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This paper addresses the fundamental question of how modern 
Big Data frameworks can dynamically and transparently exploit 
heterogeneous hardware accelerators. After presenting the major 
challenges that have to be addressed towards this goal, we describe 
our proposed architecture for automatic and transparent 
hardware acceleration of Big Data frameworks and applications. 
Our vision is to retain the uniform programming model of Big 
Data frameworks and enable automatic, dynamic Just-In-Time 
compilation of the candidate code segments that benefit from 
hardware acceleration to the corresponding format. In 
conjunction with machine learning-based device selection, that 
respect user-defined constraints (e.g., cost, time, etc.), we enable 
dynamic code execution on GPUs and FPGAs transparently to the 
user. In addition, we dynamically re-steer execution at runtime 
based on the availability of resources. Our preliminary results 
demonstrate that our approach can accelerate an existing Apache 
Flink application by up to 16.5x.  

I. INTRODUCTION 

Several Big Data frameworks have emerged to address the 
ever increasing data generation and satisfy the processing needs. 
Regardless of the programming model or features that each 
framework offers, their scalability is mainly achieved through 
the following techniques: (1) scale-up by increasing the 
resources of a single node (e.g., Saber [24], Streambox [29]), (2) 
scale-out by increasing the number of nodes (e.g., Apache Spark 
[34], Apache Flink [14], Storm [6]), or (3) manual 
implementation of code optimizations specific to the underlying 
hardware, such as GPU offloading [22], [31]. 

Typically, the scale-up and scale-out approaches concern 
CPU-only deployments, while manual scalability in the form of 
ad-hoc optimizations and hardware acceleration targets the 
emerging heterogeneous data centres infrastructures. Hardware 
accelerators are constantly gaining popularity for Machine 
Learning and Big Data Analytics workloads, since they often 
outperform general purpose CPU-based implementations, due to 
their massive capabilities for parallel execution [26] and energy 
efficiency. As a result, cloud vendors have been motivated to 
include specialized hardware accelerators in their offerings, 
along with general purpose resources (e.g., Amazon’s EC2 
Elastic GPUs [3] or FPGA instances [4], Google’s TPU [7]). 
Recently, cloud/cluster management software systems such as 
Apache Yarn [32] and Mesos [5] have provided support for 

heterogeneous hardware through their API over bare metal, 
Virtual Machines or even Docker containers [8]. The 
exploitation of heterogeneous hardware accelerators by Big 
Data applications is a challenging task. This is, mainly, 
attributed to: (1) the CPU-only homogeneous design 
assumptions of Big Data frameworks; (2) the fragmentation of 
programming models across different devices; and (3) the lack 
of compiler and runtime support for heterogeneous hardware, by 
the underlying execution engines of the Big Data frameworks - 
mainly Java Virtual Machines (JVMs). 

To enable the exploitation of heterogeneous hardware 
accelerators by Big Data applications, we propose novel 
pluggable extensions to the existing software components of a 
Big Data stack. The proposed stack is capable of adapting itself 
to the underlying heterogeneous hardware resources, while 
retaining a unified, high-level programming model. Finally, the 
proposed extensions are technology-independent and can be 
adopted by any technology vendor. 

II. CHALLENGES 

This section presents, in detail, the challenges in exploiting 
heterogeneous hardware accelerators by Big Data frameworks. 

A. Programmability 

Contemporary Big Data frameworks such as Apache Spark 
[34], Apache Flink [14], and Storm [6] are implemented on top 
of the Java Virtual Machine (JVM) due to their portability across 
different platforms and operating systems, and interoperability 
with high-level programming languages like Java and Scala. 
However, the majority of production JVMs generate code only 
for CPUs. Consequently, software developers have to generate, 
ad-hoc, code suitable for execution on a heterogeneous device 
(e.g., a GPU or an FPGA). Although this approach is commonly 
found in the literature (e.g., HadoopCL [22], HeteroDoop [31], 
Glasswing [19], and HeteroSpark [27]), it has a number of 
disadvantages that limit its general applicability. 

Code fragmentation: Developers must integrate different 
programming models and languages in their code bases [22], 
[19], [27]. For example, developers have to mix Java and Scala 
code with low-level CUDA, OpenCL, or similar APIs [2] for 
GPU acceleration. This creates not only programmability 
challenges, since programmers with high expertise are required, 



but also negatively impacts code maintainability by requiring 
familiarization with different concepts, APIs, and toolchains. 

Lack of code portability: The accelerated code segments 
are developed for a particular device or family of devices [31]. 
Migrating to a different cloud provider, hardware vendor or even 
between devices of the same type and vendor [12], [30] requires 
porting of the corresponding code segments to new devices. This 
is attributed to the fact that the low-level programming models 
used for programming heterogeneous accelerators do not adhere 
to the “write-once-run-anywhere” paradigm of Java.  

Lack of dynamism: The underlying JVM cannot 
reconfigure, at runtime, the accelerated code segments [31], 
[19], [27]. The lack of dynamism impacts both the performance 
of the application as well as the potential cost of deployment. 
Applications are essentially limited to use only the resources 
they have been programmed for, as they are incapable of 
dynamically reconfiguring the accelerated code segments. 

Ideally, Big Data frameworks should support runtime 
systems capable of arbitrarily compiling any code segment to 
any hardware device transparently to the user. Unfortunately, 
though, adding heterogeneous support on JVMs is a complicated 
task as several language features (e.g., dynamic code dispatch, 
automatic memory management, de-optimization) must be 
properly handled in order not to violate the semantics of the 
JVM. As a result, with the exception of IBM’s J9 GPU support 
[23], [9], the majority of JVM-based solutions for heterogeneous 
execution are research prototypes. IBM J9 essentially translates 
Java 8 parallel streams to GPU code [23], thus limiting the code 
that can be accelerated to a strict subset of Java. To increase the 
range of applications that can be transparently accelerated, IBM 
J9 recently started accelerating Spark workloads on GPUs [9]. 
Future heterogeneous JVMs for Big Data frameworks should 
support not only GPUs but also application-specific accelerators 
(e.g. FPGAs), while allowing the dynamic migration of different 
parts of the running applications across these devices without 
restarting them. 

B. Task Composition and Scheduling 

On homogeneous systems, simple heuristics, such as one 
worker per core, or other best practices1 are used to schedule 
worker threads onto the available physical nodes. Therefore, 
task composition and scheduling are related to monitoring the 
task queues of the available workers and selecting those with the 
lighter load. However, on heterogeneous systems, such 
scheduling techniques are not applicable, since the 
computational capacity of the available devices might differ by 
up to three orders of magnitude [21]. In addition, apart from 
some cases [10], most of the hardware accelerators can only be 
managed by a single worker, since they do not allow application 
virtualization like CPUs do. 

To fully utilize heterogeneous hardware, Big Data 
frameworks will have to non-uniformly distribute the 
computation of their applications across the heterogeneous 
resources that exhibit different computational characteristics. 
For instance, CPUs and GPU accelerators have disjoint memory 
spaces. As a result, the data must be explicitly allocated and 
transferred from a CPU to the targeted GPU in order to be 
accessible by the latter. Additionally, the decision to exploit 
GPU acceleration is made during scheduling; therefore, the 

                                                           
1 https://tinyurl.com/ul83glj 

device availability must have been guaranteed till the moment at 
which execution is actually performed. Otherwise, 
unpredictable performance behaviours will arise, since the task 
has to be rescheduled on another GPU (if available) or re-
composed for CPU execution. Thus, future Big Data 
frameworks should factor in the time required to perform bulk 
copies of data across the heterogeneous hardware resources, as 
well as being able to dynamically react to load imbalances. 

C. Data Processing Granularity 

Apart from task composition and scheduling across the 
whole cluster or the cloud deployment, a heterogeneous Big 
Data framework should also account for the data partitioning 
within a node. Different hardware accelerators not only feature 
different processing capabilities, but may also perform 
differently under different workloads [15], [16], [20]. 
Consequently, heterogeneous Big Data systems need to 
dynamically choose the best data partitioning scheme for each 
task on a per device basis. 

Processing Timeliness: Most hardware accelerators require 
data to be transferred from the host memory space to their 
memory space in order to get processed. However, this data 
transfer incurs a significant performance overhead. To 
circumvent this inefficiency, software engineers prefer to 
transfer sufficient amounts of data in advance, to offset this 
overhead from execution time. 

Although this execution characteristic can be seamlessly 
applied to batch execution models, the same does not hold for 
stream analytics. In particular, delaying data processing in order 
to gather enough data to get the best performance out of a 
hardware accelerator comes at the cost of increased latency. In 
turn, the increased latency can reduce the validity or value of the 
returned results, when processing time-critical data that their 
value is highly dependent on their lifespan. Therefore, 
heterogeneous Big Data frameworks should consider such trade-
offs and adapt themselves to the best combination in order to 
satisfy the applications’ requirements. Choosing enough data to 
benefit from acceleration while maintaining the latency 
requirements of applications is a significant challenge. 

Fault Tolerant Operation: Guaranteeing the fault tolerance 
in large-scale clusters or in cloud deployments is of paramount 
importance. As a result, modern Big Data frameworks exploit 
checkpointing mechanisms to tolerate nodes’ failures [13]. On 
homogeneous systems, checkpointing is achieved with minimal 
overhead since the data to be checkpointed is already in the 
host’s memory. On the contrary, on heterogeneous deployments 
the checkpointing process triggers a data transfer from the 
accelerator’s memory to the host’s memory, before the 
application’s state is stored. This operation is quite discouraged 
in hardware acceleration, since it negatively impacts 
performance. Thus, identifying the optimal checkpointing 
granularity in heterogeneous deployments is a first-order 
challenge. 

III. THE PROPOSED ARCHITECTURE 

To address the aforementioned challenges, we are 
developing a novel Big Data execution framework capable of 
exploiting heterogeneous resources, dynamically and 



transparently to the user. Figure 1 illustrates the workflow of the 
proposed framework. As shown, the Big Data Framework 

receives the user applications and constructs a Job Graph. Next, 
it identifies on which device these tasks should execute.   

 
Figure 1: The workflow of the proposed framework. 

To do so, it employs the front-end compiler of the Execution 
Engine to perform a mock partial compilation of each task in 
order to extract code features (branches, loops, floating point 
operations, etc.). Then, the Scheduler feeds this information to 
its Execution Model to predict the hardware device on which 
tasks should execute to meet the users’ requirements. Finally, 
the Job Manager sends the tasks to the Task Managers that host 
the desired hardware accelerators. Note that execution is 
continuously monitored to detect any hardware failures which 
may trigger a new data partitioning and scheduling to different 
types of devices. The following subsections present the key 
software components of the proposed framework in more detail 
along with their interoperability. 

A. Execution Engine 

The proposed framework enables heterogeneous execution 
at the JVM level, where the worker nodes of the Big Data engine 
runs. The employed technology that we use is based on the 
TornadoVM [17], [21], [25]; a JVM capable of executing vanilla 
Java code on heterogeneous devices. TornadoVM works in 
cooperation with standard JVMs (e.g., HotSpot [28]) allowing 
the seamless integration of the acceleration functionality to 
existing deployments.  

TornadoVM consists of the following components: 1) The 
TornadoVM API which enables developers to identify code 
that can be accelerated, as well as composing and building 
pipelines of multiple tasks, where dependencies and 
optimizations between the tasks are automatically managed by 
the runtime layer; 2) The TornadoVM JIT Compiler that 
dynamically generates optimized machine code for 
heterogeneous devices; and 3) The TornadoVM Runtime that 
performs data dependence analysis, optimizes data transfers, and 
orchestrates the parallel execution between the host and the 
heterogeneous target device. 

By utilizing TornadoVM, the proposed software stack is able 
to dynamically –at run-time– compile Java bytecode to machine 
code targeting CPUs, GPUs, and FPGAs. Furthermore, it is able 
to profile the executed code and discover the best performing 
hardware device for each code segment, according to a user-
defined optimization policy (maximum performance, minimum 
cost, etc.). 

B. Scheduler 

The Hardware-Aware Intelligent Elastic Resource Scheduler 
(HAIER) maps the tasks to the available heterogeneous 
resources. To produce an optimal execution plan HAIER 
analyses input data from 1) compiler extracted code features, 2) 
Big Data framework’s task graphs, and 3) resources’ 
availability. Then, the scheduler allocates each task to the most 
beneficial set of hardware resources, in order to conform to a 
user-defined optimization policy. The optimization process is 
based upon detailed models of the cost and performance 
characteristics of tasks over various underlying hardware, such 
as CPUs, GPUs or FPGAs. The models are stored and updated 
in a model library and whenever a new task graph is scheduled 
for execution through HAIER, they are used in order to 
intelligently assign workflow parts to the available hardware 
according to the user optimization policy. Once the optimal 
execution plan is available, it is delegated back to the 
Heterogeneous-aware Big Data framework and be enforced 
through a cluster management framework that can handle 
heterogeneous resources (e.g., Apache YARN [33]). The 
workflow execution is monitored for failures and/or 
performance degradation, at runtime, allowing HAIER to 
dynamically adapt to the current conditions by creating a new 
execution plan for the remaining tasks. 

The HAIER scheduler is comprised of the following 
components. 1) Planner: Determines, in real-time, where each 
task should be scheduled and whether data needs to be moved 
to/from their current locations and between processing units. 
Such a decision must rely on the characteristics of the involved 
tasks, which derive as code features by the compiler, and the 
underlying hardware they execute upon. 2) Models Library: 
This module consists of machine learning models that describe 
the behaviour of each hardware processing unit in terms of 
performance, cost, energy efficiency, etc. 3) Profiler/Modeller: 
The initial task models result from the offline profiling of this 
module, that directly interacts with the pool of physical 
resources and the monitoring layer in-between. 4) Model 
Refinement: While the workflow is being executed, the initial 
models are refined online by this module, by using monitoring 
information of the actual executions. 



Use Case Processing Data Type Volume Key Algorithms 
Health Analytics Batch Text Up to TBs Alternating Least Squares, Linear Algebra 
Natural Lang. Proc. Batch/Stream Text Up to TBs Lexicographical/Statistical fuzzy Matching 
Green Buildings Stream Text Up to 100s of GBs Reductions, Linear Algebra 
Biometric Security Batch/Stream Video/Images Up to TBs ColorMorph, Computer Vision Algorithms 

Table 1: Characteristics of the use-cases. 

This mechanism facilitates dynamic adjustments of the models 
and enables the planner to base its decisions on the most up-to-
date knowledge. 5) Execution Monitor: monitors the execution 
to detect possible failures and/or performance degradation and 
acts accordingly. 

C. Big Data Framework 

The TornadoVM and the HAIER scheduler are integrated 
with Apache Flink [14] to form the proposed heterogeneous-
aware Big Data framework. Flink follows the common 
programming model popularized by MapReduce [18]. The 
developer encapsulates the functionality of the data analysis task 
into user-defined functions (UDFs) which are passed to 
operators that model second-order functions, such as map or 
reduce. Whereas each UDF call processes a single tuple, these 
operators determine how UDFs process data in parallel [11]. The 
operators are assembled into a Job Graph which represents a 
complete data analysis task. To orchestrate the execution of a 
Flink job on a cluster, Flink transparently ships the application 
logic to different worker nodes, partitions the data, and initiates 
and monitors the execution of the operators. 

To accelerate the execution of the data analysis task, we fuse 
UDFs with their second-order operators, so they can be executed 
in parallel on hardware accelerators. Supporting operations, 
such as data shuffling, partitioning, or joins, are also fused and 
executed on the accelerators, so that data is only touched once. 
Note that we aim to generate the code that runs on accelerators 
transparently, without any additional intervention by 
developers. 

In Flink, the Job Manager orchestrates the execution of the 
data analysis task. Each worker node is represented by a Task 
Manager which offers task slots as a unit of execution. Flink 
assumes that worker nodes are uniform, and schedules operators 
on any free task slot. Machines with different capabilities are 
supported by scaling the number of task slots, that each worker 
node provides. 

However, in heterogeneous systems, the execution 
capabilities of different devices can differ by orders of 
magnitudes. This is particularly true when generating custom 
hardware configurations running on FPGAs. Therefore, we 
extend Flink to explicitly model the hardware capabilities of the 
cluster. Task Managers communicate the presence of hardware 
accelerators as well as their performance and power 
characteristics to a central cluster manager. Furthermore, Task 
Managers offer GPU and FPGA specific task slots in addition 
to CPU-based task slots that Flink already provides. The Job 
Manager in turn distributes work to the appropriate Task 
Managers as determined by the HAIER scheduler. 

IV. PRELIMINARY EVALUATION 

To demonstrate the potential of our proposal we have built a 
prototype that integrates TornadoVM in the Apache Flink 
framework. To evaluate its performance we use the kmeans 
algorithm and run 10 times in batches of 10 jobs each. The 

batches of 10 jobs ensure that the JVMs have stabilized, while 
the 10 iterations allow us to observe the reproducibility of the 
results. TornadoVM extracts a set of eight acceleratable kernels 
from the k-means Java source code [1] and creates three groups 
of kernels that can run as pipeline on an accelerator without 
interacting with the host. Kernel loading, synchronization, and 
data transfers from and to the host are handled automatically. 

For the testbed we use a single node with a 4-core (8-threads) 
Intel Core i7-7700K CPU and an NVIDIA Quadro GP100 GPU. 
In our experiment we measure end-to-end execution time, 
including all data transfers, and data marshalling and un-
marshalling to and from the GPU. 

Figure 2 illustrates the performance for varying workload 
sizes. On the y-axis is the average end-to-end execution time of 
the 10 batches in logarithmic scale, while on the x-axis is the 
workload size in bytes. The black lines on the bars indicate the 
standard deviation of the runs. We observe that up to 256 KiB 
the integrated version performs slightly worse (~10%) than the 
original Flink. This is due to the fact that at the current state of 
the integration, the code is always run on the GPU, even if it is 
not the best option. Note that the proposed framework is able to 
dynamically choose the best device. After the 256 KiB point and 
as the workload size increases the integrated version 
outperforms the vanilla Flink system by up to 16.5x. This is 
attributed to the fact that by increasing the workload size, we 
exploit more GPU parallelism and the performance gains 
compensate for the data transfer overhead. With the whole stack 
in place and with more effort on optimizing the code generation, 
we anticipate performance to further improve. 

 

Figure 2: Execution times (Flink+Tornado vs Flink). 

Ultimately the proposed stack is going to be evaluated using 
four applications from four different domains: (1) Health 
Analytics: A real-time streaming use case for predicting 
patients’ hospital re-admissions; (2) Natural Language 
Processing: A sentiment analysis and opinion mining to enable 
fraud detection; (3) Green Buildings: Enabling energy efficient 
buildings based on analytics of data derived from Internet of 
Things deployed sensors; and (4) Biometric Security: Real-
time video recognition to enable biometric authentication. Table 
1 presents the features of the use cases that will be used to assess 
the proposed heterogeneous Big Data deployment. Additionally, 



a wide spectrum of hardware configurations will be exploited, 
including: 1) x86-based systems with NVIDIA and AMD 
GPUs, and Intel FPGAs; and 2) ARM based systems with 
Xilinx FPGAs and Mali GPUs. 

V. CONCLUSIONS 

In this paper we describe the main research challenges 
towards achieving heterogeneous Big Data frameworks. We 
identify key software components at all layers of the overall 
software stack that are necessary to enable true heterogeneous 
execution of Big Data applications. We propose an integrated 
software stack that cooperatively implements a heterogeneous 
Big Data framework. Our preliminary results demonstrate the 
potential of our approach by accelerating an existing Apache 
Flink application up to 16x. 
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