
Towards a Multi-engine Query Optimizer for
Complex SQL Queries on Big Data

Evdokia Kassela, Ioannis Konstantinou, Nectarios Koziris
CSLab, National Technical University of Athens, Greece

{evie, ikons, nkoziris}@cslab.ece.ntua.gr

Abstract—In an era where big data analytics has become a
first-class requirement for both the industrial and the academic
community, multiple engines are built to execute distributed
domain-specific analytics. SQL-based big data analytics is a
very popular but also challenging domain due to its complexity
that requires multiple runtime query optimizations. Popular
frameworks, such as Presto and SparkSQL, commonly retrieve
data from multiple sources and process them locally using
domain-specific optimizers. However, recent work indicates that
no single engine offers the optimal all-in-one solution for all types
of SQL queries. Taking this into account, we envision building
an optimizer to facilitate faster distributed SQL analytics over
multiple engines, which will perform operator-level optimization
using Machine Learning techniques and will exploit the sophis-
ticated data-driven local engine optimizations.

Index Terms—big data analytics, SQL, multi-engine, optimizer

I. INTRODUCTION

The constantly growing need to analyze large amounts of
data, has led to the development of multiple distributed exe-
cution engines that operate on top of ’big data’. Each engine
usually targets a different analysis domain, e.g. SQL, Graph
Analytics or Machine Learning, and employs data-driven op-
timizations. However, there also exist general-purpose engines
that perform multi-domain analysis, with Spark [1] being the
most prominent example of such an engine.

SQL-based analytics is a fundamental and particularly pop-
ular field for data analysts, but it is also the most challenging
domain due to the complexity of certain SQL queries and
the volume of data. This has led to the adoption of different
architectures and approaches ([2], [3]) in order to optimize
the execution of a query. At the same time, the ’one size fits
all’ paradigm has outgrown itself [4] as the data that need to
be queried quite often come from different data sources and
are stored in different formats. For example, limited structured
data are usually stored in relational databases (RDBMS) and
main memory SQL systems, while unstructured data from
loggers are stored in NoSQL databases and distributed file
systems as the Hadoop DFS [5].

In order to facilitate querying large amounts of data from
different data sources, Facebook has developed its own dis-
tributed SQL execution engine, named Presto [6]. Presto
moves data from various remote storage engines locally to
process them, and thus the optimal setup for Presto is to be
installed on all available data nodes to avoid excessive data
movements. However, it does not employ the sophisticated
data-driven local optimizations of the underlying storage en-
gines, but uses its own cost-based optimizer which still oper-

ates suboptimally with complex analytics queries [7]. Spark’s
SparkSQL [8] module also provides a similar functionality,
as it can retrieve data from other storage engines and process
them locally with its own cost-based optimizer, but, similar to
Presto, installation within the data nodes is required to achieve
data locality and local engine optimizations are ignored.

In our latest work [7] we evaluated state-of-the-art general-
purpose and specialized big data analytics frameworks like
SparkSQL, Presto, and Hive on Tez ([9], [10]) with SQL
workloads. The results indicate that no single specialized or
general-purpose system offers the optimal all-in-one solution,
as the optimizers’ efficiency and the memory management play
an important role in the performance of different SQL queries.
In order to achieve the fastest query execution under these
circumstances, it is crucial to take into account each engine’s
optimizations and operators performance before running a
query, following a multi-engine execution approach.

Along these lines, polystore systems have been developed
([11]–[15]) to handle the different data models of vari-
ous stores and allow multi-engine execution. These systems
perform multi-domain analytics over different engines by
pushing part of the execution workflow on the underlying
most appropriate engine. Although this approach allows local
optimizations to be performed by the engines themselves,
the existing implementations of polystore systems treat the
different engines’ operator and cost models as black-boxes
ignoring these optimizations. Moreover, the cost models are
usually user provided and integrated into the system in order
to perform optimized planning. It is therefore difficult to adopt
such systems in a custom user environment since adding a new
engine and its cost models seems a challenging procedure. It
is also worth mentioning that in certain cases ([12]–[14]), the
user may need to use a custom language to express his queries.
Taking these aspects into account, it is clear that a much
simpler solution could be developed to allow data analysts
to perform SQL analytics in a more user-friendly and self-
configured environment.

On the other hand, some of these optimization approaches
([13], [15]) delegate the query plan optimization problem
to a problem of minimizing intermediate result movements.
Although this is an interesting approach, as the cost of moving
a large intermediate result between engines can seriously
affect the query performance, with this approach a specific
operator’s performance over different engines is not properly
taken into account and only data placement is optimized. Most

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 6095

importantly, none of the existing polystore systems properly
employ the local physical optimizations that are critical in the
SQL domain.

II. APPROACH

Since no single engine can offer out-of-the-box the best
performance and taking into account the complexity and
inadequacy of existing polystore systems in such a domain,
we propose a new framework that will optimize distributed
SQL query execution on big data over multiple engines with
the following features:
• Multi-engine aware query transformation. Users will be

able to submit a complex SQL query which will be rewrit-
ten into multiple SQL statements that will be executed
on different engines. Different statements will be created
in case a cross-engine data transfer is required between
them. Statements that have no data dependencies and can
be executed in parallel in a different or even the same
engine will be scheduled appropriately. The overhead of
data transfers will be taken into account when building the
rewritten query plan, and statements will be divided into
multiple ones or grouped depending on the estimated costs.
For cross-engine data transfers we will avoid materializing
intermediate results, and instead in-memory views will
be created on the selected engines. These views will be
registered as in-memory tables which will then be fetched
by other engines using ’SELECT *’ statements.

• Operator-level optimization. Different operators will be
scheduled for execution on different engines by creating
the appropriate statement. The underlying engines’ physi-
cal optimizations and operators’ performance will be taken
into account, as cost models of all the physical operators
will be automatically built for this purpose using offline
performance profiling. During this initial offline model
training procedure, specific SQL queries (also containing
hints) that correspond to basic SQL operators (e.g. GROUP
BY, broadcast/repartition JOIN [16]) will be executed on
available engines using different data sizes as a first step.
At a second phase, JOIN queries with no hints using the
same data sizes of the previous step will be executed to
obtain an estimation of automatic physical optimizations
performed by each engine. It is important to notice that,
when building the cost models of the operators, statistics
that are related to the input and output table size and
selectivity will be taken into account apart from operator
performance metrics in order to achieve minimal interme-
diate result movements between engines.

An initial high-level outline of the envisioned architecture
is presented in Figure 1. In brief, our framework will operate
as a cross-engine optimizer which will produce a rewritten
query and will schedule operators execution over different
engines. State-of-the-art big data and RDBM systems that
support SQL semantics will be integrated with our framework,
such as Apache Spark, Apache Hive, Presto, PostgreSQL [17]
and Apache Ignite [18]. Minimal effort will be required to add
a new engine by simply integrating the engine API that will be
used to remotely submit SQL code. The data that the engines

Fig. 1. High-level outline of the envisioned architecture

will operate on, will reside in big data stores such as HDFS
and HBase, and relational databases as PostgreSQL.

Almost all the synchronous big data analytics engines such
as Spark and Presto, rely on data statistics, known as metadata,
to perform query cost-based optimization. The Hive metastore
is the most popular metadata storage engine that can store
metadata of tables residing in various stores including HDFS,
HBase and any relational database and it will be a basic
functional component in our design, where all tables will
be registered and accessed. Hive will also be used to create
temporary in-memory tables in order to store the intermediate
results location that will be accessed by multiple engines. To
sum up, our envisioned framework will include an optimizer
which will use Machine Learning/Deep Learning techniques to
build cost models of all the basic SQL operators and estimate
a query’s execution cost using these models and the Hive
metastore table statistics.

III. RELATED WORK

We divide existing work in two categories: the ones that
offer SQL APIs to the users and the ones with custom APIs.
A. SQL API

With MuSQLe [19] framework, the authors optimize dis-
tributed SQL query execution over multiple engines. The
framework optimization is performed on the logical plans,
allowing local physical optimization to be performed by the
engines themselves, and it also takes into account intermediate
result movements. Although each engine operators and cost-
models do not need to be integrated, but only specific simple
API calls must be implemented for each one, the engines
have all been modified to allow creating pseudo-tables and
allow estimating SQL queries execution time. Unfortunately,
the framework retrieves intermediate results and then sends
them to other engines, which is prohibitive for using it with
large datasets as required for big-data analytics and this is also
proved by the experimental evaluation which is performed with
relatively small datasets.

BigDAWG [11] is a polystore system that offers cross-
engine query execution. Storage engines that can be queried
with a specific query language and use a specific data model
are considered as an island of information. A different island
represents data that can be queried with a different query

6096

language over the same or different storage backend(s). The
primal target of the system is to identify semantic equiva-
lencies among operators from different backend engines and
examine optimization opportunities between islands for indi-
vidual operators. Users can either submit queries to a specific
island or create cross-engine queries, which involve transform-
ing and transferring data between engines. BigDAWG relies
on black box performance profiling of its underlying engines
ignoring their local optimizations, hence it does not employ the
sophisticated physical optimizations during query planning.

MISO [15] is another polystore system which primarily
focuses on tuning the data placement on various stores with an
aim to reduce data movements between them. An online algo-
rithm is used to strategically place materialized views in the
underlying stores using predefined cost functions and ’what-if’
analysis is used to evaluate hypothetical physical placements.
During the integration of a new store, it is therefore also
required to manually define a new cost function. However,
the actual performance of different physical operators on the
underlying engines is omitted from cost estimation.
B. Non SQL API

CloudMdsQL [12] provides a SQL-like language for ex-
pressing queries and submits them to the underlying integrated
SQL and NoSQL engines. It applies rule-based optimizations
in sub-query level using user-defined cost models. AWESOME
[13] is a similar platform developed to support analytics
on social data. A language named ADIL is used to define
original and derived data placement and computations over
different data models and engines, but also native queries can
be executed on single engines. Nevertheless, this system only
performs data ingestion optimization, similar to [15]. In both
of these approaches a custom language is used to express
queries, therefore during the integration of a new engine a
custom wrapper must also be created in order to transform
CloudMdsQL/ADIL queries into engine specific operations.
The same applies for the following scheduler that we describe
below, named IReS.

IReS [14] is a multi-engine resource scheduler for big-data
analytics workflows. Workflows of analytics tasks such as SQL
queries, ML algorithms, etc. can be defined with a JSON-based
metadata framework and the system uses performance and cost
models (created after profiling) together with a user-defined
policy to schedule the execution and resource allocation in
each engine. The optimal plan for moving data between
engines is also generated. However, the need to describe
datasets, operators and workflows in a specific detailed JSON
format renders the procedure to execute a single but complex
SQL query over-complicated, and moreover no sub-query level
optimization is possible in this case as the query is scheduled
for execution as-is on a specific engine.

ACKNOWLEDGMENT
This work has been co-financed by the European Union

and Greek national funds through the Operational Program
”Competitiveness, Entrepreneurship and Innovation”, under
the call RESEARCH – CREATE – INNOVATE (project code:
T1EDK-04605).

REFERENCES

[1] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache Spark: A Unified Engine
for Big Data Processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65,
Oct. 2016. [Online]. Available: http://doi.acm.org/10.1145/2934664

[2] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, “A Comparison of Approaches to Large-scale Data
Analysis,” in SIGMOD, 2009, pp. 165–178.

[3] A. Floratou, U. F. Minhas, and F. Özcan, “SQL-on-Hadoop: Full Circle
Back to Shared-nothing Database Architectures,” Proc. VLDB Endow.,
vol. 7, no. 12, pp. 1295–1306, Aug. 2014.

[4] M. Stonebraker and U. Cetintemel, “One Size Fits All: An Idea Whose
time has come and gone,” in ICDE, 2005, pp. 2–11.

[5] D. Borthakur, The hadoop distributed file system: Architecture and
design. Hadoop Project Website, 2007.

[6] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun,
N. Yegitbasi, H. Jin, E. Hwang, N. Shingte, and C. Berner, “Presto:
SQL on Everything,” in 2019 IEEE 35th International Conference on
Data Engineering (ICDE), April 2019, pp. 1802–1813.

[7] E. Kassela, N. Provatas, I. Konstantinou, A. Floratou, and N. Koziris,
“General-Purpose vs Specialized Data Analytics Systems: A Game of
ML & SQL Thrones,” in 2019 IEEE International Conference on Big
Data (Big Data), Dec 2019.

[8] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
SQL: Relational Data Processing in Spark,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’15. New York, NY, USA: ACM, 2015, pp. 1383–1394.
[Online]. Available: http://doi.acm.org/10.1145/2723372.2742797

[9] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy, “Hive - a petabyte scale data
warehouse using Hadoop,” in 2010 IEEE 26th International Conference
on Data Engineering (ICDE 2010), March 2010, pp. 996–1005.

[10] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino,
“Apache Tez: A Unifying Framework for Modeling and Building Data
Processing Applications,” Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pp. 1357–1369, 2015.

[11] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe,
J. Kepner, S. Madden, D. Maier, T. Mattson, and S. Zdonik, “The
BigDAWG Polystore System,” SIGMOD Rec., vol. 44, no. 2, pp. 11–16,
Aug. 2015.

[12] B. Kolev, C. Bondiombouy, P. Valduriez, R. Jimenez-Peris, R. Pau,
and J. Pereira, “The CloudMdsQL Multistore System,” in Proceedings
of the 2016 International Conference on Management of Data, ser.
SIGMOD ’16. New York, NY, USA: ACM, 2016, pp. 2113–2116.
[Online]. Available: http://doi.acm.org/10.1145/2882903.2899400

[13] S. Dasgupta, K. Coakley, and A. Gupta, “Analytics-driven data ingestion
and derivation in the AWESOME polystore,” in 2016 IEEE International
Conference on Big Data (Big Data), Dec 2016, pp. 2555–2564.

[14] K. Doka, N. Papailiou, D. Tsoumakos, C. Mantas, and N. Koziris, “IReS:
Intelligent, Multi-Engine Resource Scheduler for Big Data Analytics
Workflows,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’15. New York,
NY, USA: ACM, 2015, pp. 1451–1456.

[15] J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J. Tatemura,
N. Polyzotis, and M. J. Carey, “MISO: Souping Up Big Data Query
Processing with a Multistore System,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 1591–1602.
[Online]. Available: http://doi.acm.org/10.1145/2588555.2588568

[16] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian,
“A comparison of join algorithms for log processing in mapreduce,” in
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’10. New York, NY, USA: ACM,
2010, pp. 975–986.

[17] “PostgreSQL.” https://www.postgresql.org/.
[18] “Apache Ignite.” https://ignite.apache.org/.
[19] V. Giannakouris, N. Papailiou, D. Tsoumakos, and N. Koziris,

“MuSQLE: Distributed SQL query execution over multiple engine
environments,” in 2016 IEEE International Conference on Big Data
(Big Data), Dec 2016, pp. 452–461.

6097

