
A Mechanism Design and Learning Approach for
Revenue Maximization on Cloud Dynamic Spot

Markets

Asterios Tsiourvas∗, Constantinos Bitsakos†, Ioannis Konstantinou‡, Dimitris Fotakis†, Nectarios Koziris†
∗Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA

atsiour@mit.edu
†School of Electrical and Computer Engineering, National Technical University of Athens, Greece

{kbitsak, nkoziris}@cslab.ece.ntua.gr, fotakis@cs.ntua.gr
‡Department of Computer Science and Telecommunications, University of Thessaly, Greece

ikons@uth.gr

Abstract—Modern large-scale computing deployments consist
of complex elastic applications running over machine clusters.
A current trend adopted by providers is to set unused virtual
machines, or else spot instances, in low prices to take advantage
of spare capacity. In this paper we present a group of efficient
allocation and pricing policies that can be used by vendors
for their spot price mechanisms. We model the procedure of
acquiring virtual machines as a truthful knapsack auction and
we deploy dynamic allocation and pricing rules that achieve near-
optimal revenue and social welfare. As the problem is NP-hard
our solutions are based on approximate algorithms. First, we
propose two solutions that do not use prior knowledge. Then,
we enhance them with three learning algorithms. We evaluate
them with simulations on the Google Cluster dataset and we
benchmark them against the Uniform Price, the Optimal Single
Price and the Ex-CORE mechanisms. Our proposed dynamic
mechanism is robust, achieves revenue up to 89% of the Optimal
Single Price auction, and computes the allocation in polynomial
time making our contribution computationally tractable in real-
time scenarios.

Index Terms—Spot Instances, Mechanism Design, Learning,
Revenue Maximization.

I. INTRODUCTION

Nowadays, cloud computing services offer prompt on-

demand access on multiple computing resources. Commercial

platforms such as Amazon EC2 [1] and Microsoft Azure [2],

invest on their infrastructure and provide a wide range of CPU,

RAM and storage options.

One of the most popular platforms is Amazon EC2 Spot

Instances [3]. Amazon sells unused EC2 capacity on low

prices, called spot prices, through the EC2 Spot Instances

system. When a user requests computing capacity, they specify

the maximum amount they are willing to pay per hour per

Virtual Machine (VM). If the maximum offer is greater or

equal to the spot price, the user acquires/maintains their

computing resources. Instead, if the maximum offer is less

than the spot price, the VM can be reclaimed by EC2 in a short

amount of time. The underlying mechanism of the pricing

scheme is not revealed. Multiple studies have been conducted

*Work done while the author was with CSLab, NTUA

[4], [5] to learn more about the underlying pricing scheme.

As the pricing policy is not revealed, middle to small sized

vendors may have trouble moving from a fixed price scheme

to an efficient dynamic pricing scheme [6]. In static fixed-price

scenarios, users usually submit bids close to the fixed price. In

this case the revenue of the provider may not be maximized

as the bidders usually do not report their truthful valuation for

the desired VMs. Therefore, users with lower actual valuations

may acquire VMs instead of users with higher valuations, since

both groups of users may submit similar bids. In this case the

revenue is not maximized. To overcome these issues we make

the following contributions.

We propose a dynamic allocation and pricing system based

on Mechanism Design [7], [8] by modeling our system as a

truthful knapsack auction. First, we solve the knapsack prob-

lem without taking into consideration previous data regarding

users’ bids. We provide two distinct solutions. The first is the

classical greedy algorithm approach while the second is an

alternate approximate algorithm combined with a randomized

algorithm [9], [10]. Then, we apply learning methods to

the previous solutions, such as the Maximum Likelihood

Estimation [11], [12] to estimate the distribution of each user’s

valuation, a modification of the Expectation - Maximization

algorithm [12], [13] for auctions that takes into consideration

missing bids and a deep neural network to estimate the

distribution of each user’s valuation without making prior

assumptions. We theoretically and experimentally evaluate our

proposed algorithms, by providing provable guarantees for the

approximate algorithms and by measuring their performance

on realistic cluster datasets provided by Google [14].

II. RELATED WORK

Auctions are efficient resource allocation mechanisms ap-

plied in different markets and as a result numerous studies have

been conducted upon them. There are two types of auctions,

the multi-unit [15] and the multi-item [16] auction. In a multi-

unit auction multiple identical items are sold, while in a multi-

item auction, users bid for bundles of different items.

427

2021 IEEE 14th International Conference on Cloud Computing (CLOUD)

2159-6190/21/$31.00 ©2021 IEEE
DOI 10.1109/CLOUD53861.2021.00057

A special category of multi-unit auctions is the knapsack

auction. In knapsack auctions, there is a limited pool of items

and users bid to acquire a group of them. Knapsack auctions

in which users bid truthfully to acquire goods have been

studied thoroughly [7], [9], [10] and approximate solutions

have emerged.

In cloud environments, dynamic resource provisioning sys-

tems for VMs which are based on auction theory have been

studied. In [17] and [18], the dynamic resource allocation in

a cloud market through multi-item auctions of heterogeneous

VMs was studied. In these works, randomized auctions were

used to maximize the social welfare of the system. Contrary

to our approach, these solutions do not maximize the revenue

of the provider and focus solely on social welfare. In [19] the

authors suggest that spot pricing used by Amazon is truthful

in markets with a single provider and show that users can

increase their utility by being untruthful in a federated cloud

environment. In [20] the authors proposed a multi-unit and

single price auction for IaaS cloud resources that is envy-free

and with high probability truthful mechanism that generates

near optimal profit for the provider. In [21], online truthful

auctions in IaaS clouds are designed to maximize users’ social

welfare along with the cloud provider’s net profit during the

running span of the system.

III. SYSTEM MODEL AND PRELIMINARIES

We consider an auction-based resource provisioning model.

In this setting, the cloud provider (auctioneer) has a pool of

W similar VMs and there are n users who want to acquire a

bundle of them. Each user i has a private valuation vi for each

VM and submits a bid bi to acquire wi VMs. The price pi that

the user i pays is calculated by the auctioneer. Given a feasible

set X which contains vectors in the form of (x1, ..., xn)
T ,

where xi ∈ [0, 1] represents the percentage of the VMs that

the user acquires at the end of the auction, our goal is to find

an allocation x ∈ X that maximizes the revenue generated for

the auctioneer under the knapsack constraint
∑n

i=1 wixi ≤
W . Each user i wants to maximize their utility defined as

ui =
{ vi − pi, i wins

0, i loses . To motivate a user to participate

in an auction, the relationship pi ≤ bi should hold. We define

social welfare as the sum of users’ valuations constrained

upon the fraction of the VMs that each user finally acquires,

i.e. SW =
∑n

i=1 viwixi, while the revenue generated for the

cloud provider is defined as R =
∑n

i=1 pi. We provide the

definition of truthful auctions, as all of our solutions fulfill

this property, as well as some other useful definitions.

Definition 1. An auction is truthful if for any user i, reporting
their true valuation as their bid bi, maximizes their expected
utility, regardless of the bids submitted by other users.

Definition 2. If an auction is truthful and guarantees non neg-
ative utility then it is Dominant-Strategy Incentive Compatible
(DSIC).

Definition 3. An allocation rule x is called implementable if
a payment rule p exists in order for the auction to be DSIC.

Given that b−i is the vector b = (b1, ..., bn)
T of all bids,

but with the ith component removed, we define the monotone

allocation rule.

Definition 4. An allocation rule x is monotone if for every
user i and bids b−i from the other users, the allocation
xi(z,b−i) to i is non decreasing in their bid z.

According to the definition above, a monotone allocation

rule guarantees that while a user increases their bid, the goods

received will only increase or stay the same for constant b−i.

Given all these definitions we present Myerson’s Lemma [7],

[22], a powerful tool that specifies the prices in order for the

auction to be truthful.

Lemma 1. According to Myerson’s Lemma:
• An allocation rule x is implementable if and only if it is

monotone.
• If x is monotone, then there is a unique payment rule for

which the auction mechanism (x,p) is DSIC and pi(b) =
0, whenever bi = 0.

• The payment rule is given by the formula pi(bi,b−i) =∑l
j=1 zj · [jump in xi(·,b−i) at zj]

Using Myerson’s Lemma we construct truthful mechanisms.

This mechanism rewards the users with the greatest valuations.

Our concern is to create mechanisms that maximize the

expected revenue of the cloud provider, i.e. E[
∑n

i=1 pi(v)].
To solve this problem, we study the average-case model.

We assume that the private valuation vi of user i is drawn

from the distribution Fi. Our problem is transformed into

maximizing the expected revenue Ev∼F[
∑n

i=1 pi(v)] of a

DSIC mechanism (x,p), where F = F1 × F2 × ... × Fn.

By observing this formula, it is not clear how to maximize

it. Therefore, we work towards an equivalent formula that is

easier to handle. This second formula incorporates the concept

of virtual valuations.

Definition 5. For a user i with valuation distribution Fi and
valuation vi, their virtual valuation is defined as

φi(vi) = vi − 1−Fi(vi)
fi(vi)

If the auctioneer had prior knowledge about the exact value

of the user’s valuation v, then the optimal price would be v, as

it is the upper bound on the price the user can pay for product.

This is the first part of the virtual valuation formula. Since

the valuation is not constant, but follows the F distribution,

the expected revenue is influenced by the randomness of the

procedure. Actually, the second term of the virtual valuation

is the expected loss in revenue incurred due to the randomness

of the buyer’s valuation. We present the following theorem.

Theorem 1. For every auction environment with valuation
distributions F1, ..., Fn and every DSIC mechanism

Ev∼F[
∑n

i=1 pi(v)] = Ev∼F[
∑n

i=1 φi(vi) · xi(v)]

The proof is presented in [7]. The right term in this equation

is the second equivalent formula that is easier to maximize. To

maximize this formula for each v we choose a proper x(v) that

428

maximizes the virtual welfare
∑n

i=1 φi(vi)xi(v). If this rule

is monotone, it can be extended to a DSIC mechanism and by

the previous theorem this mechanism maximizes the expected

revenue. The monotonicity of the virtual welfare maximizing

rule depends on the valuation distributions. We define regular

distributions.

Definition 6. A distribution F is regular if the corresponding
virtual valuation function φ(v) is non decreasing.

The following lemma provides the condition under which the

virtual welfare allocation rule is monotone.

Lemma 2. If every user’s valuation is drawn from a regu-
lar distribution, then the virtual welfare maximizing rule is
monotone.

As a consequence, with regular valuation distributions we

extend the virtual welfare maximizing allocation rule to a

DSIC mechanism using Myerson’s Lemma and we construct

a truthful auction that maximizes the expected revenue. We

present the procedure.

1) Transform the truthfully reported valuation vi of the user

i into the virtual valuation φi(vi).
2) Choose the feasible allocation (x1, ..., xn)

T that maxi-

mizes
∑n

i=1 φi(vi)xi(v).
3) Charge payments according to Myerson’s payment rule.

Contrary to valuations, virtual valuations can be negative.

The virtual welfare maximizing mechanism rewards only the

users with non-negative virtual valuations. The valuation vi
that corresponds to virtual valuation φi(vi) = 0 can be

interpreted as a reserve price, formally φ−1
i (0). If for user

i, vi < φ−1
i (0) the user is not rewarded. Finally, we define

randomized auctions [23] which are used widely in revenue

maximization [24] and are proved to be efficient in the case

of the unlimited supply problem, i.e.
∑n

i wi ≤ W .

Definition 7. In a randomized auction the procedure of cal-
culating the allocation and pricing rule is a random process.

The revenue, the pricing rule and the allocation rule are

random variables in a randomized auction.

IV. ALGORITHMS FOR REVENUE MAXIMIZATION

A. Non - Learning Algorithms

We propose non-learning algorithms for vendors that do not

have sufficient past data about the users in order to apply the

learning algorithms. This collection of non-learning algorithms

can be applied successfully for the start-up stage of the spot in-

stance service. When a significant amount of data is collected,

the vendor may choose to migrate to learning algorithms. Our

first proposed solution, is based upon the classical greedy

solution of the knapsack problem. This solution uses the per-
unit value of each user as the main criterion to create a feasible

allocation.

Definition 8. The greedy knapsack algorithm (GK) does the
following:

1) Sort the users in a per-unit value descending order.

2) Select the users in the aforementioned ordering until the
provider cannot support more requests.

3) The set of winners is either the solution described above,
or the user with the highest bid, depending on which of
the two solutions achieves the highest social welfare.

The allocation rule produced by GK is monotone and

therefore we can apply Myerson’s Lemma. Also, it is a 1
2 -

approximation for the knapsack problem, meaning that for

every instance of the knapsack problem, the algorithm returns

a feasible solution with total value at least 1
2 times the max-

imum possible. The second proposed non-learning solution

[9] is based on approximate and randomized algorithms. If∑n
i=1 wi > W , we encounter the case of the limited supply

where we apply the following algorithm.

Definition 9. The limited supply approximate algorithm does
the following:

1) Remove the users that request a bundle of VMs greater
than half of the available capacity.

2) Sort the users in a per-unit value descending order.
3) Select the winners in the aforementioned ordering until

the provider cannot support more requests.
4) Charge the winners a price equal to the amount of their

acquired VMs multiplied by the largest per-unit value
that was left out of the knapsack.

The aforementioned algorithm is truthful. On input N it se-

lects a feasible set H satisfying OPT (H) ≥ OPT (N)/3−h,

where OPT is the profit obtained by the best monotone

pricing function for users’ actual valuations and h is an upper

bound on the highest user’s valuation. In the unlimited supply

case, which is a typical case for large cloud providers, we

present the Unlimited Supply Auction (USK) algorithm which

is the convex combination of two randomized algorithms.

Before we present the first algorithm, we provide an essential

definition.

Definition 10. A monotone pricing rule with exponential
intervals is a monotone pricing rule in which the winners can
be partitioned into equal priced intervals over their valuations
such that the ith interval (in decreasing order of weights)
contains at least 2i−1 winners.

We present the first algorithm, called Random Sampling

Knapsack (RSK).

Definition 11. The RSK does the following:

1) Partition the users into two sets A and B uniformly.
2) Compute the optimal monotone pricing rule with expo-

nential intervals (restricting price to powers of two) for
each partition. The pricing rules for each set are πA

and πB .
3) Use πA for B and πB for A.

The second algorithm is called general attribute algorithm

(GAA) [10] and its steps are presented below.

Definition 12. The GAA, given the parameters α, p does the

429

following:

1) List users in order of decreasing per-unit value bi
wi

.
2) Given that h is the upper bound on the highest user’s

valuation, we define the variable experts = �logα h�+1
that represents the number of virtual experts that offer
a feasible price for each VM bid of each user.

3) For each expert j, we define a virtual score sj = kαj

with probability (1− p)kp, where k is the total amount
of Bernoulli trials that were made until the first event of
probability p arrives.

4) Starting from the first user, we select for each user i the
expert j with the highest virtual score (in case of tie we
choose arbitrary, but constantly) and we offer the user
the price αj .

5) We then update the scores of every expert that could
make a sale (aj ≤ bi) according to the rule sj ← sj+aj .

6) We repeat this procedure for every user.

Both RSK and GAA are truthful [10], [9]. We now present

the complete USK method for revenue maximization.

Definition 13. The Unlimited Supply Knapsack algorithm does
the following:

1) Perform the first step of RSK.
2) With probability p, run the GAA on sets A and B and

with probability 1− p run the remaining steps of RSK.

It is proved [9] that USK is truthful and the revenue

generated is αOPT −γh(log log log nA+log log log nB + c),
where α, γ, c are constants.

B. Learning Algorithms

In our first learning approach, we use classical estimation

theory to estimate the parameters of each user’s valuation

distribution. Given a vector of samples X = (x1, ..., xn)
T

from a single distribution and assuming that the underlying

distribution p(x|θ) is described by a vector of parameters

θ, we want to make an accurate estimation θ̂ of this vector.

To estimate the vector θ, we apply the Maximum Likelihood

Estimation method [11].

In our second learning approach, we estimate users’ val-

uation distribution by taking into account ”missing bids”.

When users with valuation lower than the current spot price

enter the system to acquire spot instances, they do not make

an offer, as they will certainly not acquire a VM. However,

their valuations are essential in estimating the distribution.

Therefore, we use a modification of the Expectation - Max-

imization algorithm (EM) [13], [25] to estimate the missing

bids. We assume that each user follows the valuation distri-

bution f(x|θ) and the arrival rate of the users follows the

distribution g(x|λ). Given the set of samples D we split

the data in D = (xv,xh) where xv represents visible data

and xh hidden data. We assume that m total users exist, n
of them make an offer and m − n are the ”missing bids”.

Our goal is to find the vector θ̂ that maximizes the function

Q(θ) =
∫
log(p(xh,xv|θ))p(xh|xv,θ

(old),λ(old))dxh gener-

ated in step E of the EM algorithm. For its computation we

present the following method for generating hidden bids. The

method resembles the procedure of a user bidding for a spot

instance.

Definition 14. The hidden bid generating method is the
following:

1) Set as the spot price the lowest of the observed offers.
2) Generate a sample m > n from the distribution g(x|λ)

that represents the total number of users that arrived to
the system at the specific round.

3) Draw m−n random offers, smaller than the spot price,
that represent the missing bids from f(x|θ).

In our third learning approach, we use deep learning (DL)

to estimate directly the virtual valuation of each user without

any assumption on the distributions. The method is based

on [26], [27]. We estimate the virtual valuations with a two

layer min - max neural network. According to [26] this type

of neural network is proved to approximate uniformly to an

arbitrary degree of accuracy ε > 0 any continuous, bounded,

differentiable function which is monotonic in all variables.

Since, the virtual valuations that correspond to regular dis-

tributions satisfy these criteria the network is suitable for

approximating virtual valuations. Regarding the architecture,

we define K groups, each of which consists of J linear

functions with slope wi
kj = eα

i
kj , where αi

kj ∈ [−B,B]
with B > 0, and intercepts βi

kj , where k = 1, ...,K and

j = 1, ..., J . We approximate every virtual valuation function

as φ̂i(bi) = min
k∈[K]

max
j∈[J]

wi
kjbi + βi

kj . To decide the winners

of the knapsack auction, we add a virtual user with virtual

valuation equal to zero in order to not grant VMs to users

with negative virtual valuations. We pass each virtual valuation

through the softmax function to decide the winners. The loss

function is the negative of the expected revenue, described

formally as r̂ev(x,p) = 1
L

∑L
l=1

∑n
i=1 xi(v

(l))pi(v
(l)). It is

proved that network preserves the truthful property [27]. We

proceed by presenting the experimental results.

V. EXPERIMENTAL RESULTS

A. Simulation Environment and Performance Evaluation

We evaluate our algorithms using trace-driven simulation

against realistic cluster usage traces provided by Google [14].

We study the popular a1.medium VM [3] with 1 CPU and

2Gb of Ram. We transform each job request into a bidding

bundle by calculating the number of a1.medium VMs that

combined make up the resource demands in the job request.

Each user’s i valuation follows the regular Lognormal(μ, σ2)
distribution with μ = 2+ 0.05i− α · N and σ = 0.25, where

α = 0.01(init − remaining), init is equal to the initial

amount of the VMs that each user requests, remaining is

equal to the number of the remaining VMs that the user needs

to complete their workload and N is the absolute value of a

random variable that follows the standard normal distribution.

The α · N is a random noise term that represents the case in

which when the majority of a user’s requests are fulfilled and

their workload comes close to its end, the user usually reduce

430

their bid. In this way, we test the robustness of our algorithms

and observe how well they adapt to valuations with varying

distributions. Each user has a total workload WL ∼ U [10, 20].
We simulate R = 72 discrete rounds. Our cluster consists of

40 VMs and 10 to 30 users participate in each round. We

chose these settings to simulate the unlimited supply case (10

users), the limited supply case (30 users) and the combination

of both cases (20 users). To evaluate the performance of our

algorithms we compute the revenue, the social welfare and the

CPU utilization achieved.

B. Baselines

We compare our algorithms with the following three auction

mechanisms. The first auction mechanism is the Optimal

Single Price auction F that is defined as follows.

Definition 15. Let d be the vector consisting of each user’s
i per unit bid bi and request for capacity wi. Given that d
is sorted in descending order based on bids, the auction F
on input d determines the value k such that bk

∑k
i=1 wi is

maximized. All users with bi ≥ bk win at price bi. The revenue
generated on input d is:

F(d) = max
i

bi
∑i

j=1 wj

OPT is not truthful [20]. The revenue in a single-round and

single-price auction is at most OPT. Therefore, our goal is to

create auction mechanisms that are competitive with F , i.e.

generate revenue as close to OPT.

The second benchmark is the Uniform Price Auction (UPA),

in which each user is served exhaustively until the capacity is

exhausted or there are no more requests. Every user is charged

the per-unit price of the lowest winning bid.

The third benchmark is the Online Extended Consensus

Revenue Estimate Mechanism (Online Ex-CORE) Auction

algorithm proposed by Toosi et. al [20]. This algorithm is

a renowned online algorithm for pricing by cloud providers

that offer Infrastucture as a Service (IaaS) capabilities that

maximizes profit and balances resource supply and demand.

C. Evaluation of Non-Learning Algorithms

We begin with the comparison between the two non-learning

algorithms. For brevity, we call approximate knapsack algo-

rithm (AK), the second proposed non-learning solution that is

based on approximate (limited supply case) and randomized

algorithms (unlimited supply case).

In Table I, we observe that the AK algorithm generates

more revenue than the greedy knapsack (GK) algorithm in

every case. As mentioned in sec. IV, GK favors social welfare.

Therefore, since the maximization of social welfare is contrary

to revenue maximization, in GK the revenue is not optimized.

As expected, GK achieves better social welfare and CPU

utilization than AK in every setup. One key observation is

that the randomized algorithms used for the unlimited supply

case (10 users) grant high revenue.

TABLE I: Metrics - Non Learning Algorithms

Method Metric 10 users 20 users 30 users

GK
Revenue 631.72 18,165.43 37,848.43

Social Welfare 16,404.03 38,130.29 63,213.33
CPU Util (%) 61.18 98.05 99.65

AK
Revenue 7,319.82 21,167.37 38,766.2

Social Welfare 15,326.63 36,551.79 62,311.5
CPU Util (%) 56.67 93.02 95.24

D. Evaluation of Learning Algorithms

First, we present the simulation results regarding the effec-

tiveness of our first two learning solutions, the MLE and the

modified EM. We assume that each user’s valuation follows the

same distribution (i.e. the log-normal distribution with μ = 2,

σ = 0.25), the arrival rate of the users follow the Poisson

distribution with λ = 20 and a random portion (between

10%− 50%) of the total bids is not observed. The Kullback-

Leibler (KL) divergence [28] from the actual distribution for

both methods can be seen in Table II.

TABLE II: MLE versus EM

Missing Bids (%) MLE KL EM KL
10 0.441157 0.441157
20 0.862317 0.356689
30 1.306289 0.622689
40 1.801786 0.438974
50 2.419784 0.235461

In almost every case, the modified EM algorithm makes a

better estimation than the MLE.

TABLE III: Metrics - Learning Greedy Algorithm

Method Metric 10 users 20 users 30 users

GK MLE
Revenue 7,036.86 20,934.58 37,371.74

Social Welfare 9,005.6 29,720.14 59,197.02
CPU Util (%) 26.88 66.18 86.80

GK EM
Revenue 9,245.85 21,312.89 37,443.99

Social Welfare 12,457.65 30,540.33 62,055.03
CPU Util (%) 41.11 69.02 94.41

GK Deep
Revenue 1,531.12 18,377.67 37,858.16

Social Welfare 16,404.03 38,130.29 63,213.33
CPU Util (%) 61.18 98.05 99.65

We proceed with our evaluation by presenting and com-

paring the results of the learning enhanced GK algorithm

(Table III). We observe that the GK combined with learning

increases significantly its revenue in the first two cases. In

the case of the unlimited supply, the revenue is increased

up to 9, 245.86/631.72 ≈ ×14.5 times when using the EM

method. We observe that in the limited supply case the EM

generates the best results, while in the unlimited supply case

the DL approach performs best. The DL method grants the

best results in the rest of the metrics in every case.

Next, we present the results of the learning-enhanced AK

algorithm in Table IV. We observe that the highest metrics

are granted by the DL approach. We believe that the other

two learning methods fail, as they wrongly assume the type

of distribution and that each user’s valuation distribution is

the same. For example, if these two methods assumed that the

users’ valuations follow the normal distribution instead of the

431

TABLE IV: Metrics - Learning Approx. Algorithm

Method Metric 10 users 20 users 30 users

AK MLE
Revenue 4,254 15,046.37 34,460.91

Social Welfare 8,551.91 27,769.91 56,398.72
CPU Util (%) 25.59 61.56 81.42

AK EM
Revenue 6,273 15,651.22 37,299.54

Social Welfare 12,110.65 28,585.78 59,885.36
CPU Util (%) 39.20 64.55 89.65

AK Deep
Revenue 7,319.82 21,167.37 38,766.2

Social Welfare 15,326.63 36,551.79 62,311.5
CPU Util (%) 56.67 93.02 95.24

log-normal, the revenue would be even worse as seen in Table

V. Finally, we present the metrics by the benchmark methods.

TABLE V: Revenue - Wrong Distribution Assumptions

Method 10 users 20 users 30 users
GK MLE 6,928.56 19,608.73 37,041.24
GK EM 8,206.45 20,674.11 36,415.11
AK MLE 4,091 13,828.77 26,963.23
AK EM 4,843 14,427.32 30,678.94

TABLE VI: Metrics - Benchmark Auctions

Method Metric 10 users 20 users 30 users

OPT
Revenue 11,525.15 25,411.8 43,394.11

Social Welfare 14,764.58 34,905.06 58,558.23
CPU Util (%) 61.14 94.68 95.97

UPA
Revenue 9,891.2 21,628.22 36,519.09

Social Welfare 16,404.03 38,120.3 63,213.33
CPU Util (%) 61.18 98.05 99.65

Ex-CORE
Revenue 3,331.16 11,341.12 15,952.45

Social Welfare 4,440.76 16,372.15 32,907.44
CPU Util (%) 13.96 35.69 58.54

By observing Table VI, we notice that the approximate

algorithms, both the original and the DL approach, surpass the

UPA and Ex-CORE achieved revenue for the limited and the

unlimited supply case. Moreover, regarding OPT, our learning

algorithms achieve up to 89% ≈ 38, 766.2/43, 394.11 as great

revenue. The social welfare and the CPU utilization achieved

by our greedy learning algorithms surpass the results of OPT

and Ex-CORE auction and are similar to the UPA. It can be

seen, that regardless of the metric, our proposed algorithms

can provide feasible, computationally tractable solutions that

perform well against different benchmarks.

VI. CONCLUSION

In this paper, we presented how Mechanism Design and

Learning Theory can enhance the generated revenue and

the total social welfare on Cloud Dynamic Spot Markets.

We modeled the procedure of acquiring VMs as a truthful

knapsack auction. We applied learning methods, such as the

MLE, a modified version of the EM algorithm and a deep

neural network to estimate each user’s valuation distribution.

By estimating each user’s valuation distribution, we modified

the non-learning algorithms in a way that leads to rev-

enue maximization. Evaluation on Google cluster dataset and

comparison with well-known baselines, showed that learning

methods achieve increased revenue in every possible setting

up to 89% of the Optimal Single Price auction. Our solutions

provide substantial results on every metric, while they compute

the allocation in polynomial time, making our contribution

computationally tractable for real scenarios.

We believe that the DL approach is the most robust learning

method for estimating each user’s virtual valuation, as it does

not make any assumption about the underlying distribution

of users’ valuation. Taking all of the above into consideration,

we conclude that the approximate knapsack solution combined

with the DL method grants competitive results in every metric,

while it is the most robust and can adapt accurately to every

regular distribution.

REFERENCES

[1] “Amazon EC2,” https://aws.amazon.com/ec2/. [Online]. Available:
https://aws.amazon.com/ec2/

[2] “Microsoft Azure Cloud Computing Platform & Services,”
https://azure.microsoft.com/en-us/. [Online]. Available: https://azure.
microsoft.com/en-us/

[3] “Amazon EC2 Spot Instances,” https://aws.amazon.com/ec2/spot/.
[Online]. Available: https://aws.amazon.com/ec2/spot/

[4] M. Baughman et al., “Deconstructing the 2017 Changes to AWS Spot
Market Pricing,” in Workshop on Scientific Cloud Computing, 2019.

[5] O. Agmon Ben-Yehuda et al., “Deconstructing Amazon EC2 Spot
Instance Pricing,” ACM Trans. Econ. Comput., 2013.

[6] G. Cachon and P. Feldman, “Dynamic versus Static Pricing in the
Presence of Strategic Consumers,” University of Pennsylvania, 2011.

[7] T. Roughgarden, Twenty Lectures on Algorithmic Game Theory, 1st ed.
Cambridge University Press, 2016.

[8] M. J. Osborne and A. Rubinstein, A Course in Game Theory. The MIT
Press, 1994.

[9] G. Aggarwal and J. D. Hartline, “Knapsack Auctions,” in SODA, 2006.
[10] A. Blum and J. D. Hartline, “Near-optimal Online Auctions,” in SODA,

2005.
[11] D. Bertsekas and J. Tsitsiklis, Introduction to Probability, ser. Athena

Scientific optimization and computation series. Athena Scientific, 2008.
[12] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2Nd

Edition). Wiley-Interscience, 2000.
[13] T. Moon, “The expectation-maximization algorithm,” Signal Processing

Magazine, IEEE, 1996.
[14] “google/cluster-data: Borg cluster traces from Google.” [Online].

Available: https://github.com/google/cluster-data
[15] S. Dobzinski and N. Nisan, “Mechanisms for Multi-Unit Auctions,”

CoRR, vol. abs/1401.3834, 2014.
[16] G. Demange, G. David, and M. Sotomayor, “Multi-Item Auctions,”

HAL, Post-Print, 1986.
[17] W. Shi et al., “An Online Auction Framework for Dynamic Resource

Provisioning in Cloud Computing,” IEEE/ACM Transactions on Net-
working, 2016.

[18] L. Zhang et al., “Dynamic Resource Provisioning in Cloud Computing:
A Randomized Auction Approach,” in IEEE INFOCOM, 2014.

[19] M. Mihailescu and Y. Teo, “The Impact of User Rationality in Federated
Clouds,” CCGrid, 2012.

[20] A. N. Toosi et al., “An Auction Mechanism for Cloud Spot Markets,”
ACM Transactions on Autonomous and Adaptive Systems, 2016.

[21] X. Zhang et al., “Online Auctions in IaaS Clouds: Welfare and Profit
Maximization With Server Costs,” IEEE/ACM Transactions on Network-
ing, 2017.

[22] R. B. Myerson, “Optimal Auction Design,” Math. Oper. Res., 1981.
[23] A. Mehta and V. V. Vazirani, “Randomized truthful auctions of digital

goods are randomizations over truthful auctions,” in Proceedings of the
5th ACM conference on Electronic commerce, 2004.

[24] A. V. Goldberg et al., “Competitive Auctions,” Games and Economic
Behavior, 2006.

[25] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions.
Hoboken, NJ: Wiley, 2008.

[26] J. Sill, “Monotonic Networks,” in NeurIPS, 1997.
[27] P. Dütting et al., “Optimal Auctions through Deep Learning,”

arXiv:1706.03459 [cs], 2017, arXiv: 1706.03459.
[28] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The

Annals of Mathematical Statistics, 1951.

432

