
Towards Faster Distributed Deep Learning Using
Data Hashing Techniques

Nikodimos Provatas
Computing Systems Laboratory

National Techincal University of Athens
Athens, Greece

nprov@cslab.ece.ntua.gr

Ioannis Konstantinou
Computing Systems Laboratory

National Techincal University of Athens
Athens, Greece

ikons@cslab.ece.ntua.gr

Nectarios Koziris
Computing Systems Laboratory

National Techincal University of Athens
Athens, Greece

nkoziris@cslab.ece.ntua.gr

Abstract—Nowadays, deep learning is a crucial part of a
variety of big data applications. Both the vast amount of data and
the high complexity of the state-of-the-art neural networks have
led to perform the network training in a distributed manner
accross clusters. Since synchronization overheads are usually
fatal for the training’s performance, asynchronous training is
usually preferred in such cases. However, this training mode is
sensitive to conflicting updates. Such updates most commonly
occur when the workers train on a totally different part of the
data. To reduce this phenomenon, in this paper, we propose the
use of hashing schemes when distributing training data across
workers.

Index Terms—deep learning, data hashing, distributed training

I. INTRODUCTION

Deep learning has become an important feature in a variety
of big data applications, as in image classification [1] and
speech recognition [2] domains. Specifically, deep architec-
tures are growing larger and larger in order to effectively
support the vast amount of available data. For example,
in 2015, Microsoft proposed the ResNet architecture which
provided the lowest error rate in the ImageNet dataset when
consisting of 152 different layers [3].

Both the amount of data used and the size of the state-
of-the-art neural networks imply to perform the training in
a distributed way across clusters. For instance, Google has
developed TensorFlow to support distributed deep learning [4].
Multiple architectures have been proposed to distribute the
training of neural networks, with the parameter server [5]–
[7] being the most common one. In large networks, the layer
parameters are split across multiple parameter servers, a tech-
nique named model parallelism [8]. Thus, communication and
synchronization overheads are introduced [9], which crucially
hurt the scalability of the training.

However, apart from the layers of a neural network, data
can also be distributed between the training workers (data
parallelism) [8]. This process is depicted in Figure 1 for the
parameter server case. In this setup, each worker has a local
copy of the model and updates using different gradients, based
on their local view of the data. Obviously, synchronization
between the various gradient updates is needed to retrieve the
same model with a single node training, introducing overheads,

M Parameter
Servers

N Training
Workers

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

...

k Layer Neural Network distributed across
M Parameter Servers

Local Model Copy Local Model Copy Local Model Copy

...

Data shards
in a Cloud
Storage

Local
Gradient

Computation

Local
Gradient

Computation

Local
Gradient

Computation

Send gradients to
parameter servers
Get updated model

parameters

Layer 1 Layer 2 Layer K

Fig. 1. Distributed training using Data Parallelism in a Parameter Server
Architecture.

as stated above. In order to avoid such overheads, asyn-
chronous training is a common workaround. Asynchronous
training suggests no synchronization between the available
training workers. However, it is sensitive to conflicting and
stale parameter updates and is able to converge if the number
of concurrent updates is small [10]. Conflicting updates may
occur when the workers train utilizing totally different part of
the data, since data are distributed across worker in a random
or round robin way.

In this paper, the main idea is to distribute data across
workers in a systematic way. Since such approach will re-
duce the amount of conflicting updates while training neural
networks in an asynchronous manner, less training epochs will
be needed to achieve convergence.

The rest of the paper is organized as follows. First of all, the
essential background needed for the reader to understand our
approach is presented in Section II. Then, the aforementioned
data distribution is further described in Section III. Finally, in
Section IV, we outline related work to our problem and the
techniques we propose.

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 6189

II. THEORETICAL BACKGROUND

One technique to avoid conflicting updates that may occur
in asynchronous training is that all workers have a similar
view on the dataset. Since each worker utilizes a different
local sub-batch for a training iteration, we could provide them
with similar sub-batches (sub-batches consisting of similar
data points) or split the data in similar shards.

Considering that each data point can be presented as a d-
dimensional vector in Rd and ‖s, t‖ is a distance between the
vectors s, t ∈ Rd, the ε-approximate nearest neighbour search
(ε-ANN) problem is mathematically formulated in Definition
1 [11].

Definition 1 (ε-approximate Nearest Neighbour Search):
Given a set S ⊂ Rd, preprocess the set S to efficiently locate
a point q0 ∈ S, such that for any query point s:

‖q0, s‖ ≤ (1 + ε) ·min
t∈S
‖s, t‖

The ε-ANN problem can be generalized to the ε-
approximate k-Nearest Neighbours (ε-kNN) problem. The
generalized problem is formulated in Definition 2.

Definition 2 (ε-approximate k Nearest Neighbour Search):
Given a set S ⊂ Rd and any query point s ∈ S, preprocess
the set S to efficiently provide a sequence of data points q1,
q2, ..., qk ∈ S, s.t. the point qi is not further from the query
point s than 1+ ε times the distance of s from its i-th nearest
neighbour.

One of the state-of-art methods to solve the aforementioned
problems in sub-linear time is the Locality Sensitive Hashing
(LSH) [12], [13]. LSH uses a family of functions, named LSH
family, to hash a set of data points to ensure that similar points
will collide with greater probability than dissimilar points. The
formulation of an LSH family is provided with the conditions
given in Definition 3.

Definition 3 (Locality Sensitive Hashing (LSH) family): A
family H = {h : S −→ U} is called (r1, r2, p1, p2)-sensitive
for a similarity measure D if for any data points q1, q2 ∈ S,
the following conditions are satisfied:
• if ‖q1, q2‖ ≤ r1, then P[h(q1) = h(q2)] ≥ p1
• if ‖q1, q2‖ ≥ r2, then P[h(q1) = h(q2)] ≤ p2

A common problem when using the LSH families is that the
probabilities p1, p2 used in Definition 3 might not create strict
enough conditions to achieve a proper hashing. A common
technique to overcome this problem is to concatenate hash
functions from a given hash family, as defined in Definition
4. Thus, dissimilar points are more unlikely to be in the same
bucket.

Definition 4 (AND-Concatenation of LSH Functions): Given
an (r1, r2, p1, p2)-sensitive LSH family H : S −→ U and a
positive integer m, a set of concatenated hash functions G :
S −→ Um can be defined. Specifically, each hash function
g ∈ G on a data point p ∈ S is formulated as

g(p) = (h1(p), h2(p), ..., hm(p))

where h1, h2, ..., hm are randomly chosen from the hash
family H with replacement. Thus, G, satisfies for any data
points q1, q2 ∈ S the properties
• if ‖q1, q2‖ ≤ r1, then P[g(q1) = g(q2)] ≥ pm1
• if ‖q1, q2‖ ≥ r2, then P[g(q1) = g(q2)] ≤ pm2

and is an (r1, r2, p
m
1 , p

m
2)-sensitive LSH family.

III. APPROACH

In our approach, we will examine hashing techniques for
more effective data distribution, which aims to reduce the
conflicting updates noticed in the asynchronous training. First
of all, we aim to design hash families, with the properties
mentioned in Definition 3 (see Section II). However, our
hash families will take into account the data distribution to
identify the similarity between two given data points. For this
purpose a representative sample from the data will be used.
Using the concatenation of functions randomly chosen from
this custom LSH-like family, it will be easier to locate the
nearest neighbours of a given query data point in terms of the
distribution.

Distribution - Aware
Hash Buckets

.

.

.

Data

Shard
1

Shard
2

Shard
3

Shard
N

Send Data Point
To Hash Bucket

Distribute Data Point
and N-1 Points from
its Bucket to Shards

Fig. 2. Data Shard Creation using Hash Buckets.

Given the ability to solve efficiently the ε-kNN problem
by exploiting LSH hash families, we vision a better data
distribution, following the process depicted in Figure 2. Such
distribution Figure 2 shows how the data in the cloud will
be split into the shards used from the workers to train a
neural network. Let a neural network training be performed
by a set of N workers. Thus, the data need to be split into
N shards. Suppose that a specific data point A is chosen to
be part of a shard. Performing an ε-kNN query on the hash
buckets created from the LSH-like functions described in the
previous paragraph will provide the similar data points to A.
As mentioned in Section II, note that these neighbours will be
found in sub-linear time to the data sample used to create the
buckets. This set of N data points will be distributed across
the shards. The process is continued until all the data are split.

By definition the hash family will be designed to take into
account the data distribution. Therefore, the workers will have
a similar view on the data when training with a specific shard.

6190

Especially if the shards are placed in queues, their first-in first-
out operations will ensure that a local sub-batch used from one
worker will be equivalent to the one local sub-batch used from
another. Thus, conflicting gradient updates will be restrained,
rendering the asynchronous training more effective.

In case of vast amount of data, it might be prohibited to
split the data beforehand. The method described above could
be adapted to be used in the batch creation part. In more detail,
when one worker includes one data point in their local sub-
batch, they will inform the others for their selection. Thus,
the rest workers will be capable of using the hash buckets to
select similar data for their local sub-batches.

IV. RELATED WORK

There are numerous other works that integrate hashing
techniques with the deep learning domain for efficient training.
For example, in [14], the authors reduce the number of
computations that occur during the training or testing of a
neural network with the use of hashing based techniques. Their
hashing approach performs an efficient inner product search
on fewer sparse nodes to locate the nodes with the highest
activation. Specifically, with using only the 5% of the total
number of multiplications, they keep the accuracy within 1%
of the one of the original model. In [15], they propose a new
neural network archtecture based on hashing. In further detail,
they use low-cost hash functions to group network weights,
where weights in the same group have the same value. Thus,
they manage to reduce the number of parameters of a neural
network and therefore the memory footprint of the network.
In this paper, we have also proposed the use of hashing to
enhance deep learning. However, unlike the aforementioned
works, we propose the use of hashing in the data distribution
level in order to reduce the training time, by restraining the
number of conflicting updates.

Moreover, hashing techniques are used in schemes like
LSH in order to answer ε-kNN queries in a more efficient
manner. A variety of works have generated hash families that
take into account the distribution of the data that they are
about to hash [16], [17]. In the first work, the propose Data
Sensitive Hashing (DSH), which aims to improve hashing
functions and families for more efficient response to ε-kNN
queries using machine learning techniques. Their experiments
show that indexing structures are created in comparable time
with those of the simple LSH case, while they provide more
balanced results. The latter work aims again to cost-effective
approximate neighbour queries and leverages techniques from
the Principal Component Analysis field to create LSH-like
buckets. Their proposed approach is named Distribution-Aware
LSH (DLSH). Experiments presented in this paper state that ε-
kNN queries have better latency and accuracy when answered
with DLSH than with other traditional method and are more
space-efficient. Inspired from those approaches that take into
account the data distribution when applying LSH methodolo-
gies for ε-kNN queries, we believe that similar approaches
should be applied on the distributed deep learning field for
more efficient neural network creation.

V. ACKNOWLEDGEMENT

This research has been co-financed by the European Union
and Greek national funds through the Operational Program
”Competitiveness, Entrepreneurship and Innovation”, under
the call RESEARCH – CREATE – INNOVATE (project
code:T1EDK-04605).

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[5] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling Distributed Machine
Learning with the Parameter Server,” in 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14).
Broomfield, CO: USENIX Association, Oct. 2014, pp. 583–598. [On-
line]. Available: https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/li mu

[6] A. Smola and S. Narayanamurthy, “An architecture for parallel topic
models,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
703–710, 2010.

[7] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochas-
tic gradient descent,” in Advances in neural information processing
systems, 2010, pp. 2595–2603.

[8] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior, P. Tucker, K. Yang et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems, 2012,
pp. 1223–1231.

[9] E. Kassela, N. Provatas, I. Konstantinou, A. Floratou, and N. Koziris,
“General-Purpose vs Specialized Data Analytics Systems: A Game of
ML & SQL Thrones,” in 2019 IEEE International Conference on Big
Data (Big Data), Dec 2019.

[10] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in neural
information processing systems, 2011, pp. 693–701.

[11] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Vldb, vol. 99, no. 6, 1999, pp. 518–529.

[12] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing. ACM, 1998, pp.
604–613.

[13] J. Leskovec, A. Rajaraman, and J. Ullman, Mining of Massive Datasets.
Cambridge University Press, 10 2011, ch. 3, pp. 80–84.

[14] R. Spring and A. Shrivastava, “Scalable and sustainable deep learning
via randomized hashing,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2017, pp. 445–454.

[15] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compress-
ing neural networks with the hashing trick,” in International Conference
on Machine Learning, 2015, pp. 2285–2294.

[16] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi, “DSH: data sensitive
hashing for high-dimensional k-nnsearch,” in Proceedings of the 2014
ACM SIGMOD international conference on Management of data. ACM,
2014, pp. 1127–1138.

[17] Y. Sun, Y. Hua, X. Liu, S. Cao, and P. Zuo, “DLSH: a distribution-
aware LSH scheme for approximate nearest neighbor query in cloud
computing,” in Proceedings of the 2017 Symposium on Cloud Comput-
ing. ACM, 2017, pp. 242–255.

6191

