct
this experiment on a SELIS BDA deployment on a Kubernetes
cluster. Kubernetes is deployed on 8 Openstack VMs spanning
4 physical hosts. Each VM has 4 virtual CPUs running at
2.1GHz and 8Gb RAM. Since we choose a data ingestion
workload to measure throughput we use 12 HBase region-
server containers to ensure that HBase does not become a
bottleneck. We use an Nginx based container as the load
balancer of a Kubernetes BDA controller Service. We vary
the BDA controller containers from 1 to 16. We create a
constant load to the service using wrk [36] running on a
different container. We spawn 10 threads maintaining a total
of 500 open connections and perform requests continuously.
We measure requests-per-second for different numbers of BDA
controller containers.

2) Results: In Figure 6 we present results for a data
ingestion workload. As we can see the SELIS BDA service
can scale horizontally with the number of containers achieving
thousands of requests per second.

VI. EXISTING APPORACHES AND STATE OF THE ART

In this section we will briefly present some of the most
popular and successful Supply Chain Analytics software suites
which are used in the industry. It is important to mention that
while all the following are proprietary systems, our prototype
will be available open-source by the time the project finishes.
Some of the most widely used products in the market targetting
the logistics domain are the Supply Chain Management Soft-
ware – developed by SAP11, the JDA Supply Cain Analytics
platform12, IBM Cognos13 etc. These products, similar to

11https://www.sap.com/products/digital-supply-chain/scm.html
12https://jda.com/solutions
13https://www.ibm.com/products/cognos-analytics

2425

1 2 4 8 16
Containers

500

1000

1500

2000

2500

3000

3500

Re
qu

es
ts
 p
er
 se

c

Fig. 6: Data Ingestion - Requests per second

our solution, support cloud deployments. However, with them
being offered as closed-source software, we didn’t have the
opportunity to study their internal operation and architecture.
Part of the success these systems enjoy is due to the wide
range of features they are packaged with. Our approach, on the
contrary, introduces a very solid framework with well-defined
architecture that can be used to build functionality as required
per use case. The tools we offer can be utilized to cover a very
wide area of different use cases in the logistics domain. Indeed,
within the scope of the various SELIS use cases, a variety
of supportive tools ranging from administration dashboards to
custom recipes have been developed to support the BDA
and provide a high quality service suite.

Overall, our suggested solution offers an easily deployable
platform supporting storage and processing at scale which
is both open-source itself and based on other open-source
tools and technologies. Unlike existing commercial products,
it is modular – allowing expert users to exchange any of
its subcomponents with different systems offering similar
functionality (e.g., mySQL instead of PostgreSQL). BDA’s
functionality is also extensible, as users can contribute to the
existing, out-of-the-box recipe pool with code of their own.

VII. CONCLUSIONS

In this paper we presented the SELIS BDA, the open-source,
cloud enabled technical offering for Big-Data analytics of
SELIS, an EU funded mega-research project in the area of
logistics. We have briefly described the main use-cases that we
examined in order to design its architecture. We have presented
its architectural components, the generic data and execution
models design and the specific open-source technologies that
we utilized for its implementation. We experimentally mea-
sured its scalability and overhead in a large cloud-enabled
cluster where we showed that it can scale to a large number
of concurrent requests while posing a minimal overhead.

ACKNOWLEDGMENT

This paper is supported by European Union’s Horizon 2020
RIA programme under GA No 690588, project SELIS.

REFERENCES

[1] M. A. Waller and S. E. Fawcett, “Big data, analytics, and the changing
face of supply chain management - smartdata collective.” J. Bus. Logist.,
vol. 34, pp. 77–84, 2013.

[2] “Big data, analytics, and the changing face
of supply chain management - smartdata collec-
tive.” [Online]. Available: http://www.smartdatacollective.com/
big-data-analytics-and-changing-face-supply-chain-management/

[3] “Third-party logistics study.” [Online]. Available: http://3plstudy.com/
3pls5.php

[4] “Digital supply networks.” [Online]. Available: https://www2.deloitte.
com/us/en/pages/operations/solutions/digital-supply-networks.html

[5] S. Coleman, R. Göb, G. Manco, A. Pievatolo, X. Tort-Martorell, and
M. S. Reis, “How can SMEs Benefit from Big Data? Challenges and
a Path Forward,” Quality and Reliability Engineering International,
vol. 32, no. 6, pp. 2151–2164, 2016.

[6] “Data lake vs data warehouse.” [Online]. Available: https://www.
kdnuggets.com/2015/09/data-lake-vs-data-warehouse-key-differences.
html

[7] “Welcome to apacheTM hadoop.” [Online]. Available: http://hadoop.
apache.org/

[8] “Apache sparktm - lightning-fast cluster computing.” [Online].
Available: https://spark.apache.org/

[9] “Amazon emr - amazon web services.” [Online]. Available: https:
//aws.amazon.com/emr/

[10] “Apache spark and apache hadoop on google cloud platform
documentation — apache hadoop on google cloud platform.” [Online].
Available: https://cloud.google.com/hadoop/

[11] “Hadoop — microsoft azure.” [Online]. Available: https://azure.
microsoft.com/en-us/solutions/hadoop/

[12] “Docker: Enterprise container platform for high-velocity innovation.”
[Online]. Available: https://www.docker.com/

[13] “Apache mesos.” [Online]. Available: http://mesos.apache.org/
[14] “Kubernetes: Production-grade container orchestration.” [Online].

Available: https://kubernetes.io/
[15] “Apache storm.” [Online]. Available: http://storm.apache.org/
[16] “Spark streaming — apache spark.” [Online]. Available: https:

//spark.apache.org/streaming/
[17] “Apache kafka.” [Online]. Available: http://kafka.apache.org/
[18] P. Carbone et al., “Apache flink: Stream and batch processing in a single

engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

[19] “Heron.” [Online]. Available: https://twitter.github.io/heron
[20] “D4.1 open selis platform architecture design.” [Online].

Available: https://www.selisproject.eu/uploadfiles/Deliverables/D4.1
Open-SELIS-Platform-Architecture.pdf

[21] “Understanding star schemas.” [Online]. Available: http://gkmc.utah.
edu/ebis class/2003s/Oracle/DMB26/A73318/schemas.htm

[22] “Eclipse jetty.” [Online]. Available: https://www.eclipse.org/jetty/
[23] “Keycloak.” [Online]. Available: https://www.keycloak.org/
[24] “Openid-connect — openid.” [Online]. Available: https://openid.net/

connect/
[25] “Oauth 2.0 — oauth.” [Online]. Available: https://oauth.net/2/
[26] “Apache hbase.” [Online]. Available: https://hbase.apache.org/
[27] “Apache hadoop dfs.” [Online]. Available: https://hadoop.apache.org/

docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
[28] “Postgresql.” [Online]. Available: https://www.postgresql.org/
[29] “Apache livy.” [Online]. Available: https://livy.incubator.apache.org/
[30] M. Zaharia et al., “Spark: Cluster computing with working sets.”

HotCloud, vol. 10, no. 10-10, p. 95, 2010.
[31] M. Armbrust et al., “Spark sql: Relational data processing in spark,” in

SIGMOD. ACM, 2015, pp. 1383–1394.
[32] “Apache zookeeper.” [Online]. Available: https://zookeeper.apache.org/
[33] “Apache hadoop yarn.” [Online]. Available: https://hadoop.apache.org/

docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
[34] “Helm: The package manager for kubernetes.” [Online]. Available:

https://helm.sh/
[35] I. Konstantinou et al., “On the elasticity of nosql databases over cloud

management platforms,” in CIKM, 2011, pp. 2385–2388.
[36] “wrk: Modern http benchmarking tool.” [Online]. Available: https:

//github.com/wg/wrk

