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Abstract—Over the past decade, a plethora of systems have
emerged to support data analytics in various domains such
as SQL and machine learning, among others. In each of the
data analysis domains, there are now many different specialized
systems that leverage domain-specific optimizations to efficiently
execute their workloads. An alternative approach is to build
a general-purpose data analytics system that uses a common
execution engine and programming model to support workloads
in different domains. In this work, we choose representative
systems of each class (Spark, TensorFlow, Presto and Hive) and
benchmark their performance on a wide variety of machine
learning and SQL workloads. We perform an extensive compar-
ative analysis on the strengths and limitations of each system and
highlight major areas for improvement for all systems. We believe
that the major insights gained from this study will be useful for
developers to improve the performance of these systems.

Index Terms—benchmarking, ML, SQL, Spark, TensorFlow,
Presto, Hive, TPC-H, general-purpose system, specialized system

I. INTRODUCTION

As industry in nearly every sector of the economy has
moved to a data-driven world [1], there has been an explosion
in the volume of data that needs to processed and analyzed
almost as soon as it is generated. Deriving value from data
is typically a multi-stage process that involves data analysis
workloads from various domains, such as SQL, machine learn-
ing (ML), and graph analytics, among others. The need for
efficiently supporting such complex analytics has never been
higher than the current level as gaining actionable insights
from the data has become a key service differentiator.

Researchers and practitioners in our community have risen
to this challenge by building a wide variety of data analytics
systems. In each of the data analysis domains, there are
now many different specialized systems that leverage domain-
specific optimizations to efficiently execute their workloads.
Prominent examples in this category are Apache Hive [2],
Impala [3], and Presto [4] for SQL processing on top of
Hadoop data, Google’s TensorFlow [5], GraphLab [6], and
Mahout [7] for machine learning applications and Giraph [8]
for graph analytics.

An alternative approach is to build a general-purpose data
analytics system that uses a common execution engine and
programming model to support workloads in different domains
using domain-specific libraries and modules. The prototypical
example in this class is the widely used Apache Spark [9]

framework with its Spark SQL [10] module for relational
workloads, MLlib [11] for machine learning, Spark Stream-
ing [12] for streaming workloads and GraphX [13] for graph
analytics. Apache Flink is another system in this class that
supports both batch and streaming analytics [14].

In this paper, we present a detailed experimental study to
compare and contrast popular, representative systems of each
class. We benchmark their performance on a wide variety
of workloads from the ML and SQL domains. In particular,
we compare Spark’s MLlib module with TensorFlow, which
follows a parameter server architecture specialized for ML
workloads. We also compare Spark SQL’s general-purpose ar-
chitecture with Presto, a specialized SQL engine that employs
a massively parallel processing (MPP) architecture. Moreover,
we perform experiments with Hive, a standalone state-of-the-
art SQL engine that relies on an underlying general-purpose
processing framework.

Our main contributions are the following:

• We quantify the performance gap between rerpresentative
generalized and specialized data analytics systems on both
ML and SQL workloads.

• We perform experiments with both real and synthetic
datasets using up to 140 nodes. To the best of our knowl-
edge, we are the first to perform an evaluation of these
systems in such large-scale.

• We perform a thorough analysis of the experimental results
focusing on both the architectural and the implementation
differences of the systems and present our major insights.

We believe that this study will be useful for developers to
improve the performance of these systems. Our key results
include:

• In the context of ML, we find that TensorFlow is more
computationally efficient than Spark even when TensorFlow
operates in synchronous training mode which resembles
Spark’s execution model. However, Spark has better reading
throughput. These differences are mainly attributed to the
different architectures of the two systems.

• In the context of SQL workloads, we find that both Hive and
Spark SQL outperform Presto although the latter employs
a MPP architecture. The performance differences can be
attributed to the sub-optimal query optimizer and memory
manager that Presto employs.
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Admittedly, comparing these approaches solely based on
their performance ignores other relevant aspects including ease
of application integration, expressiveness of the programming
model, manageability, and fault-tolerance, among others. We
leave a more thorough comparison including these aspects and
other analysis domains out of the scope of this work.

The rest of the paper is organized as follows: in Section II,
we discuss the architecture of TensorFlow and Spark MLlib
and present an experimental evaluation using three popular
ML algorithms. In Section III, we present the basic features
of Hive, Spark SQL and Presto and perform a performance
analysis using the TPC-H benchmark [15]. We present related
work in Section IV and conclude the paper in Section V.

II. MACHINE LEARNING

In this section, we examine the performance characteristics
of Spark MLlib [11] and Google TensorFlow [5]. We
compare the two systems using three popular ML algorithms
(logistic regression, linear regression, and multi-layer per-
ceptron classifier). These algorithms are supported out-of-
the-box by both systems. Unfortunately, we are not able to
compare the systems on deep learning algorithms as Spark
does not currently provide this functionality. However, the
perceptron algorithm can be considered a simple deep learning
representative that is supported in Spark. Our analysis shows
that there is a large performance gap between the two systems
which can mainly be attributed to their different architectures.

A. Background

Many machine learning algorithms can be cast as convex
optimization problems by defining a loss function of the model
parameters which quantifies the prediction error of the param-
eterized model. The most widely used approach for solving
this optimization problem is Gradient Descent (GD) and its
stochastic variant, Stochastic Gradient Descent (SGD). Both
these algorithms are used to optimize an objective function by
efficiently exploring its surface using iterative gradient compu-
tation and movement in the direction of steepest gradient. The
difference between the two algorithms lies in how much of the
training data is used to compute the gradient each time: GD
makes a full pass over the training data whereas SGD looks at
a minibatch (subset) of the training data, possibly as small as
a single training example. Typically, the optimization process
terminates when the model’s prediction error is below a certain
threshold (convergence). SGD typically converges faster than
GD particularly for large datasets [16].

B. Systems Architecture

In this section, we present an overview of the architectures
of TensorFlow and Spark MLlib.

1) Google TensorFlow: TensorFlow [5] is an open-source,
scalable machine learning platform developed by Google.

Abstract Programming Model. TensorFlow models ma-
chine learning algorithms as dataflow graphs and data as
tensors. A graph edge represents a tensor transfer between
nodes. Graph nodes represent units of local computation on the
input tensors, called operations, such as matrix multiplication.
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Execution Model. TensorFlow is deployed as a set of tasks
which are processes that can communicate over a network.
The tasks are of two types, namely parameter server tasks and
worker tasks following the parameter server architecture [17]–
[19]. The parameter server tasks maintain the current version
of the globally shared model parameters. The worker tasks,
on the other hand, are responsible for performing the bulk of
the computation on top of their local training data.

For example, in the context of SGD with a minibatch of
T training examples and N worker tasks, each worker task
computes gradients based on a local sub-batch consisting of
T/N local training examples, and then updates the shared
parameters hosted by M parameter server tasks.The process is
depicted in Figure 1. Steps 1-3 and 4-5 are executed in parallel
on the worker and the parameter server tasks respectively. Each
worker gets the latest model parameters from the parameter
server (Step 1), performs the local gradient computation (Step
2) and then sends the updated gradient to the parameter server
tasks (Step 3). Sequentially, parameter servers update the
model parameters with the received gradients (Step 4) and
evaluate convergence (Step 5).

Training Modes. TensorFlow supports both asynchronous
and synchronous training. The former is performed by allow-
ing Step 4 in Figure 1 to be executed by the parameter server
tasks whenever a worker task sends a new gradient update
(Step 3). On the other hand, in the Synchronous mode, Step 4
is executed only when the parameter server has received one
gradient update from each worker, which it aggregates into
one using a sum operator. For this case study, we configured
TensorFlow in an appropriate way to perform updates only
after it receives one local update from each worker.

In our experiments with real datasets, we found that Asyn-
chronous Training needed less time to converge than syn-
chronous at most cases. However, it needed more iterations
in some cases, due to workers overriding each other’s work.

Data Access. In order to fetch data from disk, TensorFlow
comes with an API, called Dataset API which provides a set of
functions that can be sequentially used to create a pipeline that
fetches, decodes and creates data batches, which are subsets
of the data. These batches will be consumed from each worker
to compute the next gradient updates.
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The pipeline operates as follows: First, data is loaded from
disk as raw bytes. Afterwards, the data rows are mapped to
their decoded Tensor format in parallel. Finally, a batch is
created. During these operations, caching, batch prefetching
and data shuffling is performed. We discuss these operations
and their performance implications in the following sections.

2) Spark MLlib: Spark MLlib [11] is Spark’s scalable
machine learning library. We now describe its basic features.

Abstract Programming Model. Since MLlib is part of
the Spark framework, it employs Spark’s computation model.
More specifically, Spark performs a series of computations
following the Map Reduce Model upon Resilient Distributed
Datasets (RDDs). The RDD is a basic abstraction in Spark
that represents an immutable distributed collection of data.

Execution Model. As opposed to TensorFlow that employs
long-running processes, the machine learning algorithms are
executed in MLlib as a sequence of Spark jobs that consist
of map and reduce stages whose corresponding tasks are
launched by Spark executors. State is maintained and trans-
ferred across jobs using broadcast variables through the Spark
driver and training data are represented as a partitioned RDD.

In the context of the SGD algorithm, a sequence of Spark
jobs are launched, each one processing a minibatch. The
process is depicted in Figure 2, where dashed and solid arrows
denote the control flow and data flow respectively. First, the
Spark driver initializes the model parameters as a broadcast
variable (Step 1) and launches a Spark job (Step 2). The map
tasks of the job generate a local sub-batch randomly from their
local partition of the RDD and compute the gradients on top of
their local sub-batch (Step 3). Then, the reduce tasks perform a
partial aggregation of the computed gradients (Step 4). Finally,
the Spark driver performs the final global aggregation, updates
the model parameters (Step 5) and evaluates the convergence
criteria (Step 6) before launching another job.

Training Modes. MLlib supports only synchronous training
in contrast with TensorFlow, because of its MapReduce-based
execution model.

Data Access. Since Spark employs lazy evaluation, each
local RDD partition that points to the training data will be
fully read from disk only when the map tasks perform their
computations. Note that local RDD partitions are also cached
in memory to avoid repeatedly fetching from the disk.

C. Experimental Evaluation

We now present a detailed experimental comparison of
TensorFlow and MLlib using both real and synthetic datasets.
Our key findings are the following:

1) TensorFlow is more computationally efficient than Spark
MLlib regardless of the training mode (see Figures 3 and
6a), but Spark has better read throughput (see Table III).

2) Spark’s short-running tasks introduce scheduling and ini-
tialization overheads, especially for small minibatches (see
Section II-C2). TensorFlow’s long-running processes avoid
such overheads.

3) TensorFlow needs less time to converge than Spark MLlib
in almost all the machine learning models that we examined
(see Figure 7).

4) Spark meets its best performance when the minibatch
size is such that the initialization overheads of Spark are
amortized. (see Figures 7a and 7b).

In the following sections, we describe our experimental setup
and further analyze our findings.

1) Experimental Setup: Hardware and Software Config-
uration. Our experiments are performed on a cluster of 141
virtual machines (“nodes”) in Okeanos public cloud [20], [21].
Each virtual machine has 2 virtual CPUs @ 2.1GHz, 8 GB of
RAM and 20 GB of hard disk storage. We use one of these
nodes as master node and the remaining ones as worker nodes.
Thus, the worker nodes provide a total of 280 virtual CPUs,
1 TB of RAM and 2.8 TB of hard disk storage.

The operating system used is Debian Jessie 8.10. We use
TensorFlow version 1.13 and Spark version 2.4. In the case of
TensorFlow, we deploy one worker task on each of the 140
worker nodes. We use one parameter server task deployed at
the master node. In the case of MLlib, we deploy one Spark
executor on each of the 140 worker nodes. We host the Spark
driver at the master node.

Machine Learning Models. We use three models for
predictive analysis, namely linear regression [22], binary
logistic regression [23], and the multilayer perceptron (MLPC)
classifier [24]. The perceptron classifier is chosen, since it
is a representative from the deep learning subdomain and is
implemented in both systems. Specifically, the corresponding
artificial neural network consists of 4 layers, two of which are
the hidden ones, with 28, 15, 15 and 2 neurons respectively.
We used the GD and SGD optimizers in the training, since they
are widely used and supported by both systems. However, for
perceptron, only GD is used, since SGD is not supported by
MLlib for this algorithm.

Methodology. Our experimental evaluation consists of two
parts. First, we generate synthetic data and perform a series
of experiments in a 141-node cluster in order to examine
how both systems operate at large scale. Since evaluating
convergence on top of synthetic data is not recommended,
we fix the number of minibatches that the algorithms process
before terminating. We further conduct experiments using real
datasets in a 5-node cluster in order to study convergence.
Note that a small cluster is used, since real datasets are not
large enough to fully utilize a larger one. For TensorFlow, we
examine both the synchronous and the asynchronous training
mode in each of our experimental sections.

Datasets. For the experiments with real data, we use

TABLE I: Real datasets
Dataset #Examples #Features Size
HIGGS 10,500,000 28 2.7 GB
Year Prediction MSD 470,000 90 0.391 GB

TABLE II: Synthetic datasets
ML Model #Examples #Features Size
Logistic Regression 980,000,000 28 252 GB
Linear Regression 280,000,000 90 238 GB
Perceptron 441,000,000 28 110 GB

319



980 9.8K 98K 980K 9.8M 980M
Minibatch Size

0

1.5K

3K

4.5K

6K

7.5K

9K

C
o
m

p
u
ta

ti
o
n
 T

im
e/

M
in

ib
at

ch
 (

in
 m

se
cs

) 

MLlib Sync. Tensorflow Async. Tensorflow

(a) Logistic Regression

980 9.8K 98K 980K 9.8M 280M
Minibatch Size

0

1.5K

3K

4.5K

6K

7.5K

9K

C
o
m

p
u
ta

ti
o
n
 T

im
e/

M
in

ib
at

ch
 (

in
 m

se
cs

) 

MLlib Sync. Tensorflow Async. Tensorflow

(b) Linear Regression

Fig. 3: Computation time per minibatch in MLlib and Tensor-
Flow (synchronous and asynchronous) on a 141-node cluster.
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Fig. 4: Cluster CPU usage for Logistic Regression
(minibatch=980K) and Perceptron

datasets from the UCI Machine Learning Repository [25]
stored as comma separated text files. More specifically, we
use the HIGGS [26] dataset for the logistic regression and
perceptron models and the Year_Prediction_MSD [27]
dataset for the linear regression model, which were the largest
real ones without missing values in the repository. Table I
presents the characteristics of these datasets.

To generate the synthetic data, we replicated each real
dataset multiple times so that the resulting dataset barely fits
in the memory of the cluster (see Table II). This is because,
for the GD algorithm, TensorFlow requires the whole dataset
to fit in the aggregate memory of the cluster in contrast with
Spark.

The datasets are stored in HDFS when MLlib is used and
are split into equal parts that are uniformly distributed across
all the cluster nodes when TensorFlow is used.

2) Experiments with Synthetic Data: In this section, we
present experiments on the 141 node cluster using synthetic
data, as presented in Table II, to identify the performance
bottlenecks of each system by carefully profiling them on a
large-scale. As described in Section II-C1, we terminate the
training process after the algorithms process a fixed number
of minibatches, which are set to 100 for the logistic and linear
regression models and to 20 for the perceptron model.

Figures 3 and 5 show the average time spent by each
system in performing gradient computations and reading data
(fetch, deserialize and decode raw bytes) when processing
a minibatch using logistic and linear regression. For the
computation time, three bars are presented for each minibatch
size, referring to Spark MLlib, synchronous and asynchronous
Tensorflow. Reading time is presented for MLlib and Ten-
sorFlow irrespective of its training modes, since it does not
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Fig. 5: Reading time per minibatch in MLlib and TensorFlow
on a 141-node cluster
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Fig. 6: Times per minibatch spent for Perceptron in MLlib and
TensorFlow on a 141-node cluster

depend on them.
As shown in Figure 3, TensorFlow spends always less time

for computing gradients regardless of the training mode. As
minibatch size decreases, TensorFlow is more computationally
efficient than Spark MLlib. Moreover, when decreasing the
minibatch size, TensorFlow achieves up to 14X speedup,
whereas Spark becomes faster up to 1.36X . Compared to
TensorFlow’s long-running processes, Spark launches a new
Spark job every time a new minibatch is processed. This intro-
duces task scheduling and initialization overheads (especially
when the minibatch decreases and map tasks become much
shorter (≈100msecs)), and low CPU utilization, as confirmed
in Figure 4a. The same figure suggests that synchronous
TensorFlow also suffers from some overheads but these are
mostly synchronization overheads. Despite these overheads, it
still has better CPU utilization than Spark.

Regarding the average reading time per minibatch, as we
see in Figure 5, Spark MLlib spends the same amount of time
reading data irrespective of the minibatch size, as it reads the
whole RDD partition in all cases. TensorFlow on the other
hand, fetches only the data needed for the current gradient
computation. As a result, in TensorFlow the average reading
time drops when the minibatch sizes decreases. However, in
the linear regression case, Tensorflow spends almost the same
time reading each minibatch for both GD and SGD (minibatch
size 9.8M) as shown in Figure 5b. Since each algorithm runs
until the system processes 100 minibatches, the full dataset is
read by both algorithms (see dataset size in Table II). In SGD,
each row is cached after it has been decoded and before it is
used for minibatch creation. On the contrary, we found that in
the case of GD, it is optimal to cache the whole minibatch
instead of a row-at-a-time, resulting in 1.62X speedup in
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Fig. 7: Performance of Spark MLlib, synchronous (Sync TF) and asynchronous TensorFlow (Async TF) on a 5-node cluster

TABLE III: Read Throughput of Spark MLlib and TensorFlow

Read Throughput
ML Model (#training examples/sec)

Spark MLlib TensorFlow
Logistic Regression 6,533,333 785,323
Linear Regression 2,000,000 456,774

Perceptron 1,986,486 788,048

reading time and achieving a similar performance as SGD.
Figure 6 presents the computation and reading time spent

per minibatch for perceptron. Since the full dataset is used as
a minibatch (GD), TensorFlow spends more time reading data
than Spark. As shown in Figure 4b, TensorFlow, especially
in synchronous mode, suffers from reading the whole dataset
before the first gradient computation: unlike asynchronous
mode, the system is blocked until all their workers finish
reading their local data depicted by the CPU usage drop
between 500 and 700 sec.

To better understand the reading performance, we computed
the read throughput of each system and present it in Table III.
As shown in the table, the throughput varies across different
algorithms depending on the number of features and the
transformations required for each dataset. However, Spark
always reads data faster and has up to 8X better reading
throughput than TensorFlow.

3) Experiments with Real Data: In this section, we present
experiments using the real datasets presented in Table I on a
5-node cluster. As noted before, we could not run experiments
on a larger cluser as the real datasets are generally small. All
the algorithms are executed until they have converged.

Linear and Logistic Regression. Figures 7a and 7b present
the total execution time of TensorFlow and Spark MLlib
for the logistic regression and linear regression algorithms
respectively, including the portion of the time spent in reading
data and performing computations in each system. The various
minibatch sizes are selected to be realistic [16].

As shown in the figures, TensorFlow is faster than Spark
MLlib by up to 16X when the SGD algorithm is used (Figure
7a, minibatch size 500). This behaviour is mainly attributed to
architectural differences of the two systems, as we explained
in Section II-C2. Regardless of the training mode, TensorFlow
presents at worst the same performance as MLlib, with the
asynchronous mode being faster.

Table IV shows the number of minibatches that each system

TABLE IV: Number of minibatches processed per system

Minibatch #Minibatches processed
ML Model Size MLlib Sync TF Async TF
Logistic 10,500,000 317 317 137
Regression 2000 774 737 1006

500 1375 1644 2449
Linear 470,000 3104 3104 1328
Regression 2000 2678 2773 1042

500 2438 2540 1121
Perceptron 10,500,000 72 72 118

processes before the algorithm converges. While the number
of minibatches is the same between synchronous TensorFlow
and MLlib in the case of GD as expected, a small devitation
is observed in the SGD case. This is due to the fact that
each system performs batch selection differently as explained
in Section II-B, resulting to dissimilar data per minibatch.
Another interesting observation is that the number of mini-
batches processed by GD and SGD is different for the same
machine learning model, as SGD might need to process more
minibatches until convergence [16] (see logistic regression).

As we explained in section II-C2, TensorFlow has different
behaviour in the two training modes when the minibatch size
decreases. For instance, as shown in Figure 7a in the context
of logistic regression, asynchronous training is 1.72X faster
when reducing the minibatch size from 2000 to 500, since the
system processes 1.65X fewer rows in total. On the contrary,
synchronous training needs almost the same time to converge
with the two batch sizes. Similar trends are noticed in the case
of Spark MLlib. For example, in the case of linear regression,
Spark needs almost the same time to process 4.02X more
rows until convergence, when increasing the minibatch size
from 500 to 2000. This behavior is attributed to reading the
whole dataset at every gradient computation irrespective of the
minibatch size and to various other computational overheads
as discussed in Section II-C2. However, Figures 7a and 7b
show that SGD with a minibatch size of 2000 is 1.29X and
2.43X faster than when GD is used. Thus, Spark meets its best
performance when the batch size is such that the overheads
mentioned above do not dominate the execution time.

In the context of linear regression, as we observe in
Figure 7b, TensorFlow’s reading time is approximately 50 sec
irrespective of the batch size and the training mode. A closer
look in Table IV, indicates that TensorFlow processes at least
1000 minibatches of 500, 2K and 470K rows respectively. In
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all cases, more rows are processed in total than the dataset
size (Table I). Since the full dataset is loaded in memory,
TensorFlow’s caching minimizes the data reading overheads
(see Section II-C2).

Perceptron. Figure 7c presents the total execution time of
the systems on the perceptron classifier. Note that only the GD
optimization algorithm is used as discussed in Section II-C1.
As we can see in the Figure, Spark MLlib is 1.2X faster
than asynchronous TensorFlow for this algorithm. However,
as shown in Table IV, TensorFlow processed almost twice
the number of minibatches that Spark MLlib processed before
converging. This can be attributed to workers overwritting each
others’ work introducing more computational steps before
converging. In synchronous mode, TensorFlow needed 1.2X
less time to converge with the same number of minibatches
with MLlib, while its reading phase is 7.2X slower, which
confirms its computational efficiency.

III. RELATIONAL QUERY PROCESSING

In this section, we present a detailed experimental analysis
of Apache Hive [2], Presto [4] and Spark SQL [10] using
the TPC-H [15] workload. Our analysis shows that Hive and
Spark SQL have similar performance, and they both outper-
form Presto, although the latter employs a MPP architecture.
The overall measured performance is mainly affected by the
efficiency of the plans produced by the query optimizers of
the systems and by their internal memory management.

A. Systems Architecture

In this section, we provide an overview of Apache Hive,
Presto, and Spark SQL and discuss their basic features.

1) Apache Hive: Apache Hive [2] is a popular SQL-on-
Hadoop engine which provides a SQL-like query language
called HiveQL.

Execution Model. The HiveQL statements submitted to
Hive are parsed, compiled and optimized to produce a query
execution plan. The plan is represented as a Directed Acyclic
Graph (DAG) consisting of map and reduce stages which are
executed through an underlying data processing framework
such as MapReduce, Spark or Tez [28]. Although Spark is a
general purpose processing engine, Tez is a YARN-based [29]
framework which is developed specifically for purpose-built
tools such as Hive. Also, as shown in previous work [30], Hive
on Tez is more efficient than Hive on MapReduce as it avoids
the scheduling, initialization and materialization overheads of
MapReduce. It also offers dynamic run-time task scheduling
and plan reconfiguration. For these reasons, in this work we
perform all our experiments on top of the Tez framework.

Query Optimization. Hive employs cost-based optimiza-
tion through the Apache Calcite query optimizer [31]. Calcite
supports filter push down, column pruning, partition pruning,
physical operator selection (e.g., join implementation) and join
reordering. Calcite relies on the available statistics to cost the
query plans. These statistics along with other table metadata
(e.g, schema) are accessed through the Hive Metastore.

2) Spark SQL: Spark SQL [10] is a module in Apache
Spark [9] that supports relational processing on top of struc-
tured data.

Execution Model. Spark SQL operates on top of
DataFrames. A DataFrame is an internal data structure that
is conceptually equivalent to a table in a relational database.
DataFrames can be constructed from various sources such as
HDFS or Spark’s RDDs and are serialized in off-heap storage
in binary format. Spark SQL users can submit their queries on
top of DataFrames using SQL or the DataFrame API. These
queries are parsed, optimized and the resulting physical plan
is executed through the Spark data processing framework. The
plan is represented as a DAG which consists of multiple stages
and stages are separated by shuffle operations, meaning that
consecutive map tasks can be pipelined within a single stage.
Each stage’s tasks are scheduled before it is launched.

Query Optimization. Spark SQL optimizes incoming
queries using the Catalyst query optimizer. Catalyst uses the
statistics of the Hive Metastore too and employs cost-based
optimization techniques such as predicate pushdown, join
reordering, and star schema detection, among others.

3) Presto: Presto [4] is an open-source distributed query
engine for interactive analytics, originally developped at Face-
book.

Execution Model. Unlike Hive and Spark SQL that use
an underlying data processing framework to process queries,
Presto follows a Massively Parallel Processing (MPP) archi-
tecture that consists of a coordinator and multiple long-running
worker processes. When a SQL query is received by the
coordinator, it is translated into a DAG of stages. A series of
stages is translated into inter-connected tasks which are then
scheduled and executed by the workers using multiple threads
in a fully pipelined way.

Query Optimization. Presto employs a cost-based opti-
mizer that supports predicate pushdown and automatic selec-
tion of the build and probe tables when executing shuffle joins.
Recently, cost-based join reordering and cost-based selection
of the join implementation have been introduced, based on the
Hive Metastore statistics too.

B. Experimental Evaluation

We now present a detailed experimental comparison of
Apache Hive, Spark SQL and Presto utilizing the widely used
TPC-H [15] benchmark. Our key results are shown in Table V
and below:
1) Spark SQL has similar performance with Hive over the

entire workload (see Figure 8). Hive is faster than Spark
SQL in six queries and has comparable performance with
Spark SQL in six others. However, both Presto and Spark
SQL are able to execute a query that fails in Hive.

2) Hive and Spark SQL are on average 1.2X faster than Presto
over the entire TPC-H workload (see Figure 8) although
Presto employs a MPP architecture. Presto is, however,
similar or faster than Spark SQL and Hive in eight and
ten queries respectively.
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TABLE V: Summary of results

Hive Spark SQL Presto
Query Join ordering V.Good Good Good
Optimization Join selection V.Good Good Poor

Projection V.Good V.Good V.Good
Predicate V.Good V.Good V.Goodpushdown

Operator Scan imple- Good V.Good V.GoodOptimization mentation
Join imple- Good V.Good V.Goodmentation

3) Spark SQL benefits from Spark’s non-SQL-specific op-
timizations such as efficient internal data representation
mechanisms that reduce the memory footprint and SQL-
specific optimizations such as efficient implementations for
certain join operators that provide high performance.

4) Although the Catalyst optimizer in Spark SQL occasion-
ally produces better plans than Hive’s Calcite, it presents
suboptimal behavior with some complex queries as it lacks
some optimizations that Hive supports. Presto’s optimizer
produces suboptimal plans in multiple queries.

5) Presto introduces performance overheads in large queries
mostly due to suboptimal memory management.

In the following sections, we present in more detail our
experiments and corresponding analysis.

1) Experimental Setup: Hardware and Software Config-
uration. For our experiments, we use the 141 node cluster
described in Section II-C1. We deploy Hive version 2.3.2 on
top of Tez 0.9.0, Spark version 2.4.0 and Presto version 0.216.
The systems are deployed on top of Hadoop version 2.7.3. In
the case of Spark SQL, we deploy one Spark executor on
each of the 140 worker nodes and the Spark driver on the
master node. Hive is deployed on top of the YARN resource
manager [29], allowing two YARN containers on each worker
node. In the case of Presto, we deploy one Presto worker
on each of the 140 worker nodes and the coordinator on the
master node.

TPC-H like Workload. For our experimental evaluation,
we use a TPC-H database with a scale factor of 1000 GB.
We use the 22 read-only queries of the TPC-H benchmark,
but not the refresh streams. Some of the SQL constructs in
the TPC-H queries are not supported directly in Hive. For
this reason, we rewrote seven queries (Q2, Q11, Q15, Q17,
Q20, Q21 and Q22) to use common table expressions (CTEs)
instead of nested sub-queries in Hive. In Spark SQL, we also
rewrote the CTE of Query 15 to a table for the query to work.

System Configuration. In Hive, we enabled cost-based
optimization, optimization of correlated queries, predicate
push-down and index filtering, map-side join and aggregation,
and the vectorized execution engine, among others. We also
configured the number of reduce tasks appropriately so that the
cluster is fully utilized. In Tez, we enabled the compression of
intermediate results with the LZ4 compression codec. In Spark
SQL, we enabled cost-based optimization and appropriately
tuned the number of reduce tasks. In Presto, we enabled
cost-based optimization, phased execution, spilling to disk,
intermediate aggregations and compression of intermediate

results with the default LZ4 codec. We also increased the
buffer size for intermediate data that will be pulled by workers
and set the number of hash partitions equal to the number of
workers. Finally, we carefully tuned the maximum number of
running threads per worker so that the optimal performance is
observed on our setup. We use the G1 garbage collector and
carefully tuned the JVM settings until all the queries run suc-
cessfully. Finally, we tuned the broadcast join configurations
and collected table and column statistics in all the systems.

We used columnar file formats as they are more suitable for
data warehousing queries that typically access a small number
of columns. Following prior work [30] and recommendations
from system developers [32], we use the ORC file format in
Hive and Presto and the Parquet file format in Spark SQL.
After experimenting with various compression codecs, we
selected the ZLIB and Snappy codecs in ORC and Parquet
respectively as they provide the best performance on our setup.

2) Overall Performance: We run the 22 TPC-H queries,
one after the other and measure the execution time for each
query. We do not consider JVM initialization overheads in our
evaluation. Before running each query, we flush the file cache
at all the compute nodes. We performed three full runs and
report the average execution time across the three runs.

Our results are shown in Figure 8. Note that Query 9 failed
in Hive because of out of disk space errors, but the remaining
queries were completed in all systems. Thus, to evaluate the
overall performance of each system, we use the arithmetic
and geometric mean of the execution times of all the queries
but Query 9. Our results show that Hive has similar overall
performance with Spark SQL. We also find that Spark SQL
and Hive are on average 18% faster than Presto over the
entire workload when the arithmetic mean is the metric used
to compare the systems. They are however 26% faster than
Presto when the geometric mean is used. It is worth noting,
that if we do not include Query 16 in our metrics (as it is
significantly slower in Spark SQL than the remaining queries),
Spark SQL is on average 27% faster than the other systems
using a geometric mean.

Our analysis shows that the observed performance differ-
ences are due to the following reasons:

Impact of the Query Optimizer. As shown in Table V,
Hive generally has a more sophisticated optimizer than Spark
SQL and Presto. Although the Catalyst optimizer in Spark
SQL occasionally produces better plans than Hive’s Calcite, it
is inefficient in certain complex queries and does not employ
some optimizations that Hive supports. Presto’s optimizer, on
the other hand, often produces suboptimal plans and requires
many improvements in its cost estimator [33].

In particular, Presto’s optimizer often produces sub-optimal
plans when combining features such as cost-based join re-
ordering and cost-based join selection (Table V). In some
cases, such as Queries 8, 11 and 20, we disabled the cost-
based join reordering as it led to a much worse performance.
For example, in Query 11, although Presto and Hive picked
the same join order, Presto executed two shuffle joins when
using cost-based optimization whereas Hive executed only
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Fig. 8: TPC-H performance of Hive, Spark SQL and Presto

broadcast joins. By disabling the cost-based join reordering
Presto selected a broadcast join and was able to run this query
50% faster than before. In multiple other queries (e.g. Q2,
Q7, Q8, Q9, Q18, Q20, etc.) Presto picks a plan with either a
suboptimal join type or a suboptimal join order irrespective of
whether the cost-based join reordering is used. To quantify the
impact of Presto’s optimizer, we manually split certain Presto
queries with suboptimal plans (the 6 aforementioned queries)
into multiple sub-queries so that the resulting plans are similar
to the optimal ones generated by either Spark SQL or Hive. We
observed that Presto’s performance in these queries improved
by 50%.

As previously noted, Spark SQL occassionally produces
better plans than Hive (e.g., Query 8) but in general lacks some
features of Hive’s optimizer. As a result, Hive is much faster
than Spark SQL in five queries (Q6, Q7, Q16, Q17, Q22).
We now analyze some of these queries focusing on the join
selection and join re-ordering capabilities of the optimizers.

Spark SQL is 2.5X faster than Hive when executing Query
8. This query joins the Lineitem table with the Part table.
We observed that Hive is 5X slower than Spark SQL when
executing this join operation. Hive’s optimizer picks a sort-
merge join implementation to execute this join which requires
a data shuffle of the large Lineitem table. Spark SQL, on
the other hand, avoids data shuffling by performing a broadcast
hash join implementation. Thus, in this case Spark’s Catalyst
optimizer is able to generate a much more efficient query plan
than the Calcite optimizer.

Spark SQL is approximately 12X slower than Hive when
executing Query 16. This query contains a nested sub-query
in a NOT IN clause which returns the keys of the Partsupp
table that do not match with a specific set of keys in the
Supplier table. Spark SQL executes a left anti join for
this operation and uses a broadcast nested loop join imple-
mentation. We noticed that this operation takes 1508 secs to
complete which constitutes 91% of the total query time in
Spark SQL. Hive, on the other hand, selects a different logical
plan and uses a broadcast hash join implementation which
completes in about 60 secs.

The TPC-H Query 7 is about 1.6X faster in Hive than
Spark SQL due to Hive’s better join reordering mechanisms.
This query contains multiple join operations across six tables,
including the Lineitem and Orders tables which are the
largest tables of the TPC-H benchmark. Figure 9 shows the
query plans produced by Hive and Spark for this query. As
shown in the figure, Hive first performs joins with the two
small Nation tables, which produce relatively small outputs
and thus prune a large amount of data. Spark SQL on the other
hand, first performs a join between the large Lineitem and
Orders (Inner Join 1) tables, which requires a shuffle of
two large tables and produces a large number of intermediate
results that are given as input to the subsequent join operators
in the query plan. On the other hand, Hive’s join reordering
strategy is more effective and thus, it ends up using more
map-side joins (e.g. Inner Join 3, Inner Join 4).

Finally, TPC-H Query 17 is another interesting query, where
Spark SQL is about 2.2X slower than Hive. In this query Hive
generates a plan that applies dynamic min-max filtering on the
l partkey column of the Lineitem table before performing
an aggregation on it, allowing it to skip entire stripes/rows
using the ORC file indices. We omit a more thorough analysis
in the interest of space.

Impact of Memory Management. A major advantage of
Spark SQL over Hive and Presto is its efficient implementation
that avoids object creations. Spark SQL exploits its serializa-
tion mechanisms and serializes the data into off-heap storage
in binary format. It then performs transformations directly on
this format. Thus, it avoids object creation overheads while
reducing the memory footprint. This results in better join and
scan performance in some queries (see Table V). Hive, on the
other hand, performs extensive object creation which affects
performance and increases the amount of memory used during
scans and join operations. As a result, Hive is approximately
75% slower than Spark SQL in four TPC-H queries (Q3, Q4,
Q12, and Q19) although both systems produce similar query
plans. Queries 8, 10, 18, and 21 are also affected, irrespective
of the fact that Hive has better join ordering in the produced
plans due to the large amount of data that is processed.
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Fig. 9: Hive (left) and Spark SQL (right) query plan for Q7

The impact of such optimizations in Hive can be seen in
Query 9. This query performs multiple join operations that
generate a large number of intermediate results. During query
execution, Hive quickly runs out of memory and starts spilling
data to disk. Hive eventually fails because of out of disk space
errors, whereas Spark SQL and Presto succesfully complete
the query with less data spilling.

To better understand the effect of object creation in Hive we
also analyze Query 3, where all of the systems produced the
same plan (Queries 4, 12, and 19 have similar behavior). Query
3 joins the Lineitem table with an intermediate table that
is produced by joining the Orders and Customer tables.
All the systems use a sort-merge join. We observe that Hive
is 2X slower than Spark SQL during the join operation. Our
analysis shows that the performance of the sort operator at
the map-side is similar in both systems. However, Hive spends
significantly more time processing the sorted data that received
over the network and feeding them into the merge operator at
the reduce phase. In particular, approximately 90% of the the
reducer’s time is spent creating new objects that are fed into
the merge operator. Spark SQL on the other hand, does not
have such overheads. Another insteresting observation from
Query 3 is that Spark SQL is 2X faster when scanning the
large Lineitem and Orders tables. By profiling the query,
we observe that Hive has deserialization overheads due to
object creations that Spark SQL avoids.

Finally, Presto uses efficient flat in-memory representations
of columns and processes data by generating unrolled loops
over columns. Although we would expect it to be as efficient as
Spark SQL in memory management, we instead experienced
low memory usage and increased execution time in queries
that read and process a large amount of data. Many queries
are affected, including Q4, Q8, Q9, Q10, Q12, Q18 and
Q21 irrespective of the plan used. The reason behind this
suboptimal performance is that Presto has a reserved memory
pool which is useful when handling concurrent workloads but
leads to unnecessary memory limitations for sequential work-
loads [34]. Unfortunately, we could not disable the reserved
pool and we were also unable to configure it appropriately with
the available memory configurations. Nevertheless, in other
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Fig. 10: Cluster CPU usage for TPC-H Queries 19 and 7

smaller queries, Presto was similar of better than Spark SQL
and Hive in eight and ten queries respectively.

Impact of the Execution Model. As mentioned in Section
III-A, Presto follows a generic MPP architecture where all
tasks are fully pipelined in contrast with Spark and Hive
which use a MR-based execution model and consecutive stages
must be scheduled and launched one after the other. The
impact can be seen in Figure 10 where the cluster CPU
utilization is presented for two different queries i.e. Q19 and
Q7. In both queries, Hive and Spark present some CPU under-
utilization between consecutive stages while Presto appears to
be fully utilizing the cluster’s CPU during query execution.
In particular, in Query 19 all the systems produce the same
query plan and Presto is faster than both Hive and Spark as we
can see in Figure 10a. However, in Query 7 all systems have
different plans (as we previously analyzed), with Hive’s being
the better one and Presto’s the worst which is also depicted
in the execution time in Fig. 10b. In general, the benefits
of Presto’s MPP architecture with respect to CPU utilization,
cannot yet be fully quantified as there still exist other factors
that affect its overall performance such as the query plans and
the memory limitations.

Moreover, our analysis shows that Presto can often intro-
duce performance overheads if the number of threads as-
signed to the operators is not configured appropriately. For
our experiments, we configured several parameters so that
the number of threads used by each worker is small given
that our worker nodes have two physical cores. With the
default configuration, Presto generated a very large number
of threads which introduced context switching overheads that
negatively impacted performance. In particular, when using
the default parameters Presto becomes 2X slower across the
entire workload. We believe that automatically determining the
number of threads based on the available hardware and data
size will not only improve performance but will lead to better
user experience as well.

IV. RELATED WORK

Over the last decade, numerous studies have evaluated the
performance of data management systems. The work in [35]
compares the MapReduce system with traditional relational
database systems (RDBMSs). Follow-up work [36] shows that
with appropriate configuration, the performance of MapRe-
duce can reach that of parallel RDBMSs on certain workloads.

The work in [30] experimentally compares the shared-
nothing database architecture adopted by systems like Im-
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pala [3] with Hive’s MapReduce-based architecture. The work
in [37] compares the performance and scalability of SQL-
on-Hadoop engines with that of parallel RDBMSs. The work
in [38] shows that it is possible to design a highly-efficient
SQL-on-Hadoop engine by building upon a mature RDBMs.

Driven by the increased popularity of the Spark framework,
the authors of [39] present an experimental evaluation of Spark
and MapReduce focusing on their shuffling and caching mech-
anisms as well as their data pipelining capabilities. The work
in [40] offers a more limited analysis on a smaller scale of
Hive, Spark SQL and AsterixDB under the TPC-H workload.
Finally, the work in [41] presents a detailed experimental
evaluation of various Big Data Systems (including Spark and
TensorFlow) focusing on image analytics workloads.

V. CONCLUSIONS
In this work, we present a thorough performance study

of general-purpose and specialized data analytics systems. In
particular, we select representative systems from each class,
namely Spark, TensorFlow, Presto, and Hive and present a
detailed overview of their architecture and functionality. We
then benchmark them on workloads from the machine learning
and SQL domains in a large-scale cloud setting and highlight
the strengths and limitations of each system.

Overall, the general-purpose engine (Spark) is superior
during data reading (loading raw bytes, decoding and dese-
rializing). In the ML domain, the specialized engine (Tensor-
Flow) outperforms Spark’s MLlib during gradient computa-
tion, mainly due to the fundamental architectural differences
of the two systems. However, in the SQL domain it is not
straightforward to announce a clear winner, as Hive has the
best query optimizer and Spark the best memory management.

As part of future work, we would like to extend this com-
parison to include other aspects of the systems and different
analysis domains such as graph and streaming analytics.
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