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Abstract—Over the recent years, deep learning is widely being
used in a variety of different fields and applications. The constant
growth of data used to train complex models, has opened research
in the distributed learning. In this domain, two main architec-
tures are used to train models in a distribution fashion, all-
reduce and parameter server. Both support synchronous learning,
while parameter server also supports asynchronous learning.
These architectures are adopted by tech companies, which have
developed multiple systems for this purpose. Among the most
popular and widely used distributed deep learning systems are
Google TensorFlow, Facebook PyTorch and Apache MXNet. In
this paper, we quantify the performance gap between these
systems and present a detailed analysis to discuss the parameters
that affect their execution time. Overall, in synchronous learning
setups, TensorFlow is slower compared to PyTorch by average
2.65X , while the latter lags MXNet by average 1.38X . Regarding
asynchronous learning, MXNet is faster by average 3.22X in
respect with TensorFlow.

Index Terms—distributed deep learning, benchmarking,
Google TensorFlow, PyTorch, Apache MXNet

I. INTRODUCTION

In the recent era, deep learning has become an asset in
various fields, as artificial intelligence is constantly evolv-
ing [1]. For instance, neural networks are widely used in
image classification [2] and recognition tasks [3], which also
are of high interest in the medical domain [4]. Other areas
of interest in deep learning include speech recognition [5],
text classification [6] and emotion recognition [7]. Since
deep learning finds applicability in all these totally different
domains, many researchers have worked on improving this
field.

The constant growth of available data has led researchers
to design and exploit more complex network architectures to
cover the data structure [8]. However, the vast amount of
data available cannot be efficiently stored and used to train
models in one single machine. Therefore, various distributed
learning techniques have been proposed. The two most com-
mon approaches used to train deep neural networks are the
all-reduce [9]–[11] and the parameter server one [12]–[14].
All-reduce training exploits reduce operators to combine the
gradients from the various worker tasks that participate in the

training process. Parameter server training uses server tasks
that store a global model, which can be updated either in a
synchronous or an asynchronous manner by various worker
tasks.

All these different architectural approaches and the impor-
tance of the domain have opened the way to various tech com-
panies to design and develop multiple systems for neural net-
work training. Google has been developing TensorFlow [15]
since 2015, while Facebook’s AI Research lab has been
working on PyTorch [16] since 2016. Other popular distributed
learning systems include Apache MXNet [17], Theano [18],
DeepLearning4J [19] and Chainer [20]. Moreover, specialized
deep learning libraries for general-purpose systems have also
been designed, as BigDL [21] for Apache Spark [22].

In this paper, we aim to provide an extensive performance
evaluation on CPU clusters over the three most common dis-
tributed deep learning systems, namely Google’s TensorFlow,
Facebook’s PyTorch and Apache MXNet. The choice of these
particular three systems lies on covering all the aforementioned
distributed architectures: all-reduce, synchronous parameter
server and asynchronous parameter server. Our main contri-
butions are the following:

• We quantify the performance gap of these systems using
a variety of networks.

• We perform an extensive analysis of the results and
present differences between the systems.

All the differences identified in this paper will help prac-
titioners choose the right system depending on the training
workload they want to run. The key findings of our analysis
are:

• TensorFlow presents the slowest backward pass among
the three systems, due to the implementations of some
related operators. However, its forward pass is faster
in most of the experiments and presents better reading
mechanism, utilizing caches.

• MXNet is faster regarding the communication cost com-
pared to the other systems, due to its custom RPC
protocol implementation.

• PyTorch performs better on simpler network architec-
tures, while MXNet should be preferred when training
more complex networks.
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The rest of this paper is organised as follows: Section II
provides an extesive background for the reader to understand
the paper. Section III presents the architecture of the three sys-
tems examined under this experimental evaluation. Section IV
and Section V describes the methodology and the results of
our series of experiments. Finally, the paper concludes with a
presentation of related papers to this work (Section VI) and a
summary of our key insights and future work (Section VII).

II. BACKGROUND

In this section, we present any backround knowledge for
the reader to fully understand this paper. We provide some
brief description regarding neural network training and an
outline on the distributed training architectures of all-reduce
and parameter server.

A. Neural Networks and Training

Neural networks are an algorithmic model which emulates
the structure of a human brain, with sets of neurons (nodes)
organized in hierarchical layers [1]. Their mathematical rep-
resentation is a composite function of parameters, namely the
network weights, which represent how the neurons affect their
input before it is passed to the next layer. The training process
of a neural network can be defined as an optimization problem,
where we search for the optimal weight values that are able
to minimize a loss function. The most common approach to
solve optimization problems is to exploit the Gradient Descent
algorithm. In the case of neural networks, the variant of the
mini-batch Stochastic Gradient Descent [23] is preferred, due
to the best tradeoff between the processing speed and the
iterations before convergence. Backpropagation, the process
of training a neural network, is summarized in the following
steps :

1) A random mini-batch from the data is used to perform
a forward pass on the network to obtain its output,
e.g., probabilities for classification tasks, which is the
network’s prediction for this mini-batch

2) The set of predictions is used to quantify the divergence
from the real values, given the loss function, e.g.,
categorical crossentropy for classification tasks.

3) A backward pass is used to obtain the gradients via
the chain rule, which will be used to update the model
parameters in the direction of the steepest gradient.

B. All-Reduce Training

One approach to achieve a data parallel distributed training
relies on using All-Reduce techniques [24] on a peer-to-peer
network of nodes [9]–[11]. Each node is considered a worker,
who uses a local model copy to compute gradients from an
assigned data shard. Note that each worker’s shard differs from
the one assigned to the others. The computed gradients are
aggregated using all-reduce techniques before being used for
updating each local model.

An iteration of All-Reduce training is outlined in Figure 1.
Each worker extracts one mini-batch from its assigned data
shard (Step 1), which is then used to compute their local
gradients (Step 2). Having computed the local gradients,
the workers exchange these values over network and, using
All-Reduce techniques, they all finally have the aggregated
gradients (Step 3). These aggregated gradients are used from
each worker to update their local model. All-Reduce implies
synchronized aggregations and, therefore, each worker has the
same local model in the beginning of each training step with
the others.

C. Parameter Server Training

Another well-known data parallel approach to train neural
network in a distributed manner follows the parameter server
approach [12]–[14]. In this setup, two types of tasks partici-
pate in the training: the parameter servers and the workers.
Parameter servers are responsible for maintaining a global
model, which will be updated with gradients computed from
the workers either in a synchronous or an asynchronous mode.
Workers exploit a local copy of the model to compute the
gradients with mini-batches extracted from their local data
shard.

Figure 2 illustrates a training step under the parameter server
architecture. Having extracted the mini-batch from their local
shard (Step 1), each worker computes a set of gradients (Step
2). Afterwards, these gradients are forwarded to the servers
over the network (Step 3). Step 4 depends on the training
mode. In asynchronous training, the servers update the global
model directly after receiving a set of gradients from a worker
and finally forward the new version of the model back to this
worker. In case synchronization is preferred, servers wait to
receive the updates from all workers, aggregate them and use
the aggregated value to alter the global model. The model is
finally forwarded to all workers.
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TABLE I: System Specifications

System Distributed Architecture Data Loading Lin. Alg. Library Communication High-Level
Synchronous Mode Asynchronous Mode Library Interface

TensorFlow All-Reduce Parameter Server Pipeline, Caching Eigen gRPC Keras
PyTorch All-Reduce - Pipeline, No caching oneDNN Gloo Built-In
MXNet Parameter Server Parameter Server Pipeline, No caching oneDNN custom RPC Gluon

III. SYSTEMS

In this sections, we briefly discuss the main apsects of
the three systems we benchmark in this paper, which are
summarized in Table I. We only comment on characteristics
that affect the performance of the systems.

A. Google TensorFlow

TensorFlow [15] is open-source machine learning platform
which has been developed by Google since 2015.

Programming Model. TensorFlow’s original model used
dataflow graphs to model the training process. Tensors are used
to represent the data. In the graph, nodes represent basic oper-
ations, e.g., a sum or a matrix-vector multiplication and edges
are used to transfer tensors between operations. Graphs are
optimized and run under sessions. Latest TensorFlow versions
enable the dynamic eager execution, which actually follows
the imperative programming model, where each operation is
computed inline. Graph execution is utilized on user demand
to achieve optimizations on specific parts of the code.

Distributed Execution. TensorFlow supports both types
of distributed learning described in sections II-B and II-C.
Synchronous training is performed using an all-reduce vari-
ant called Ring-Reduce [10]. Asynchronous training can be
achieved under the parameter server architecture.

Data Access. TensorFlow offers Dataset API in order to
fetch data from disk which is used to create a pipeline of
operations essential to read, decode, shuffle, augment, cache
and extract the data in the form of mini-batches. Data related
operations are performed in parallel with the process of the
previous mini-batch. Depending on the training mode, Tensor-
Flow reads different amount of data. Synchronous TensorFlow
requires each worker to read only the shard assigned to them.
In the case of asynchronous TensorFlow, according to the
official tutorial [25], each worker reads the whole dataset, as
opposed to the synchronous case, but processes only the one
third in each epoch.

Linear Algebra Library. TensorFlow facilitates the
Eigen [26] library. Eigen provides header for a set of linear
algebra operators, e.g., matrix and vector related operators.

Communication Protocol. TensorFlow exploits gRPC,
a general-purpose RPC infrastructure initially created by
Google, for the workers to communicate irrespective of the
training mode.

High-Level Interface. TensorFlow encapsulates the
Keras [27] library for building deep learning models easily.

B. PyTorch

In 2016, Facebook’s AI Research Lab initially released
PyTorch [16], an open-source machine learning framework.

Programming Model. PyTorch utilizes, as TensorFlow,
a dynamic imperative programming model by providing an
array-based programming model. Data are processed in the
form of PyTorch tensors and PyTorch programs are executed
in an eager manner.

Distributed Execution. PyTorch distributed execution relies
on the all-reduce training type, supporting synchronous train-
ing. PyTorch offers multiple modules related with distributed
execution, with Distributed Data-Parallel Training being the
one used for our experiments. Regarding all-reduce, PyTorch
groups the gradients in buckets from the network’s output to
the top and when all the gradients in a bucket have been
computed, the all-reduce process is initiated for this bucket
in the form of Ring-Reduce. However, both the forward and
the backward pass serve as synchronization points. It should
be noted that even though asynchronous training is possible
with PyTorch, it is not fully supported yet and thus is omitted
from our experimental evaluation.

Data Access. Regarding data reading, PyTorch offers Dat-
aLoader which reads data in the form of mini-batches in
parallel with the training. Data could be augmented before
mini-batch extraction. No caching mechanism is available in
the DataLoader mechanism.

Linear Algebra Library. Linear algebra operations are
performed using oneDNN [28] library, which is optimized for
Intel Processors.

Communication Protocol. Multiple protocols and libraries
are supported for the processes to communicate with each
other. However, in the case of CPU clusters, Gloo [29]
communication library is the default option, which support
point-to-point and collective operations

High-Level Interface. PyTorch provides its own built-in
deep learning building blocks to design neural networks.

C. Apache MXNet

Apache MXNet [17] was released in 2016 and joined the
Apache Software in 2017. It is a flexible and efficient library
for deep learning.

Programming Model. MXNet provides both a declarative
and an imperative style of programming. In declarative pro-
gramming, a computational graph is defined using Symbols,
which can maintain an internal state. Before executing the
computational graph, MXNet optimizes the graph in terms
of performance and assigns memory to the variables. For
imperative programming, NDArray is offered as a structure.

Distributed Execution. Apache MXNet adopts the pa-
rameter server architecture to provide both synchronous and
asynchronous training. It exploits a key-value store structure,
named the KVStore, which supports push and pull operations.
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TABLE II: Neural Network Characteristics

Network #Layers #Parameters
LeNet-5 5 60K
AlexNet 8 62M

ResNet-18 18 11M
ResNet-50 50 25M

Parameter servers are responsible to handle synchronization
issues. KVStore is also responsible to handle gradient ag-
gregation. Except for the servers and workers, a task named
scheduler is used to set up the cluster.

Data Access. MXNet provides built-in data loading mod-
ules, which are able to operate in parallel with training,
offering various capabilities, e.g., mini-batch formation, aug-
mentation etc.

Linear Algebra Library. MXNet uses the same library as
PyTorch for linear algebra operations, the oneDNN.

Communication Protocol. Regarding process communica-
tion, the system utilizes a custom implementation of the RPC
protocol.

High-Level Interface. For easy model design, MXNet
exploits Gluon [30], a simple and accurate API for build deep
learning models.

IV. EXPERIMENTAL SETUP

In this section, we discuss our experimental setup and the
methodology used to gather our results.

A. Hardware and Software Configuration

Our experimental evaluation is performed on a cluster
consisting of three virtual machines. Each virtual machine has
4 virtual CPUs (Intel Core Processor @ 2.2 GHz), 16 GB
of RAM and 30 GB HDD. Since all benchmark are Python
programs, all VMs have Python 3.6.9 installed. Regarding the
versions of the systems we benchmark, we use TensorFlow
2.5.0, PyTorch 1.7.0 and MXNet 1.7.0.

All systems are tested with all their available training
modes, i.e., synchronous and asynchronous (except PyTorch
- see section III-B). For All-Reduce training setups we deploy
one worker task on each machine. When training under the
parameter server architecture, both a parameter server and a
worker task are executed on each virtual machine.

B. Benchmarks

In our experimental evaluation, we use four well-known
convolutional neural networks from the image classification
domain. Specifically our implementation include two networks
with simple structure, LeNet-5 [31] and AlexNet [2], and
two with more complex units, which belong to the ResNet
architecture [32], i.e., ResNet-18 and ResNet-50. Table II
provides information regarding the size of these networks. We
have utilized the high-level interface offered by each system
to implement these networks.

The datasets upon which the neural networks were trained
are CIFAR-10 and CIFAR-100 [33]. Both of them consist of
60,000 labeled images of 32x32 dimensions and 3 channels.
The difference between the two is located at the number of
classes, as they contain 10 and 100 classes respectively. Each

TABLE III: Model-dataset combinations used.

Neural network Dataset
Lenet-5 CIFAR-10
AlexNet CIFAR-10

ResNet-18 CIFAR-10
ResNet-18 CIFAR-100
ResNet-50 CIFAR-10
ResNet-50 CIFAR-100

TABLE IV: Training parameters.

Parameter Value
Dataset Size 50,000

Global batch size 126
Local batch size 42
Steps per epoch 396

Number of epochs 10
Input size 32x32 (64x64 only for AlexNet)

worker has the shard of the data they need in their local
storage.

Benchmarks were constructed by training the two datasets
with the networks. In total, we performed six different training
processes under all the systems and training modes available.
The benchmarks, as model-dataset combinations are outlined
in Table III. Since we want only to quantify the performance
gap of the systems, we run the benchmarks for a fixed number
of epochs (10). In general, neural networks are usually run for
a fixed number of epochs, unless some specific convergence
technique, e.g., early stopping is defined. Therefore, regarding
the performance gap, it is safe to run a few number of
epochs to identify architectural and implementation issues.
Other training related parameters are described in Table IV.
Note that images were used at their original size (32x32) as
input in the networks, with the exception of AlexNet where,
due to the increased amount of sampling taking place, the
dimensions used where 64x64. Thus, images were resized at
first for this experiment.

C. Methodology
Our experimental evaluation is conducted in three phases.

The main phase is the distributed training phase. During that
phase the benchmarks (see section IV-B) were run under
all the systems and training modes in order to record their
corresponding execution time.

The second phase of this benchmarking included the break-
down of the execution time in stage times, e.g., time needed
for the forward and the backward pass. Using appropriate
profilers for each system, e.g., TensorBoard for TensorFlow,
we identified the time spent by each system on the various
stages and operations. Communication cost is identified as the
difference between the total execution time and the sum of the
forward pass, backward pass and data loading time.

The final phase of our work includes the process of further
analyzing profiling data in order to extract any performance
related issues, i.e., heavy operations. In this way, we can
identify any reason behind the overhead of a specific stage.

V. EXPERIMENTAL EVALUATION

In this section, we provide our detailed experimental evalua-
tion to identify the performance gap between the three systems.
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Fig. 3: Execution times of TensorFlow, PyTorch and MXNet on benchmarks. TensorFlow and MXNet present execution times
with both synchronous and asynchronous learning. Y-Axis is presented in logarithmic scale.

We present our analysis as follows: Section V-A presents
a first comparison over the total execution time, where we
identify the overall performance gap between the systems. In
sections V-B, V-C and V-D, we discuss in detail, exploiting the
profiling data, how the performance gap between the systems
occurs. Note that in each case the execution time is initially
broken down to the loading time , the forward pass time, the
backward pass time and the communication time. As loading
time, we identify disk I/O, data decoding and transformations
that do not take place in parallel with a forward or backward
pass phase. Communication time refers to data exchange and
any synchronization overheads that may occur. Finally, in
sections V-F and V-G we comment on the factors affecting
the communication and data loading cost for the systems
respectively.

Our main findings are summarized as follows:
• In Synchronous Parameter Server experiments less time

is spent over network communication compared to equiv-
alent all-reduce experiments.

• TensorFlow is superior in data loading thanks to caching
mechanisms, while MXNet performs better at network
communication up to 3.19X due to each custom RPC
implementaion.

• TensorFlow’s forward pass is faster in most of the
experiments. However its backward pass is crucially

affected by the operator convolution backward, which
stalls up to 7.67X more compared to the counterpart
operators of the other systems. The performance of
PyTorch is crucially hurt by the operators batch norm
and batch norm backward, which are 29.7X and 21.4X
slower than the equivalent MXNet operators.

A. Overall Comparison

Figure 3 illustrates the execution time of each system and
training mode for the series of experiments conducted. Overall,
we notice that TensorFlow seems to be the slowest of all, while
MXNet presents the best performance. The only experiment
that does not confirm this observation is when training the
LeNet-5 network, where PyTorch is the fastest and MXNet
lags the other two systems irrespective the training mode.

Regarding the synchronous case, TensorFlow, which
presents the poorest performance, is by average 2.65X and
3.66X slower compared to PyTorch and MXNet respectively.
TensorFlow largest performance gap from the other two
systems is identified on ResNet experiments, where it lags
PyTorch and MXNet by 2.99X (ResNet18 / CIFAR100) and
3.97X (ResNet-50 / CIFAR-100) respectively. This behaviour
is attributed to specific operators, as we will discuss in
section V-D.
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Fig. 4: Breakdown of Execution Time (LeNet-5 / CIFAR-10)
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When training under an asynchronous parameter server
environment, MXNet clearly outperforms TensorFlow by aver-
age 3.22X , where the gap meets its greatest value on ResNet
experiments, as in the synchronous case. In LeNet-5, the two
systems present similar execution times.

B. LeNet-5

Figure 4 presents a breakdown of the execution times for
this experiment. Note that the only case where TensorFlow is
not the slowest of all, as discussed in V-A, is that of LeNet-
5. This is mainly due to the data loading part, which will be
further discussed in the data loading section (V-G). Overall, it
is worth noticing that TensorFlow is 1.56X faster than MXNet
in synchronous mode.

In the previous paragraph, we mentioned that the only neural
network in which TensorFlow does not rank last is LeNet-5.
It is also worth noting that this is only series of experiments
(section V-A) where MXNet does not occupy the first position,
but the last one. It is interesting to identify why PyTorch
outperforms MXNet by 1.8X in this case. A close look in
Figure 4 indicates that this can be mainly attributed to the
backward pass time. To further understand the related issues,
we present profiling data from this experiment in Figure 5.
The backward pass operator that makes the difference is that
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Fig. 6: Breakdown of Execution Time (AlexNet / CIFAR-10)

of tanh backward, i.e., is the backward pass on the activation
function tanh. For this operator, MXNet is actually ×34.8 and
×24.8 slower than PyTorch and TensorFlow in this exper-
iment. It is worth noting that TensorFlow’s backward pass
performance is hurt by the convolution backward operator
and, therefore, cannot surpass PyTorch in total, even if it
presents better loading time.

Another interesting observation is that synchronous Tensor-
Flow is faster than asynchronous in this experiments. This
may initially sound like a paradox, since synchronization
adds an extra overhead to the communication time. However,
this can be supported if we consider the way the amount
of data read by each worker nodes in each experiment in
combination with the small size of this neural network. In the
synchronous mode, each worker loads into memory the part
of the dataset that assigned to them (one third in our case) and
processes the same subset of data throughout the training. In
contrast, in asynchronous mode, each worker loads the entire
dataset, and processes the batch routed by the coordinator at
a time, as discussed in section III-A. Therefore, while in the
asynchronous mode there is a little better shuffling of the data,
since any batch can occur at any node, there is also a higher
cost of loading the data since the whole datasets is read from
each worker. The reading phase asynchronous TensorFlow
induces 2.9X overhead compared to the synchronous one,
which cannot be eliminated by the less communication cost,
where the time spend in only by 1.35X less.

C. AlexNet

Figure 6 outlines the breakdown of the execution time for
the conducted experiments with AlexNet benchmark. Overall,
TensorFlow appears to be the slowest in the series of exper-
iments, while PyTorch and MXNet present a similar perfor-
mance. When using synchronization, TensorFlow’s speed is
2.73X and 2.93X less from PyTorch and MXNet respectively.
In the asynchronous setup, MXNet is superior to TensorFlow
by 1.66X .

TensorFlow’s performance appears to be crucially affected
mainly by the backward pass and the communication time.
For instance, the backward pass of PyTorch is 3.32X faster
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Fig. 7: System Profiling Data (AlexNet / CIFAR-10)

than the equivalent TensorFlow phase. Regarding the time
spend over the network, TensorFlow is especially hurt in the
synchronous case, where it suffers also the synchronization
overheads. Specifically, compared to synchronous MXNet, this
phase is 6.18X slower.

It is observed that, although PyTorch and MXNet are
close in terms of total time (MXNet only 1.1X faster), the
former excels in the backward pass while the second in
communication time. In general, in the case of AlexNet we
identify that MXNet is far superior to the other two in terms
of communication time, irrespective of the mode. We will
provide a general discussion over the communication time in
section V-F.

Since both MXNet and PyTorch are based on the oneDNN
library, it is interesting to identfy where this performance
gap lies on. This operator stalling MXNet, according to
figure 7 is weights update. This operator is responsible for
updating the weights of the neural network with the calculated
gradients. In particular, the corresponding PyTorch operator is
5.1X faster. Another operator which favors PyTorch is the
convolution backward one, which lags PyTorch over MXNet
by 1.35X . The rest operators presented in Figure 7 present
similar performance between these two systems.

Another interesting observation lies on how TensorFlow’s
backward pass is affected. Apart from the weights update
operator, where MXNet presents the worst performance, all
the backward pass operators meet their worst performance in
TensorFlow. Specifically, both the convolution backward and
the fully connected backward are 3.85X and 3.03X slower
from the equivalent PyTorch operators respectively.

While TensorFlow suffers from its backward phase, we
discussed earlier that its forward phase presents better per-
formance compared to the other two systems. For instance,
in Figure 7, we ascertain that the convolution operator is by
average 1.35X faster in TensorFlow in respect to the other
two systems.

D. ResNet-18 and ResNet-50
Figures 8a and 8b present the breakdown of the execution

times for training ResNet-18 on CIFAR-10 and CIFAR-100
respectively. Following the same pattern as the AlexNet ex-
periments presented in section V-C, MXNet, in every training
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Fig. 8: Breakdown of Execution Time for ResNet-18 networks
on CIFAR-10 (a) and CIFAR-100 (b) datasets

mode, is again faster than PyTorch up to 1.37X . TensorFlow
also presents the worst performance with the gap being at
3.65X . This gap is identified between synchronous Tensor-
Flow and synchronous MXNet.

A closer look on Figure 8 affirms the assumption that
TensorFlow suffers from its backward phase. Synchronous
TensoFlow is also crucially affected by the time spent over
the network.

PyTorch appears to perform worse compared to MXNet.
Its performance seems to be affected more by time spent in
network and the forwards pass. The forward pass induces
1.34X in respect to MXNet (average of training both with
CIFAR-10 and CIFAR-100). Comparing with synchronous
MXNet, which also faces related overheads, PyTorch spends
1.36X more time over the network. Regarding the backward
pass, MXNet and PyTorch present similar performance with a
smaller than 1.2X .

All the above claims and observations are further confirmed
with the series of experiments that refer to ResNet-50. The
corresponding results are illustrated in Figure 9 for both the
datasets. TensorFlow’s worst performance is located in this
experiment with the performance gap reaching the value of
3.96X compared to MXNet’s best performance on the CIFAR-
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Fig. 9: Breakdown of Execution Time for ResNet-50 networks on CIFAR-10 (a) and CIFAR-100 (b) datasets
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Fig. 10: System Profiling Data (ResNet / CIFAR-10)

100 dataset (Figure 9b). We also notice larger performance
gap (1.6X) between PyTorch and MXNet, occurring from
the forward pass (1.9X), the backward pass (1.4X) and the
communication time (1.78X from synchronous MXNet).

In order to identify the reasons behind the delay of Ten-
sorFlow and PyTorch, in Figure 10 we present the execution
time of some interesting operators from the profiling process
of training both ResNet-18 and ResNet-50 on CIFAR-10. The
main operator responsible for the performance gap of PyTorch
and MXNet in the forward pass is the batch norm, i.e., . the
normalization layer, which is up to 29.7X slower for PyTorch.
The same pattern is identified also at the backward pass. In this
case, the corresponding operator, i.e., batch norm backward
is responsible for this difference, since the PyTorch imple-
mentation is by average 21.4X slower compared to MXNet.
It can therefore be observed that MXNet provides a much
faster implementation for this layer in both forward and
backward pass. TensorFlow’s backward pass is affected again
by the convolution backward operator, while the equivalent

operator for the forward pass, i.e., convolution, performs better
compared to the implementations of the other two systems.

E. General Discussion on Operators
The slow backward pass observed in TensorFlow is, as

mentioned in the previous sections, the main reason why it lags
behind the other two in almost all experiments. TensorFlow
uses the Eigen library to implement its operators. On the
other hand, PyTorch and MXNet are based on oneDNN
(formerly known as MKL-DNN). The oneDNN provides im-
plementations of deep learning operators that are specifically
optimized to run on Intel processors. Since all the experiments
in the current work were conducted on a cluster consisting of
Intel CPUs, certainly the systems based on oneDNN had a
strong lead. This is moreover evident from the profiling of
the operators discussed on the analysis of the experiments.
In all cases, the convolution backward operator, which is
usually the most time-consuming operator in convolutional
neural networks, appears to be much slower in the TensorFlow
implementation. This particular TensorFlow operator ends up
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TABLE V: Mean Communication Time for each System

Synchronous Asynchronous
TensorFlow PyTorch MXNet TensorFlow MXNet

1741.81 869.51 546.19 586.65 410.54

running for 7.67X the time the MXNet counterpart takes in
the ResNet experiments.

It is of course worth noting that for all neural networks
except LeNet-5, TensorFlow has a faster operator in terms
of forward pass convolution, as discussed in sections V-C
and V-D. However, despite the faster implementation of Eigen
for one of the most important forward pass operators, it is the
backward pass operators that have the largest impact, and thus
PyTorch and MXNet are faster in the majority of experiments.

F. Communication Cost and Network

As we defined back in the introduction of this section, in the
asynchronous training experiments, communication time refers
to the time consumed in data transfer over the network. For
the synchronous case, this time also includes any additional
time spent waiting for the slower worker to finish processing.

According to almost all experiments (except LeNet-5 where
the numbers are too small to draw a clear conclusion) the
fastest communication seems to be MXNet. Particularly in
the case of AlexNet (Section V-C), while in the other two
systems the communication cost seems to scale with increasing
parameters (see table II), MXNet does not seem to be crucially
affected and even has a strong lead in this experiment thanks to
the reduction in communication cost. In particular, in AlexNet,
although MXNet has slower backward pass, it has ×1.9X
faster communication than PyTorch.

Table V presents the average of the time spent over the net-
work from all the experiments run on the CIFAR-10 dataset for
each system. MXNet is affirmed to spent in average the least
time compared to the other two. While in the asynchronous
Parameter Server architecture, there is not a large performance
gap between asynchronous MXNet and TensorFlow, MXNet
need 1.42X less time. MXNet’s behaviour over the network
can be attributed to the custom implementation of the RPC
protocol it provides via a launch module versus the gRPC
used by TensorFlow. Regarding the synchronous case, PyTorch
(Gloo) appears to have better all-reduce related operators
compared to TensorFlow (gRPC), since it is 2X faster.
However, MXNet’s synchronous parameter server seems to
operate better than the all-reduce mechanisms exploited by
TensorFlow and PyTorch.

G. Data loading and Memory Consumption

In terms of loading the dataset into memory for processing
each batch, there are two approaches followed by the three
systems in question. In the first, each batch of data is loaded
and then cached so that, the next time it is needed (the next
epoch usually) it will be loaded into memory much faster.
In the second approach, every batch that is needed is loaded
directly from disk, no matter how many times the same batch
is requested. In this approach there is lower consumption of
node resources, but slower data loading.

TensorFlow uses caching, while PyTorch and MXNet take
the second approach, and as a result TensorFlow requires more
memory. TensorFlow uses more memory in asynchronous
mode than in synchronous mode, as mentioned in section V-B.
Since all three systems load batches of data in parallel with
their processing, loading batches from disk does not add much
latency for large neural networks (where we also have large
processing time, i.e., forward and backward pass). In the case
of LeNet-5, however, loading each batch is of the same order
of magnitude as processing the batch. Hence it does not make
good use of the parallel loading of consecutive batches and
therefore adds a delay for systems that do not use the cache.
This delay, given that fact that for small networks data loading
is an important part (in terms of time) of network training,
gives TensorFlow a strong advantage over the other two.

VI. RELATED WORK

Over the last years, multiple works have evaluated deep
learning systems. In 2016, Fathom [34] was released as a set
of workloads for benchmarking. However, this suite was de-
signed especially to evaluate TensorFlow. In 2017, the authors
provide in [35] an extensive experimental evaluation even for
multinode setups. However, they examine different systems
instead of PyTorch and MXNet. They also do not perform
a profiling analysis over the performance gap to identify
any heavy operations. Dawnbench [36] was also released in
2017, as a benchmark aiming to measure the execution time
of training a network to the state-of-the-art accuracy. They
also study how various network related optimizations affect
the performance. In 2018, an experimental analysis [37] on
how deep learning frameworks operate in distributed setups
was released, but it measured the performance on GPUs
and GPU clusters and did not cover CPU clusters. Another
study [38] regarding GPU clusters was performed in 2018,
where the authors also offered a detailed mathematical model
to describe the performance. In 2019, we conducted a detailed
experimental evaluation [39] to quantify the performance gap
of general-purpose and specialized systems, where we also
studied some machine learning workloads. However, we did
not examine deep learning cases, and only TensorFlow was
evaluated with Spark. Last year, a theoretical survey [40]
without an experimental evaluation was published, discussing
various aspects of multiple systems, including the three we
examine in this paper.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we provided a detailed experimental evaluation
to quantify the performance gap between three widely used
deep learning systems: Google TensorFlow, Facebook PyTorch
and Apache MXNet. Our series of experiments indicated that
TensorFlow lags behind both PyTorch and MXNet either in
synchronous or asynchronous learning setups. TensorFlow’s
main stalling parameter is its backward pass phase, attributed
to the operator convolution backward. PyTorch is kept behind
MXNet due to operators related with batch normalization.
Overall, MXNet presents the best performance and the best
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communication times due to its custom RPC implementation.
In general, for synchronous setups, Parameter Server is found
to perform better than the all-reduce alternative.

The experimental analysis presented in this paper can
be extended to multiple directions. We aim to extend our
experimental evaluation to other workloads beyond image
classification and systems. We also aim to study other aspects
of the presented systems and extend our research to quantify
and explain the performance gap on GPU clusters.
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